automatic_backward_differentiation.cpp
Go to the documentation of this file.
00001 /*
00002  *    This file is part of ACADO Toolkit.
00003  *
00004  *    ACADO Toolkit -- A Toolkit for Automatic Control and Dynamic Optimization.
00005  *    Copyright (C) 2008-2014 by Boris Houska, Hans Joachim Ferreau,
00006  *    Milan Vukov, Rien Quirynen, KU Leuven.
00007  *    Developed within the Optimization in Engineering Center (OPTEC)
00008  *    under supervision of Moritz Diehl. All rights reserved.
00009  *
00010  *    ACADO Toolkit is free software; you can redistribute it and/or
00011  *    modify it under the terms of the GNU Lesser General Public
00012  *    License as published by the Free Software Foundation; either
00013  *    version 3 of the License, or (at your option) any later version.
00014  *
00015  *    ACADO Toolkit is distributed in the hope that it will be useful,
00016  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
00017  *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
00018  *    Lesser General Public License for more details.
00019  *
00020  *    You should have received a copy of the GNU Lesser General Public
00021  *    License along with ACADO Toolkit; if not, write to the Free Software
00022  *    Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
00023  *
00024  */
00025 
00026 
00027 
00034 #include <acado_integrators.hpp>
00035 
00036 using namespace std;
00037 
00038 USING_NAMESPACE_ACADO
00039 
00040 /* >>> start tutorial code >>> */
00041 int main()
00042 {
00043         USING_NAMESPACE_ACADO
00044 
00045         // DEFINE VALRIABLES:
00046         // ---------------------------
00047         DifferentialState       x,y;
00048 
00049         Function f;
00050 
00051         f << (x+1)*(y+1) + y*x*y;//pow(y,3);
00052         f << x;
00053         f << y;
00054 
00055         // EVALUATE THE FUNCTION f:
00056         // ------------------------
00057         EvaluationPoint z(f);
00058 
00059         DVector diffState(2);
00060 
00061         diffState(0) = 1.0;
00062         diffState(1) = 2.0;
00063 
00064         z.setX( diffState );
00065 
00066         DVector ff = f(z);
00067 
00068         ff.print();
00069 
00070         // COMPUTE THE BACKWARD DERIVATIVE:
00071         // --------------------------------
00072 
00073         DVector seed(f.getDim());
00074 
00075         seed(0) = 1.0;
00076         seed(1) = 0.0;
00077         seed(2) = 0.0;
00078 
00079         EvaluationPoint df(f);
00080 
00081         f.AD_backward( seed, df );
00082 
00083         df.getX().print(cout, "df");
00084 
00085         return 0;
00086 }
00087 /* <<< end tutorial code <<< */
00088 
00089 


acado
Author(s): Milan Vukov, Rien Quirynen
autogenerated on Thu Aug 27 2015 11:57:50