time_optimal_rocket.cpp
Go to the documentation of this file.
00001 /*
00002  *    This file is part of ACADO Toolkit.
00003  *
00004  *    ACADO Toolkit -- A Toolkit for Automatic Control and Dynamic Optimization.
00005  *    Copyright (C) 2008-2014 by Boris Houska, Hans Joachim Ferreau,
00006  *    Milan Vukov, Rien Quirynen, KU Leuven.
00007  *    Developed within the Optimization in Engineering Center (OPTEC)
00008  *    under supervision of Moritz Diehl. All rights reserved.
00009  *
00010  *    ACADO Toolkit is free software; you can redistribute it and/or
00011  *    modify it under the terms of the GNU Lesser General Public
00012  *    License as published by the Free Software Foundation; either
00013  *    version 3 of the License, or (at your option) any later version.
00014  *
00015  *    ACADO Toolkit is distributed in the hope that it will be useful,
00016  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
00017  *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
00018  *    Lesser General Public License for more details.
00019  *
00020  *    You should have received a copy of the GNU Lesser General Public
00021  *    License along with ACADO Toolkit; if not, write to the Free Software
00022  *    Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
00023  *
00024  */
00025 
00026 
00027 
00035 #include <acado_optimal_control.hpp>
00036 #include <acado_gnuplot.hpp>
00037 
00038 
00039 int main( ){
00040 
00041     USING_NAMESPACE_ACADO
00042 
00043 
00044     // INTRODUCE THE VARIABLES:
00045     // -------------------------
00046 
00047     DifferentialState     s,v,m;
00048     Control               u    ;
00049     Parameter             T    ;
00050 
00051     DifferentialEquation  f( 0.0, T );
00052 
00053 
00054     // DEFINE A DIFFERENTIAL EQUATION:
00055     // -------------------------------
00056 
00057     f << dot(s) == v;
00058     f << dot(v) == (u-0.2*v*v)/m;
00059     f << dot(m) == -0.01*u*u;
00060 
00061 
00062     // DEFINE AN OPTIMAL CONTROL PROBLEM:
00063     // ----------------------------------
00064     OCP ocp( 0, T, 20 );
00065 
00066     ocp.minimizeMayerTerm( T );
00067     ocp.subjectTo( f );
00068 
00069     ocp.subjectTo( AT_START, s ==  0.0 );
00070     ocp.subjectTo( AT_START, v ==  0.0 );
00071     ocp.subjectTo( AT_START, m ==  1.0 );
00072 
00073     ocp.subjectTo( AT_END  , s == 10.0 );
00074     ocp.subjectTo( AT_END  , v ==  0.0 );
00075 
00076     ocp.subjectTo( -0.1 <= v <=  1.7  );
00077     ocp.subjectTo( -1.1 <= u <=  1.1  );
00078     ocp.subjectTo(  5.0 <= T <= 15.0  );
00079 
00080 
00081     // VISUALIZE THE RESULTS IN A GNUPLOT WINDOW:
00082     // ------------------------------------------
00083     GnuplotWindow window;
00084         window.addSubplot( s, "THE DISTANCE s"      );
00085         window.addSubplot( v, "THE VELOCITY v"      );
00086         window.addSubplot( m, "THE MASS m"          );
00087         window.addSubplot( u, "THE CONTROL INPUT u" );
00088 
00089 
00090     // DEFINE AN OPTIMIZATION ALGORITHM AND SOLVE THE OCP:
00091     // ---------------------------------------------------
00092     OptimizationAlgorithm algorithm(ocp);
00093 
00094     algorithm.set( MAX_NUM_ITERATIONS, 20 );
00095 //      algorithm.set( HESSIAN_APPROXIMATION, EXACT_HESSIAN );
00096 //      algorithm.set( HESSIAN_PROJECTION_FACTOR, 1.0 );
00097         
00098     algorithm << window;
00099 
00100 
00101 //     algorithm.initializeDifferentialStates("tor_states.txt");
00102 //     algorithm.initializeParameters("tor_pars.txt");
00103 //     algorithm.initializeControls("tor_controls.txt");
00104 
00105     algorithm.solve();
00106 
00107 //     algorithm.getDifferentialStates("tor_states.txt");
00108 //     algorithm.getParameters("tor_pars.txt");
00109 //     algorithm.getControls("tor_controls.txt");
00110 
00111     return 0;
00112 }
00113 
00114 
00115 


acado
Author(s): Milan Vukov, Rien Quirynen
autogenerated on Thu Aug 27 2015 12:01:10