00001 #include<cob_people_detection/subspace_analysis.h>
00002 #include<cob_people_detection/face_normalizer.h>
00003 #include<opencv/cv.h>
00004 #include<opencv/highgui.h>
00005 #include<iostream>
00006 #include<fstream>
00007 #include <sys/time.h>
00008 #include <boost/timer.hpp>
00009
00010 bool preprocess(cv::Mat& img, cv::Mat& xyz, FaceNormalizer* fn, bool normalize, cv::Size& norm_size, cv::Mat& dm)
00011 {
00012
00013 bool valid = true;
00014 if (normalize)
00015 {
00016 valid = fn->normalizeFace(img, xyz, norm_size, dm);
00017
00018
00019
00020
00021
00022
00023 }
00024 else
00025 {
00026 cv::resize(img, img, norm_size);
00027 }
00028
00029 dm.convertTo(dm, CV_64FC1);
00030 img.convertTo(img, CV_64FC1);
00031 return valid;
00032 }
00033 bool preprocess(cv::Mat& img, FaceNormalizer* fn, bool normalize, cv::Size& norm_size)
00034 {
00035 bool valid = true;
00036
00037 if (normalize)
00038 {
00039 valid = fn->normalizeFace(img, norm_size);
00040
00041
00042
00043 }
00044 else
00045 {
00046 cv::resize(img, img, norm_size);
00047 }
00048
00049 img.convertTo(img, CV_64FC1);
00050 return valid;
00051 }
00052
00053 int main(int argc, const char *argv[])
00054 {
00055
00056 FaceNormalizer::FNConfig config;
00057 config.eq_ill = true;
00058 config.align = false;
00059 config.resize = true;
00060 config.cvt2gray = true;
00061 config.extreme_illumination_condtions = false;
00062
00063 FaceNormalizer* fn = new FaceNormalizer();
00064 fn->init(config);
00065
00066
00067 std::string method_str, classifier_str;
00068 bool use_xyz = true;
00069 bool normalizer = false;
00070 if (argc == 1)
00071 {
00072 method_str = "FISHER";
00073 classifier_str = "SVM";
00074 normalizer = false;
00075 }
00076
00077 else if (argc == 2)
00078 {
00079 method_str = argv[1];
00080 classifier_str = "KNN";
00081 normalizer = false;
00082 }
00083
00084 else if (argc == 3)
00085 {
00086 method_str = argv[1];
00087 classifier_str = argv[2];
00088 normalizer = false;
00089 }
00090
00091 else if (argc == 4)
00092 {
00093 method_str = argv[1];
00094 classifier_str = argv[2];
00095
00096 if (std::strcmp(argv[3], "0") == 0)
00097 normalizer = false;
00098 if (std::strcmp(argv[3], "1") == 0)
00099 normalizer = true;
00100
00101 if (std::strcmp(argv[4], "0") == 0)
00102 use_xyz = false;
00103 if (std::strcmp(argv[4], "1") == 0)
00104 use_xyz = true;
00105 }
00106
00107 else if (argc == 5)
00108 {
00109 method_str = argv[1];
00110 classifier_str = argv[2];
00111 if (std::strcmp(argv[3], "0") == 0)
00112 normalizer = false;
00113 if (std::strcmp(argv[3], "1") == 0)
00114 normalizer = true;
00115
00116 if (std::strcmp(argv[4], "0") == 0)
00117 use_xyz = false;
00118 if (std::strcmp(argv[4], "1") == 0)
00119 use_xyz = true;
00120 }
00121
00122
00123
00124 SubspaceAnalysis::Method method;
00125 SubspaceAnalysis::Classifier classifier;
00126
00127 if (!method_str.compare("FISHER"))
00128 {
00129 std::cout << "FISHER" << std::endl;
00130 method = SubspaceAnalysis::METH_FISHER;
00131 }
00132 else if (!method_str.compare("EIGEN"))
00133 {
00134 std::cout << "EIGEN" << std::endl;
00135 method = SubspaceAnalysis::METH_EIGEN;
00136 }
00137 else if (!method_str.compare("LDA2D"))
00138 {
00139 std::cout << "LDA2D" << std::endl;
00140 method = SubspaceAnalysis::METH_LDA2D;
00141 }
00142 else if (!method_str.compare("PCA2D"))
00143 {
00144 std::cout << "PCA2D" << std::endl;
00145 method = SubspaceAnalysis::METH_PCA2D;
00146 }
00147 else
00148 {
00149 std::cout << "ERROR: invalid method - use FISHER or EIGEN" << std::endl;
00150 }
00151
00152 if (!classifier_str.compare("KNN"))
00153 {
00154 std::cout << "KNN" << std::endl;
00155 classifier = SubspaceAnalysis::CLASS_KNN;
00156 }
00157 else if (!classifier_str.compare("DIFFS"))
00158 {
00159 std::cout << "DIFFS" << std::endl;
00160 classifier = SubspaceAnalysis::CLASS_DIFS;
00161 }
00162 else if (!classifier_str.compare("SVM"))
00163 {
00164 std::cout << "SVM" << std::endl;
00165 classifier = SubspaceAnalysis::CLASS_SVM;
00166 }
00167 else if (!classifier_str.compare("RF"))
00168 {
00169 std::cout << "RF" << std::endl;
00170 classifier = SubspaceAnalysis::CLASS_RF;
00171 }
00172 else
00173 {
00174 std::cout << "ERROR: invalid classifier - use KNN or DIFFS or SVM" << std::endl;
00175 }
00176
00177 std::cout << "SSA test configuration:" << std::endl;
00178 std::cout << "classifier: " << classifier_str << std::endl;
00179 std::cout << "method: " << method_str << std::endl;
00180 std::cout << "normalizing: " << normalizer << std::endl;
00181 std::cout << "use xyz: " << use_xyz << std::endl;
00182
00183
00184
00185
00186
00187
00188 std::string training_set_path = "/share/goa-tz/people_detection/eval/eval_tool_files/training_set_list";
00189 std::string training_set_xyz_path = "/share/goa-tz/people_detection/eval/eval_tool_files/training_set_xyz_list";
00190 std::string probe_file_path = "/share/goa-tz/people_detection/eval/eval_tool_files/probe_file_list";
00191 std::string probe_file_xyz_path = "/share/goa-tz/people_detection/eval/eval_tool_files/probe_file_xyz_list";
00192
00193
00194 std::ifstream probe_file_stream(probe_file_path.c_str());
00195
00196 std::string probe_file;
00197 std::vector < std::string > probe_file_vec;
00198
00199 while (probe_file_stream >> probe_file)
00200 {
00201
00202 probe_file_vec.push_back(probe_file);
00203
00204 }
00205
00206 std::vector < std::string > probe_file_xyz_vec;
00207 if (use_xyz)
00208 {
00209 std::ifstream probe_file_xyz_stream(probe_file_xyz_path.c_str());
00210 std::string probe_file_xyz;
00211
00212 while (probe_file_xyz_stream >> probe_file_xyz)
00213 {
00214
00215 probe_file_xyz_vec.push_back(probe_file_xyz);
00216
00217 }
00218 }
00219
00220
00221 std::ifstream in_file(training_set_path.c_str());
00222 std::string img_file;
00223
00224 int label = 0;
00225 std::vector < std::string > in_vec;
00226 std::vector<int> label_vec;
00227
00228 while (in_file >> img_file)
00229 {
00230 if (std::strcmp(img_file.c_str(), "$$") == 0)
00231 {
00232
00233 label++;
00234 }
00235 else
00236 {
00237 in_vec.push_back(img_file);
00238 label_vec.push_back(label);
00239 }
00240
00241 }
00242
00243 std::vector < std::string > in_vec_xyz;
00244 if (use_xyz)
00245 {
00246
00247 std::ifstream in_file_xyz(training_set_xyz_path.c_str());
00248 std::string xml_file;
00249
00250 while (in_file_xyz >> xml_file)
00251 {
00252 if (!std::strcmp(xml_file.c_str(), "$$") == 0)
00253 {
00254 in_vec_xyz.push_back(xml_file);
00255 }
00256
00257 }
00258 }
00259
00260 if ((use_xyz == true) && (in_vec.size() != in_vec_xyz.size() || probe_file_vec.size() != probe_file_xyz_vec.size()))
00261 {
00262 use_xyz = false;
00263 std::cerr << "Error - not for every image 3d information could be loaded - ignoring 3d information\n";
00264 }
00265
00266 int num_classes = label;
00267 cv::Size norm_size;
00268 double aspect_ratio = 1;
00269
00270 std::vector<cv::Mat> img_vec;
00271 std::vector<cv::Mat> dm_vec;
00272
00273 std::string invalid_path = "/share/goa-tz/people_detection/eval/eval_tool_files/nrm_failed";
00274
00275 std::ofstream os_inv(invalid_path.c_str());
00276 bool valid;
00277 for (int i = 0; i < in_vec.size(); i++)
00278 {
00279 cv::Mat img;
00280 cv::Mat xyz;
00281 if (use_xyz)
00282 {
00283 cv::FileStorage fs(in_vec_xyz[i], FileStorage::READ);
00284 fs["depth"] >> xyz;
00285 fs["color"] >> img;
00286 fs.release();
00287 }
00288 else
00289 {
00290 img = cv::imread(in_vec[i], 0);
00291 }
00292
00293 if (i == 0)
00294 {
00295 aspect_ratio = double(img.cols) / double(img.rows);
00296 norm_size = cv::Size(round(160 * aspect_ratio), 160);
00297
00298 }
00299 valid = true;
00300 cv::Mat dm;
00301 if (use_xyz)
00302 valid = preprocess(img, xyz, fn, normalizer, norm_size, dm);
00303
00304 if (!use_xyz)
00305 valid = preprocess(img, fn, normalizer, norm_size);
00306
00307 img_vec.push_back(img);
00308 if (use_xyz)
00309 dm_vec.push_back(dm);
00310
00311 if (!valid)
00312 {
00313 os_inv << in_vec[i] << "\n";
00314 }
00315
00316 }
00317
00318
00319 std::vector<cv::Mat> probe_mat_vec;
00320 std::vector<cv::Mat> probe_dm_vec;
00321 for (int i = 0; i < probe_file_vec.size(); i++)
00322 {
00323 std::stringstream ostr, nstr;
00324 nstr << "/share/goa-tz/people_detection/eval/picdump/";
00325
00326 ostr << nstr.str().c_str() << i << "_orig" << ".jpg";
00327
00328 cv::Mat probe_xyz, probe_img;
00329 if (use_xyz)
00330 {
00331 cv::FileStorage fs(probe_file_xyz_vec[i], FileStorage::READ);
00332 fs["depth"] >> probe_xyz;
00333 fs["color"] >> probe_img;
00334 fs.release();
00335 }
00336 else
00337 {
00338 probe_img = cv::imread(probe_file_vec[i], 0);
00339 }
00340
00341 cv::imwrite(ostr.str().c_str(), probe_img);
00342
00343 valid = true;
00344 cv::Mat dm;
00345 if (use_xyz)
00346 valid = preprocess(probe_img, probe_xyz, fn, normalizer, norm_size, dm);
00347 if (!use_xyz)
00348 valid = preprocess(probe_img, fn, normalizer, norm_size);
00349
00350 cv::Mat oimg;
00351 probe_img.convertTo(oimg, CV_8UC1);
00352
00353 nstr << i << "_norm" << ".jpg";
00354 cv::imwrite(nstr.str().c_str(), oimg);
00355
00356 probe_mat_vec.push_back(probe_img);
00357 if (use_xyz)
00358 probe_dm_vec.push_back(dm);
00359
00360 if (!valid)
00361 {
00362 os_inv << probe_file_vec[i] << "\n";
00363 }
00364
00365 }
00366 os_inv.close();
00367
00368 std::cout << "Size Training Set= " << img_vec.size() << std::endl;
00369 std::cout << "Size Test Set= " << probe_file_vec.size() << std::endl;
00370
00371 int ss_dim = num_classes;
00372
00373 SubspaceAnalysis::FaceRecognizer* EFF = new SubspaceAnalysis::FaceRecognizer();
00374
00375
00376
00377
00378 boost::timer t;
00379 EFF->trainModel(img_vec, label_vec, ss_dim, method, true, false);
00380
00381
00382
00383 std::string path = "/share/goa-tz/people_detection/eval/eval_tool_files/classification_labels";
00384 std::string probabilities_path = "/share/goa-tz/people_detection/eval/eval_tool_files/classification_probabilities";
00385 std::string timing_path = "/share/goa-tz/people_detection/eval/eval_tool_files/timing";
00386
00387 std::ofstream os(path.c_str());
00388 std::ofstream probabilities_os(probabilities_path.c_str());
00389 std::ofstream timing_os(timing_path.c_str(), std::ofstream::app);
00390
00391 timing_os << t.elapsed() << ",";
00392 std::cout << ">>>>>>>>>>training time = " << t.elapsed() << std::endl;
00393
00394 std::cout << "EFF model computed" << std::endl;
00395
00396
00397
00398 SubspaceAnalysis::FaceRecognizer* EFF_depth = new SubspaceAnalysis::FaceRecognizer();
00399
00400
00401
00402
00403
00404
00405
00406 t.restart();
00407 for (int i = 0; i < probe_mat_vec.size(); i++)
00408 {
00409 cv::Mat probe = probe_mat_vec[i];
00410 int c_EFF;
00411 cv::Mat coeff_EFF;
00412 double DFFS_EFF;
00413 cv::Mat probabilities;
00414 if (method == SubspaceAnalysis::METH_LDA2D || method == SubspaceAnalysis::METH_PCA2D)
00415 {
00416 std::vector<cv::Mat> coeff_EFF_vec;
00417 EFF->projectToSubspace2D(probe, coeff_EFF_vec, DFFS_EFF);
00418 EFF->classify(coeff_EFF_vec[0], classifier, c_EFF, probabilities);
00419 }
00420 else
00421 {
00422 EFF->projectToSubspace(probe, coeff_EFF, DFFS_EFF);
00423 EFF->classify(coeff_EFF, classifier, c_EFF, probabilities);
00424 }
00425
00426
00427
00428
00429
00430 int c_EFF_dm;
00431 cv::Mat coeff_EFF_dm;
00432 double DFFS_EFF_dm;
00433
00434
00435 cv::Mat probe_dm = probe_dm_vec[i];
00436
00437
00439
00440
00441
00442
00443 os << c_EFF << "\n";
00444 probabilities_os << probabilities << "\n";
00445 }
00446 std::cout << ">>>>>>>>>>recognition time = " << t.elapsed() << std::endl;
00447 timing_os << t.elapsed() << std::endl;
00448
00449 os.close();
00450 std::cout << "EFF classified" << std::endl;
00451
00452 cv::Mat m1_evec, m1_eval, m1_avg, m1_pmd;
00453
00454
00455
00456
00457
00458
00459
00460
00461
00462
00463
00464
00465
00466
00467
00468
00469
00470
00471
00472
00473
00474
00475
00476
00477 return 0;
00478 }