train_leg_detector.cpp
Go to the documentation of this file.
00001 /*********************************************************************
00002 * Software License Agreement (BSD License)
00003 * 
00004 *  Copyright (c) 2008, Willow Garage, Inc.
00005 *  All rights reserved.
00006 * 
00007 *  Redistribution and use in source and binary forms, with or without
00008 *  modification, are permitted provided that the following conditions
00009 *  are met:
00010 * 
00011 *   * Redistributions of source code must retain the above copyright
00012 *     notice, this list of conditions and the following disclaimer.
00013 *   * Redistributions in binary form must reproduce the above
00014 *     copyright notice, this list of conditions and the following
00015 *     disclaimer in the documentation and/or other materials provided
00016 *     with the distribution.
00017 *   * Neither the name of the Willow Garage nor the names of its
00018 *     contributors may be used to endorse or promote products derived
00019 *     from this software without specific prior written permission.
00020 * 
00021 *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
00022 *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
00023 *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00024 *  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
00025 *  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
00026 *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
00027 *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
00028 *  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
00029 *  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
00030 *  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
00031 *  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00032 *  POSSIBILITY OF SUCH DAMAGE.
00033 *********************************************************************/
00034 
00035 #include "cob_leg_detection/laser_processor.h"
00036 #include "cob_leg_detection/calc_leg_features.h"
00037 
00038 #include "opencv/cxcore.h"
00039 #include "opencv/cv.h"
00040 #include "opencv/ml.h"
00041 
00042 #include "cob_perception_msgs/PositionMeasurement.h"
00043 #include "sensor_msgs/LaserScan.h"
00044 
00045 using namespace std;
00046 using namespace laser_processor;
00047 using namespace ros;
00048 
00049 enum LoadType {LOADING_NONE, LOADING_POS, LOADING_NEG, LOADING_TEST};
00050 
00051 class TrainLegDetector
00052 {
00053 public:
00054   ScanMask mask_;
00055   int mask_count_;
00056 
00057   vector< vector<float> > pos_data_;
00058   vector< vector<float> > neg_data_;
00059   vector< vector<float> > test_data_;
00060 
00061   CvRTrees forest;
00062 
00063   float connected_thresh_;
00064 
00065   int feat_count_;
00066 
00067   TrainLegDetector() : mask_count_(0), connected_thresh_(0.06), feat_count_(0)
00068   {
00069   }
00070 
00071   void loadData(LoadType load, char* file)
00072   {
00073     if (load != LOADING_NONE)
00074     {
00075       switch (load)
00076       {
00077       case LOADING_POS:
00078         printf("Loading positive training data from file: %s\n",file); break;
00079       case LOADING_NEG:
00080         printf("Loading negative training data from file: %s\n",file); break;
00081       case LOADING_TEST:
00082         printf("Loading test data from file: %s\n",file); break;
00083       default:
00084         break;
00085       }
00086 
00087       ros::record::Player p;
00088       if (p.open(file, ros::Time()))
00089       {
00090         mask_.clear();
00091         mask_count_ = 0;    
00092 
00093       switch (load)
00094       {
00095       case LOADING_POS:
00096         p.addHandler<sensor_msgs::LaserScan>(string("*"), &TrainLegDetector::loadCb, this, &pos_data_);
00097         break;
00098       case LOADING_NEG:
00099         mask_count_ = 1000; // effectively disable masking
00100         p.addHandler<sensor_msgs::LaserScan>(string("*"), &TrainLegDetector::loadCb, this, &neg_data_);
00101         break;
00102       case LOADING_TEST:
00103         p.addHandler<sensor_msgs::LaserScan>(string("*"), &TrainLegDetector::loadCb, this, &test_data_);
00104         break;
00105       default:
00106         break;
00107       }
00108     
00109         while (p.nextMsg())
00110         {}
00111     } 
00112     }
00113   }
00114 
00115   void loadCb(string name, sensor_msgs::LaserScan* scan, ros::Time t, ros::Time t_no_use, void* n)
00116   {
00117     vector< vector<float> >* data = (vector< vector<float> >*)(n);
00118 
00119     if (mask_count_++ < 20)
00120     {
00121       mask_.addScan(*scan);
00122     }
00123     else
00124     {
00125       ScanProcessor processor(*scan,mask_);
00126       processor.splitConnected(connected_thresh_);
00127       processor.removeLessThan(5);
00128     
00129       for (list<SampleSet*>::iterator i = processor.getClusters().begin();
00130            i != processor.getClusters().end();
00131            i++)
00132         data->push_back( calcLegFeatures(*i, *scan));
00133     }
00134   }
00135 
00136   void train()
00137   {
00138     int sample_size = pos_data_.size() + neg_data_.size();
00139     feat_count_ = pos_data_[0].size();
00140 
00141     CvMat* cv_data = cvCreateMat( sample_size, feat_count_, CV_32FC1);
00142     CvMat* cv_resp = cvCreateMat( sample_size, 1, CV_32S);
00143 
00144     // Put positive data in opencv format.
00145     int j = 0;
00146     for (vector< vector<float> >::iterator i = pos_data_.begin();
00147          i != pos_data_.end();
00148          i++)
00149     {
00150       float* data_row = (float*)(cv_data->data.ptr + cv_data->step*j);
00151       for (int k = 0; k < feat_count_; k++)
00152         data_row[k] = (*i)[k];
00153       
00154       cv_resp->data.i[j] = 1;
00155       j++;
00156     }
00157 
00158     // Put negative data in opencv format.
00159     for (vector< vector<float> >::iterator i = neg_data_.begin();
00160          i != neg_data_.end();
00161          i++)
00162     {
00163       float* data_row = (float*)(cv_data->data.ptr + cv_data->step*j);
00164       for (int k = 0; k < feat_count_; k++)
00165         data_row[k] = (*i)[k];
00166       
00167       cv_resp->data.i[j] = -1;
00168       j++;
00169     }
00170 
00171     CvMat* var_type = cvCreateMat( 1, feat_count_ + 1, CV_8U );
00172     cvSet( var_type, cvScalarAll(CV_VAR_ORDERED));
00173     cvSetReal1D( var_type, feat_count_, CV_VAR_CATEGORICAL );
00174     
00175     float priors[] = {1.0, 1.0};
00176     
00177     CvRTParams fparam(8,20,0,false,10,priors,false,5,50,0.001f,CV_TERMCRIT_ITER);
00178     fparam.term_crit = cvTermCriteria(CV_TERMCRIT_ITER, 100, 0.1);
00179     
00180     forest.train( cv_data, CV_ROW_SAMPLE, cv_resp, 0, 0, var_type, 0,
00181                   fparam);
00182 
00183 
00184     cvReleaseMat(&cv_data);
00185     cvReleaseMat(&cv_resp);
00186     cvReleaseMat(&var_type);
00187   }
00188 
00189   void test()
00190   {
00191     CvMat* tmp_mat = cvCreateMat(1,feat_count_,CV_32FC1);
00192 
00193     int pos_right = 0;
00194     int pos_total = 0;    
00195     for (vector< vector<float> >::iterator i = pos_data_.begin();
00196          i != pos_data_.end();
00197          i++)
00198     {
00199       for (int k = 0; k < feat_count_; k++)
00200         tmp_mat->data.fl[k] = (float)((*i)[k]);
00201       if (forest.predict( tmp_mat) > 0)
00202         pos_right++;
00203       pos_total++;
00204     }
00205 
00206     int neg_right = 0;
00207     int neg_total = 0;
00208     for (vector< vector<float> >::iterator i = neg_data_.begin();
00209          i != neg_data_.end();
00210          i++)
00211     {
00212       for (int k = 0; k < feat_count_; k++)
00213         tmp_mat->data.fl[k] = (float)((*i)[k]);
00214       if (forest.predict( tmp_mat ) < 0)
00215         neg_right++;
00216       neg_total++;
00217     }
00218 
00219     int test_right = 0;
00220     int test_total = 0;
00221     for (vector< vector<float> >::iterator i = test_data_.begin();
00222          i != test_data_.end();
00223          i++)
00224     {
00225       for (int k = 0; k < feat_count_; k++)
00226         tmp_mat->data.fl[k] = (float)((*i)[k]);
00227       if (forest.predict( tmp_mat ) > 0)
00228         test_right++;
00229       test_total++;
00230     }
00231 
00232     printf(" Pos train set: %d/%d %g\n",pos_right, pos_total, (float)(pos_right)/pos_total);
00233     printf(" Neg train set: %d/%d %g\n",neg_right, neg_total, (float)(neg_right)/neg_total);
00234     printf(" Test set:      %d/%d %g\n",test_right, test_total, (float)(test_right)/test_total);
00235 
00236     cvReleaseMat(&tmp_mat);
00237 
00238   }
00239 
00240   void save(char* file)
00241   {
00242     forest.save(file);
00243   }
00244 };
00245 
00246 int main(int argc, char **argv)
00247 {
00248   TrainLegDetector tld;
00249 
00250   LoadType loading = LOADING_NONE;
00251 
00252   char save_file[100];
00253   save_file[0] = 0;
00254 
00255   printf("Loading data...\n");
00256   for (int i = 1; i < argc; i++)
00257   {
00258     if (!strcmp(argv[i],"--train"))
00259       loading = LOADING_POS;
00260     else if (!strcmp(argv[i],"--neg"))
00261       loading = LOADING_NEG;
00262     else if (!strcmp(argv[i],"--test"))
00263       loading = LOADING_TEST;
00264     else if (!strcmp(argv[i],"--save"))
00265     {
00266       if (++i < argc)
00267         strncpy(save_file,argv[i],100);
00268       continue;
00269     }
00270     else
00271       tld.loadData(loading, argv[i]);
00272   }
00273 
00274   printf("Training classifier...\n");
00275   tld.train();
00276 
00277   printf("Evlauating classifier...\n");
00278   tld.test();
00279   
00280   if (strlen(save_file) > 0)
00281   {
00282     printf("Saving classifier as: %s\n", save_file);
00283     tld.save(save_file);
00284   }
00285 }


cob_leg_detection
Author(s): Caroline Pantofaru, Olha Meyer
autogenerated on Fri Aug 28 2015 10:24:01