Go to the documentation of this file.00001
00002
00003
00004
00005
00006
00007
00008
00009
00010 #ifndef EIGEN_POLYNOMIAL_UTILS_H
00011 #define EIGEN_POLYNOMIAL_UTILS_H
00012
00013 namespace Eigen {
00014
00026 template <typename Polynomials, typename T>
00027 inline
00028 T poly_eval_horner( const Polynomials& poly, const T& x )
00029 {
00030 T val=poly[poly.size()-1];
00031 for(DenseIndex i=poly.size()-2; i>=0; --i ){
00032 val = val*x + poly[i]; }
00033 return val;
00034 }
00035
00044 template <typename Polynomials, typename T>
00045 inline
00046 T poly_eval( const Polynomials& poly, const T& x )
00047 {
00048 typedef typename NumTraits<T>::Real Real;
00049
00050 if( numext::abs2( x ) <= Real(1) ){
00051 return poly_eval_horner( poly, x ); }
00052 else
00053 {
00054 T val=poly[0];
00055 T inv_x = T(1)/x;
00056 for( DenseIndex i=1; i<poly.size(); ++i ){
00057 val = val*inv_x + poly[i]; }
00058
00059 return std::pow(x,(T)(poly.size()-1)) * val;
00060 }
00061 }
00062
00073 template <typename Polynomial>
00074 inline
00075 typename NumTraits<typename Polynomial::Scalar>::Real cauchy_max_bound( const Polynomial& poly )
00076 {
00077 using std::abs;
00078 typedef typename Polynomial::Scalar Scalar;
00079 typedef typename NumTraits<Scalar>::Real Real;
00080
00081 eigen_assert( Scalar(0) != poly[poly.size()-1] );
00082 const Scalar inv_leading_coeff = Scalar(1)/poly[poly.size()-1];
00083 Real cb(0);
00084
00085 for( DenseIndex i=0; i<poly.size()-1; ++i ){
00086 cb += abs(poly[i]*inv_leading_coeff); }
00087 return cb + Real(1);
00088 }
00089
00096 template <typename Polynomial>
00097 inline
00098 typename NumTraits<typename Polynomial::Scalar>::Real cauchy_min_bound( const Polynomial& poly )
00099 {
00100 using std::abs;
00101 typedef typename Polynomial::Scalar Scalar;
00102 typedef typename NumTraits<Scalar>::Real Real;
00103
00104 DenseIndex i=0;
00105 while( i<poly.size()-1 && Scalar(0) == poly(i) ){ ++i; }
00106 if( poly.size()-1 == i ){
00107 return Real(1); }
00108
00109 const Scalar inv_min_coeff = Scalar(1)/poly[i];
00110 Real cb(1);
00111 for( DenseIndex j=i+1; j<poly.size(); ++j ){
00112 cb += abs(poly[j]*inv_min_coeff); }
00113 return Real(1)/cb;
00114 }
00115
00126 template <typename RootVector, typename Polynomial>
00127 void roots_to_monicPolynomial( const RootVector& rv, Polynomial& poly )
00128 {
00129
00130 typedef typename Polynomial::Scalar Scalar;
00131
00132 poly.setZero( rv.size()+1 );
00133 poly[0] = -rv[0]; poly[1] = Scalar(1);
00134 for( DenseIndex i=1; i< rv.size(); ++i )
00135 {
00136 for( DenseIndex j=i+1; j>0; --j ){ poly[j] = poly[j-1] - rv[i]*poly[j]; }
00137 poly[0] = -rv[i]*poly[0];
00138 }
00139 }
00140
00141 }
00142
00143 #endif // EIGEN_POLYNOMIAL_UTILS_H