scalar3_nnc.cpp
Go to the documentation of this file.
00001 /*
00002  *    This file is part of ACADO Toolkit.
00003  *
00004  *    ACADO Toolkit -- A Toolkit for Automatic Control and Dynamic Optimization.
00005  *    Copyright (C) 2008-2014 by Boris Houska, Hans Joachim Ferreau,
00006  *    Milan Vukov, Rien Quirynen, KU Leuven.
00007  *    Developed within the Optimization in Engineering Center (OPTEC)
00008  *    under supervision of Moritz Diehl. All rights reserved.
00009  *
00010  *    ACADO Toolkit is free software; you can redistribute it and/or
00011  *    modify it under the terms of the GNU Lesser General Public
00012  *    License as published by the Free Software Foundation; either
00013  *    version 3 of the License, or (at your option) any later version.
00014  *
00015  *    ACADO Toolkit is distributed in the hope that it will be useful,
00016  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
00017  *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
00018  *    Lesser General Public License for more details.
00019  *
00020  *    You should have received a copy of the GNU Lesser General Public
00021  *    License along with ACADO Toolkit; if not, write to the Free Software
00022  *    Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
00023  *
00024  */
00025 
00026 
00034 #include <acado_optimal_control.hpp>
00035 #include <acado_gnuplot.hpp>
00036 
00037 
00038 /* >>> start tutorial code >>> */
00039 int main( ){
00040 
00041     USING_NAMESPACE_ACADO
00042 
00043 
00044     // INTRODUCE THE VARIABLES:
00045     // -------------------------
00046     Parameter y1,y2,y3;
00047 
00048 
00049     // DEFINE AN OPTIMIZATION PROBLEM:
00050     // -------------------------------
00051     NLP nlp;
00052     nlp.minimize( 0, y1 );
00053     nlp.minimize( 1, y2 );
00054     nlp.minimize( 2, y3 );
00055 
00056 
00057     nlp.subjectTo( -5.0 <= y1 <= 5.0 );
00058     nlp.subjectTo( -5.0 <= y2 <= 5.0 );
00059     nlp.subjectTo( -5.0 <= y3 <= 5.0 );
00060 
00061     nlp.subjectTo( y1*y1+y2*y2+y3*y3 <= 4.0 );
00062 
00063     // DEFINE A MULTI-OBJECTIVE ALGORITHM AND SOLVE THE NLP:
00064     // -----------------------------------------------------
00065     MultiObjectiveAlgorithm algorithm(nlp);
00066 
00067     algorithm.set( PARETO_FRONT_GENERATION, PFG_NORMALIZED_NORMAL_CONSTRAINT );
00068     algorithm.set( PARETO_FRONT_DISCRETIZATION, 11 );
00069 
00070     // Minimize individual objective function
00071     algorithm.solveSingleObjective(0);
00072 
00073     // Minimize individual objective function
00074     algorithm.solveSingleObjective(1);
00075 
00076     // Minimize individual objective function
00077     algorithm.solveSingleObjective(2);
00078 
00079     // Generate Pareto set 
00080     algorithm.solve();
00081 
00082     algorithm.getWeights("scalar3_nnc_weights.txt");
00083 
00084 
00085     // GET THE RESULT FOR THE PARETO FRONT AND PLOT IT:
00086     // ------------------------------------------------
00087     VariablesGrid paretoFront;
00088     // algorithm.getParetoFrontWithFilter( paretoFront );
00089     algorithm.getParetoFront( paretoFront );
00090 
00091     //GnuplotWindow window;
00092     //window.addSubplot3D( paretoFront, "Pareto Front y1 vs y2 vs y3","y1","y2", PM_POINTS );
00093     //window.plot( );
00094 
00095     paretoFront.print();
00096 
00097 
00098     // PRINT INFORMATION ABOUT THE ALGORITHM:
00099     // --------------------------------------
00100     algorithm.printInfo();
00101 
00102     return 0;
00103 }
00104 /* <<< end tutorial code <<< */


acado
Author(s): Milan Vukov, Rien Quirynen
autogenerated on Thu Aug 27 2015 11:59:55