car_nbi.cpp
Go to the documentation of this file.
00001 /*
00002  *    This file is part of ACADO Toolkit.
00003  *
00004  *    ACADO Toolkit -- A Toolkit for Automatic Control and Dynamic Optimization.
00005  *    Copyright (C) 2008-2014 by Boris Houska, Hans Joachim Ferreau,
00006  *    Milan Vukov, Rien Quirynen, KU Leuven.
00007  *    Developed within the Optimization in Engineering Center (OPTEC)
00008  *    under supervision of Moritz Diehl. All rights reserved.
00009  *
00010  *    ACADO Toolkit is free software; you can redistribute it and/or
00011  *    modify it under the terms of the GNU Lesser General Public
00012  *    License as published by the Free Software Foundation; either
00013  *    version 3 of the License, or (at your option) any later version.
00014  *
00015  *    ACADO Toolkit is distributed in the hope that it will be useful,
00016  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
00017  *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
00018  *    Lesser General Public License for more details.
00019  *
00020  *    You should have received a copy of the GNU Lesser General Public
00021  *    License along with ACADO Toolkit; if not, write to the Free Software
00022  *    Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
00023  *
00024  */
00025 
00026 
00046 // IMPLEMENTATION:
00047 // ---------------
00048 
00049 #include <acado_optimal_control.hpp>
00050 #include <acado_gnuplot.hpp>
00051 
00052 
00053 /* >>> start tutorial code >>> */
00054 int main( ){
00055 
00056     USING_NAMESPACE_ACADO
00057 
00058 
00059     // INTRODUCE THE VARIABLES:
00060     // ----------------------------
00061     DifferentialState        x1,x2;
00062     Control                  u    ;
00063     Parameter                t1   ;
00064 
00065     DifferentialEquation f(0.0,t1);
00066 
00067 
00068     // DEFINE A DIFFERENTIAL EQUATION:
00069     // -------------------------------
00070     f << dot(x1) ==  x2;
00071     f << dot(x2) ==   u;
00072 
00073 
00074     // DEFINE AN OPTIMAL CONTROL PROBLEM:
00075     // ----------------------------------
00076     OCP ocp(0.0,t1,25);
00077     ocp.minimizeMayerTerm( 0, x2         );
00078     ocp.minimizeMayerTerm( 1, 2.0*t1/20.0);
00079 
00080     ocp.subjectTo( f );
00081 
00082     ocp.subjectTo( AT_START, x1 ==   0.0 );
00083     ocp.subjectTo( AT_START, x2 ==   0.0 );
00084     ocp.subjectTo( AT_END  , x1 == 200.0 );
00085 
00086     ocp.subjectTo( 0.0 <= x1 <= 200.0001 );
00087     ocp.subjectTo( 0.0 <= x2 <=  40.0    );
00088     ocp.subjectTo( 0.0 <= u  <=   5.0    );
00089     ocp.subjectTo( 0.1 <= t1 <=  50.0    );
00090 
00091 
00092     // DEFINE A MULTI-OBJECTIVE ALGORITHM AND SOLVE THE OCP:
00093     // -----------------------------------------------------
00094     MultiObjectiveAlgorithm algorithm(ocp);
00095 
00096     algorithm.set( PARETO_FRONT_DISCRETIZATION, 11 );
00097     algorithm.set( PARETO_FRONT_GENERATION, PFG_NORMAL_BOUNDARY_INTERSECTION );
00098     algorithm.set( KKT_TOLERANCE, 1e-8 );
00099 
00100     // Minimize individual objective function
00101     algorithm.solveSingleObjective(0);
00102 
00103     // Minimize individual objective function
00104     algorithm.solveSingleObjective(1);
00105 
00106     // Generate Pareto set
00107     algorithm.solve();
00108 
00109     algorithm.getWeights("car_nbi_weights.txt");
00110     algorithm.getAllDifferentialStates("car_nbi_states.txt");
00111     algorithm.getAllControls("car_nbi_controls.txt");
00112     algorithm.getAllParameters("car_nbi_parameters.txt");
00113 
00114 
00115     // GET THE RESULT FOR THE PARETO FRONT AND PLOT IT:
00116     // ------------------------------------------------
00117     VariablesGrid paretoFront;
00118     algorithm.getParetoFront( paretoFront );
00119 
00120     GnuplotWindow window1;
00121     window1.addSubplot( paretoFront, "Pareto Front (time versus energy)", "ENERGY","TIME", PM_POINTS );
00122     window1.plot( );
00123 
00124 
00125     // PRINT INFORMATION ABOUT THE ALGORITHM:
00126     // --------------------------------------
00127     algorithm.printInfo();
00128 
00129 
00130     // SAVE INFORMATION:
00131     // -----------------
00132     paretoFront.print( "car_nbi_pareto.txt" );
00133 
00134     return 0;
00135 }
00136 /* <<< end tutorial code <<< */
00137 


acado
Author(s): Milan Vukov, Rien Quirynen
autogenerated on Thu Aug 27 2015 11:57:54