00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011 #ifndef EIGEN_PARTIALLU_H
00012 #define EIGEN_PARTIALLU_H
00013
00014 namespace Eigen {
00015
00047 template<typename _MatrixType> class PartialPivLU
00048 {
00049 public:
00050
00051 typedef _MatrixType MatrixType;
00052 enum {
00053 RowsAtCompileTime = MatrixType::RowsAtCompileTime,
00054 ColsAtCompileTime = MatrixType::ColsAtCompileTime,
00055 Options = MatrixType::Options,
00056 MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
00057 MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
00058 };
00059 typedef typename MatrixType::Scalar Scalar;
00060 typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
00061 typedef typename internal::traits<MatrixType>::StorageKind StorageKind;
00062 typedef typename MatrixType::Index Index;
00063 typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationType;
00064 typedef Transpositions<RowsAtCompileTime, MaxRowsAtCompileTime> TranspositionType;
00065
00066
00073 PartialPivLU();
00074
00081 PartialPivLU(Index size);
00082
00090 PartialPivLU(const MatrixType& matrix);
00091
00092 PartialPivLU& compute(const MatrixType& matrix);
00093
00100 inline const MatrixType& matrixLU() const
00101 {
00102 eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
00103 return m_lu;
00104 }
00105
00108 inline const PermutationType& permutationP() const
00109 {
00110 eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
00111 return m_p;
00112 }
00113
00131 template<typename Rhs>
00132 inline const internal::solve_retval<PartialPivLU, Rhs>
00133 solve(const MatrixBase<Rhs>& b) const
00134 {
00135 eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
00136 return internal::solve_retval<PartialPivLU, Rhs>(*this, b.derived());
00137 }
00138
00146 inline const internal::solve_retval<PartialPivLU,typename MatrixType::IdentityReturnType> inverse() const
00147 {
00148 eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
00149 return internal::solve_retval<PartialPivLU,typename MatrixType::IdentityReturnType>
00150 (*this, MatrixType::Identity(m_lu.rows(), m_lu.cols()));
00151 }
00152
00166 typename internal::traits<MatrixType>::Scalar determinant() const;
00167
00168 MatrixType reconstructedMatrix() const;
00169
00170 inline Index rows() const { return m_lu.rows(); }
00171 inline Index cols() const { return m_lu.cols(); }
00172
00173 protected:
00174 MatrixType m_lu;
00175 PermutationType m_p;
00176 TranspositionType m_rowsTranspositions;
00177 Index m_det_p;
00178 bool m_isInitialized;
00179 };
00180
00181 template<typename MatrixType>
00182 PartialPivLU<MatrixType>::PartialPivLU()
00183 : m_lu(),
00184 m_p(),
00185 m_rowsTranspositions(),
00186 m_det_p(0),
00187 m_isInitialized(false)
00188 {
00189 }
00190
00191 template<typename MatrixType>
00192 PartialPivLU<MatrixType>::PartialPivLU(Index size)
00193 : m_lu(size, size),
00194 m_p(size),
00195 m_rowsTranspositions(size),
00196 m_det_p(0),
00197 m_isInitialized(false)
00198 {
00199 }
00200
00201 template<typename MatrixType>
00202 PartialPivLU<MatrixType>::PartialPivLU(const MatrixType& matrix)
00203 : m_lu(matrix.rows(), matrix.rows()),
00204 m_p(matrix.rows()),
00205 m_rowsTranspositions(matrix.rows()),
00206 m_det_p(0),
00207 m_isInitialized(false)
00208 {
00209 compute(matrix);
00210 }
00211
00212 namespace internal {
00213
00215 template<typename Scalar, int StorageOrder, typename PivIndex>
00216 struct partial_lu_impl
00217 {
00218
00219
00220
00221
00222
00223 typedef Map<Matrix<Scalar, Dynamic, Dynamic, StorageOrder> > MapLU;
00224 typedef Block<MapLU, Dynamic, Dynamic> MatrixType;
00225 typedef Block<MatrixType,Dynamic,Dynamic> BlockType;
00226 typedef typename MatrixType::RealScalar RealScalar;
00227 typedef typename MatrixType::Index Index;
00228
00239 static Index unblocked_lu(MatrixType& lu, PivIndex* row_transpositions, PivIndex& nb_transpositions)
00240 {
00241 const Index rows = lu.rows();
00242 const Index cols = lu.cols();
00243 const Index size = (std::min)(rows,cols);
00244 nb_transpositions = 0;
00245 Index first_zero_pivot = -1;
00246 for(Index k = 0; k < size; ++k)
00247 {
00248 Index rrows = rows-k-1;
00249 Index rcols = cols-k-1;
00250
00251 Index row_of_biggest_in_col;
00252 RealScalar biggest_in_corner
00253 = lu.col(k).tail(rows-k).cwiseAbs().maxCoeff(&row_of_biggest_in_col);
00254 row_of_biggest_in_col += k;
00255
00256 row_transpositions[k] = PivIndex(row_of_biggest_in_col);
00257
00258 if(biggest_in_corner != RealScalar(0))
00259 {
00260 if(k != row_of_biggest_in_col)
00261 {
00262 lu.row(k).swap(lu.row(row_of_biggest_in_col));
00263 ++nb_transpositions;
00264 }
00265
00266
00267
00268 lu.col(k).tail(rrows) /= lu.coeff(k,k);
00269 }
00270 else if(first_zero_pivot==-1)
00271 {
00272
00273
00274 first_zero_pivot = k;
00275 }
00276
00277 if(k<rows-1)
00278 lu.bottomRightCorner(rrows,rcols).noalias() -= lu.col(k).tail(rrows) * lu.row(k).tail(rcols);
00279 }
00280 return first_zero_pivot;
00281 }
00282
00298 static Index blocked_lu(Index rows, Index cols, Scalar* lu_data, Index luStride, PivIndex* row_transpositions, PivIndex& nb_transpositions, Index maxBlockSize=256)
00299 {
00300 MapLU lu1(lu_data,StorageOrder==RowMajor?rows:luStride,StorageOrder==RowMajor?luStride:cols);
00301 MatrixType lu(lu1,0,0,rows,cols);
00302
00303 const Index size = (std::min)(rows,cols);
00304
00305
00306 if(size<=16)
00307 {
00308 return unblocked_lu(lu, row_transpositions, nb_transpositions);
00309 }
00310
00311
00312
00313 Index blockSize;
00314 {
00315 blockSize = size/8;
00316 blockSize = (blockSize/16)*16;
00317 blockSize = (std::min)((std::max)(blockSize,Index(8)), maxBlockSize);
00318 }
00319
00320 nb_transpositions = 0;
00321 Index first_zero_pivot = -1;
00322 for(Index k = 0; k < size; k+=blockSize)
00323 {
00324 Index bs = (std::min)(size-k,blockSize);
00325 Index trows = rows - k - bs;
00326 Index tsize = size - k - bs;
00327
00328
00329
00330
00331
00332 BlockType A_0(lu,0,0,rows,k);
00333 BlockType A_2(lu,0,k+bs,rows,tsize);
00334 BlockType A11(lu,k,k,bs,bs);
00335 BlockType A12(lu,k,k+bs,bs,tsize);
00336 BlockType A21(lu,k+bs,k,trows,bs);
00337 BlockType A22(lu,k+bs,k+bs,trows,tsize);
00338
00339 PivIndex nb_transpositions_in_panel;
00340
00341
00342 Index ret = blocked_lu(trows+bs, bs, &lu.coeffRef(k,k), luStride,
00343 row_transpositions+k, nb_transpositions_in_panel, 16);
00344 if(ret>=0 && first_zero_pivot==-1)
00345 first_zero_pivot = k+ret;
00346
00347 nb_transpositions += nb_transpositions_in_panel;
00348
00349 for(Index i=k; i<k+bs; ++i)
00350 {
00351 Index piv = (row_transpositions[i] += k);
00352 A_0.row(i).swap(A_0.row(piv));
00353 }
00354
00355 if(trows)
00356 {
00357
00358 for(Index i=k;i<k+bs; ++i)
00359 A_2.row(i).swap(A_2.row(row_transpositions[i]));
00360
00361
00362 A11.template triangularView<UnitLower>().solveInPlace(A12);
00363
00364 A22.noalias() -= A21 * A12;
00365 }
00366 }
00367 return first_zero_pivot;
00368 }
00369 };
00370
00373 template<typename MatrixType, typename TranspositionType>
00374 void partial_lu_inplace(MatrixType& lu, TranspositionType& row_transpositions, typename TranspositionType::Index& nb_transpositions)
00375 {
00376 eigen_assert(lu.cols() == row_transpositions.size());
00377 eigen_assert((&row_transpositions.coeffRef(1)-&row_transpositions.coeffRef(0)) == 1);
00378
00379 partial_lu_impl
00380 <typename MatrixType::Scalar, MatrixType::Flags&RowMajorBit?RowMajor:ColMajor, typename TranspositionType::Index>
00381 ::blocked_lu(lu.rows(), lu.cols(), &lu.coeffRef(0,0), lu.outerStride(), &row_transpositions.coeffRef(0), nb_transpositions);
00382 }
00383
00384 }
00385
00386 template<typename MatrixType>
00387 PartialPivLU<MatrixType>& PartialPivLU<MatrixType>::compute(const MatrixType& matrix)
00388 {
00389
00390 eigen_assert(matrix.rows()<NumTraits<int>::highest());
00391
00392 m_lu = matrix;
00393
00394 eigen_assert(matrix.rows() == matrix.cols() && "PartialPivLU is only for square (and moreover invertible) matrices");
00395 const Index size = matrix.rows();
00396
00397 m_rowsTranspositions.resize(size);
00398
00399 typename TranspositionType::Index nb_transpositions;
00400 internal::partial_lu_inplace(m_lu, m_rowsTranspositions, nb_transpositions);
00401 m_det_p = (nb_transpositions%2) ? -1 : 1;
00402
00403 m_p = m_rowsTranspositions;
00404
00405 m_isInitialized = true;
00406 return *this;
00407 }
00408
00409 template<typename MatrixType>
00410 typename internal::traits<MatrixType>::Scalar PartialPivLU<MatrixType>::determinant() const
00411 {
00412 eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
00413 return Scalar(m_det_p) * m_lu.diagonal().prod();
00414 }
00415
00419 template<typename MatrixType>
00420 MatrixType PartialPivLU<MatrixType>::reconstructedMatrix() const
00421 {
00422 eigen_assert(m_isInitialized && "LU is not initialized.");
00423
00424 MatrixType res = m_lu.template triangularView<UnitLower>().toDenseMatrix()
00425 * m_lu.template triangularView<Upper>();
00426
00427
00428 res = m_p.inverse() * res;
00429
00430 return res;
00431 }
00432
00433
00434
00435 namespace internal {
00436
00437 template<typename _MatrixType, typename Rhs>
00438 struct solve_retval<PartialPivLU<_MatrixType>, Rhs>
00439 : solve_retval_base<PartialPivLU<_MatrixType>, Rhs>
00440 {
00441 EIGEN_MAKE_SOLVE_HELPERS(PartialPivLU<_MatrixType>,Rhs)
00442
00443 template<typename Dest> void evalTo(Dest& dst) const
00444 {
00445
00446
00447
00448
00449
00450
00451
00452 eigen_assert(rhs().rows() == dec().matrixLU().rows());
00453
00454
00455 dst = dec().permutationP() * rhs();
00456
00457
00458 dec().matrixLU().template triangularView<UnitLower>().solveInPlace(dst);
00459
00460
00461 dec().matrixLU().template triangularView<Upper>().solveInPlace(dst);
00462 }
00463 };
00464
00465 }
00466
00467
00468
00475 template<typename Derived>
00476 inline const PartialPivLU<typename MatrixBase<Derived>::PlainObject>
00477 MatrixBase<Derived>::partialPivLu() const
00478 {
00479 return PartialPivLU<PlainObject>(eval());
00480 }
00481
00482 #if EIGEN2_SUPPORT_STAGE > STAGE20_RESOLVE_API_CONFLICTS
00483
00491 template<typename Derived>
00492 inline const PartialPivLU<typename MatrixBase<Derived>::PlainObject>
00493 MatrixBase<Derived>::lu() const
00494 {
00495 return PartialPivLU<PlainObject>(eval());
00496 }
00497 #endif
00498
00499 }
00500
00501 #endif // EIGEN_PARTIALLU_H