00001 /* 00002 * This file is part of ACADO Toolkit. 00003 * 00004 * ACADO Toolkit -- A Toolkit for Automatic Control and Dynamic Optimization. 00005 * Copyright (C) 2008-2014 by Boris Houska, Hans Joachim Ferreau, 00006 * Milan Vukov, Rien Quirynen, KU Leuven. 00007 * Developed within the Optimization in Engineering Center (OPTEC) 00008 * under supervision of Moritz Diehl. All rights reserved. 00009 * 00010 * ACADO Toolkit is free software; you can redistribute it and/or 00011 * modify it under the terms of the GNU Lesser General Public 00012 * License as published by the Free Software Foundation; either 00013 * version 3 of the License, or (at your option) any later version. 00014 * 00015 * ACADO Toolkit is distributed in the hope that it will be useful, 00016 * but WITHOUT ANY WARRANTY; without even the implied warranty of 00017 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 00018 * Lesser General Public License for more details. 00019 * 00020 * You should have received a copy of the GNU Lesser General Public 00021 * License along with ACADO Toolkit; if not, write to the Free Software 00022 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA 00023 * 00024 */ 00025 00026 00027 00035 #include <acado_optimal_control.hpp> 00036 #include <acado_gnuplot.hpp> 00037 00038 00039 int main( ){ 00040 00041 USING_NAMESPACE_ACADO 00042 00043 DifferentialState x; // definition of a differential state 00044 AlgebraicState z; // definition of an algebraic state 00045 Control u; // definition of a control 00046 Parameter p; // definition of a parameter 00047 DifferentialEquation f; // a differential equation 00048 00049 00050 f << dot(x) == -0.5*x-z+u*u; // an example for a differential- 00051 f << 0 == z+exp(z)+x-1.0+u; // algebraic equation. 00052 00053 OCP ocp( 0.0, 4.0 ); // define an OCP with t_0 = 0.0 and T = 4.0 00054 ocp.minimizeMayerTerm( x*x + p*p ); // a Mayer term to be minimized 00055 00056 ocp.subjectTo( f ); // OCP should regard the DAE 00057 ocp.subjectTo( AT_START, x == 1.0 ); // an initial value constraint 00058 ocp.subjectTo( AT_END , x + p == 1.0 ); // an end (or terminal) constraint 00059 00060 ocp.subjectTo( -1.0 <= x*u <= 1.0 ); // a path constraint 00061 00062 OptimizationAlgorithm algorithm(ocp); // define an algorithm 00063 algorithm.set( KKT_TOLERANCE, 1e-5 ); // define a termination criterion 00064 algorithm.solve(); // to solve the OCP. 00065 00066 return 0; 00067 } 00068 00069 00070