00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011 #ifndef EIGEN_MATRIX_LOGARITHM
00012 #define EIGEN_MATRIX_LOGARITHM
00013
00014 #ifndef M_PI
00015 #define M_PI 3.141592653589793238462643383279503L
00016 #endif
00017
00018 namespace Eigen {
00019
00030 template <typename MatrixType>
00031 class MatrixLogarithmAtomic
00032 {
00033 public:
00034
00035 typedef typename MatrixType::Scalar Scalar;
00036
00037 typedef typename NumTraits<Scalar>::Real RealScalar;
00038
00039
00040
00042 MatrixLogarithmAtomic() { }
00043
00048 MatrixType compute(const MatrixType& A);
00049
00050 private:
00051
00052 void compute2x2(const MatrixType& A, MatrixType& result);
00053 void computeBig(const MatrixType& A, MatrixType& result);
00054 int getPadeDegree(float normTminusI);
00055 int getPadeDegree(double normTminusI);
00056 int getPadeDegree(long double normTminusI);
00057 void computePade(MatrixType& result, const MatrixType& T, int degree);
00058 void computePade3(MatrixType& result, const MatrixType& T);
00059 void computePade4(MatrixType& result, const MatrixType& T);
00060 void computePade5(MatrixType& result, const MatrixType& T);
00061 void computePade6(MatrixType& result, const MatrixType& T);
00062 void computePade7(MatrixType& result, const MatrixType& T);
00063 void computePade8(MatrixType& result, const MatrixType& T);
00064 void computePade9(MatrixType& result, const MatrixType& T);
00065 void computePade10(MatrixType& result, const MatrixType& T);
00066 void computePade11(MatrixType& result, const MatrixType& T);
00067
00068 static const int minPadeDegree = 3;
00069 static const int maxPadeDegree = std::numeric_limits<RealScalar>::digits<= 24? 5:
00070 std::numeric_limits<RealScalar>::digits<= 53? 7:
00071 std::numeric_limits<RealScalar>::digits<= 64? 8:
00072 std::numeric_limits<RealScalar>::digits<=106? 10:
00073 11;
00074
00075
00076 MatrixLogarithmAtomic(const MatrixLogarithmAtomic&);
00077 MatrixLogarithmAtomic& operator=(const MatrixLogarithmAtomic&);
00078 };
00079
00081 template <typename MatrixType>
00082 MatrixType MatrixLogarithmAtomic<MatrixType>::compute(const MatrixType& A)
00083 {
00084 using std::log;
00085 MatrixType result(A.rows(), A.rows());
00086 if (A.rows() == 1)
00087 result(0,0) = log(A(0,0));
00088 else if (A.rows() == 2)
00089 compute2x2(A, result);
00090 else
00091 computeBig(A, result);
00092 return result;
00093 }
00094
00096 template <typename MatrixType>
00097 void MatrixLogarithmAtomic<MatrixType>::compute2x2(const MatrixType& A, MatrixType& result)
00098 {
00099 using std::abs;
00100 using std::ceil;
00101 using std::imag;
00102 using std::log;
00103
00104 Scalar logA00 = log(A(0,0));
00105 Scalar logA11 = log(A(1,1));
00106
00107 result(0,0) = logA00;
00108 result(1,0) = Scalar(0);
00109 result(1,1) = logA11;
00110
00111 if (A(0,0) == A(1,1)) {
00112 result(0,1) = A(0,1) / A(0,0);
00113 } else if ((abs(A(0,0)) < 0.5*abs(A(1,1))) || (abs(A(0,0)) > 2*abs(A(1,1)))) {
00114 result(0,1) = A(0,1) * (logA11 - logA00) / (A(1,1) - A(0,0));
00115 } else {
00116
00117 int unwindingNumber = static_cast<int>(ceil((imag(logA11 - logA00) - M_PI) / (2*M_PI)));
00118 Scalar y = A(1,1) - A(0,0), x = A(1,1) + A(0,0);
00119 result(0,1) = A(0,1) * (Scalar(2) * numext::atanh2(y,x) + Scalar(0,2*M_PI*unwindingNumber)) / y;
00120 }
00121 }
00122
00125 template <typename MatrixType>
00126 void MatrixLogarithmAtomic<MatrixType>::computeBig(const MatrixType& A, MatrixType& result)
00127 {
00128 using std::pow;
00129 int numberOfSquareRoots = 0;
00130 int numberOfExtraSquareRoots = 0;
00131 int degree;
00132 MatrixType T = A, sqrtT;
00133 const RealScalar maxNormForPade = maxPadeDegree<= 5? 5.3149729967117310e-1:
00134 maxPadeDegree<= 7? 2.6429608311114350e-1:
00135 maxPadeDegree<= 8? 2.32777776523703892094e-1L:
00136 maxPadeDegree<=10? 1.05026503471351080481093652651105e-1L:
00137 1.1880960220216759245467951592883642e-1L;
00138
00139 while (true) {
00140 RealScalar normTminusI = (T - MatrixType::Identity(T.rows(), T.rows())).cwiseAbs().colwise().sum().maxCoeff();
00141 if (normTminusI < maxNormForPade) {
00142 degree = getPadeDegree(normTminusI);
00143 int degree2 = getPadeDegree(normTminusI / RealScalar(2));
00144 if ((degree - degree2 <= 1) || (numberOfExtraSquareRoots == 1))
00145 break;
00146 ++numberOfExtraSquareRoots;
00147 }
00148 MatrixSquareRootTriangular<MatrixType>(T).compute(sqrtT);
00149 T = sqrtT.template triangularView<Upper>();
00150 ++numberOfSquareRoots;
00151 }
00152
00153 computePade(result, T, degree);
00154 result *= pow(RealScalar(2), numberOfSquareRoots);
00155 }
00156
00157
00158 template <typename MatrixType>
00159 int MatrixLogarithmAtomic<MatrixType>::getPadeDegree(float normTminusI)
00160 {
00161 const float maxNormForPade[] = { 2.5111573934555054e-1 , 4.0535837411880493e-1,
00162 5.3149729967117310e-1 };
00163 int degree = 3;
00164 for (; degree <= maxPadeDegree; ++degree)
00165 if (normTminusI <= maxNormForPade[degree - minPadeDegree])
00166 break;
00167 return degree;
00168 }
00169
00170
00171 template <typename MatrixType>
00172 int MatrixLogarithmAtomic<MatrixType>::getPadeDegree(double normTminusI)
00173 {
00174 const double maxNormForPade[] = { 1.6206284795015624e-2 , 5.3873532631381171e-2,
00175 1.1352802267628681e-1, 1.8662860613541288e-1, 2.642960831111435e-1 };
00176 int degree = 3;
00177 for (; degree <= maxPadeDegree; ++degree)
00178 if (normTminusI <= maxNormForPade[degree - minPadeDegree])
00179 break;
00180 return degree;
00181 }
00182
00183
00184 template <typename MatrixType>
00185 int MatrixLogarithmAtomic<MatrixType>::getPadeDegree(long double normTminusI)
00186 {
00187 #if LDBL_MANT_DIG == 53 // double precision
00188 const long double maxNormForPade[] = { 1.6206284795015624e-2L , 5.3873532631381171e-2L,
00189 1.1352802267628681e-1L, 1.8662860613541288e-1L, 2.642960831111435e-1L };
00190 #elif LDBL_MANT_DIG <= 64 // extended precision
00191 const long double maxNormForPade[] = { 5.48256690357782863103e-3L , 2.34559162387971167321e-2L,
00192 5.84603923897347449857e-2L, 1.08486423756725170223e-1L, 1.68385767881294446649e-1L,
00193 2.32777776523703892094e-1L };
00194 #elif LDBL_MANT_DIG <= 106 // double-double
00195 const long double maxNormForPade[] = { 8.58970550342939562202529664318890e-5L ,
00196 9.34074328446359654039446552677759e-4L, 4.26117194647672175773064114582860e-3L,
00197 1.21546224740281848743149666560464e-2L, 2.61100544998339436713088248557444e-2L,
00198 4.66170074627052749243018566390567e-2L, 7.32585144444135027565872014932387e-2L,
00199 1.05026503471351080481093652651105e-1L };
00200 #else // quadruple precision
00201 const long double maxNormForPade[] = { 4.7419931187193005048501568167858103e-5L ,
00202 5.8853168473544560470387769480192666e-4L, 2.9216120366601315391789493628113520e-3L,
00203 8.8415758124319434347116734705174308e-3L, 1.9850836029449446668518049562565291e-2L,
00204 3.6688019729653446926585242192447447e-2L, 5.9290962294020186998954055264528393e-2L,
00205 8.6998436081634343903250580992127677e-2L, 1.1880960220216759245467951592883642e-1L };
00206 #endif
00207 int degree = 3;
00208 for (; degree <= maxPadeDegree; ++degree)
00209 if (normTminusI <= maxNormForPade[degree - minPadeDegree])
00210 break;
00211 return degree;
00212 }
00213
00214
00215 template <typename MatrixType>
00216 void MatrixLogarithmAtomic<MatrixType>::computePade(MatrixType& result, const MatrixType& T, int degree)
00217 {
00218 switch (degree) {
00219 case 3: computePade3(result, T); break;
00220 case 4: computePade4(result, T); break;
00221 case 5: computePade5(result, T); break;
00222 case 6: computePade6(result, T); break;
00223 case 7: computePade7(result, T); break;
00224 case 8: computePade8(result, T); break;
00225 case 9: computePade9(result, T); break;
00226 case 10: computePade10(result, T); break;
00227 case 11: computePade11(result, T); break;
00228 default: assert(false);
00229 }
00230 }
00231
00232 template <typename MatrixType>
00233 void MatrixLogarithmAtomic<MatrixType>::computePade3(MatrixType& result, const MatrixType& T)
00234 {
00235 const int degree = 3;
00236 const RealScalar nodes[] = { 0.1127016653792583114820734600217600L, 0.5000000000000000000000000000000000L,
00237 0.8872983346207416885179265399782400L };
00238 const RealScalar weights[] = { 0.2777777777777777777777777777777778L, 0.4444444444444444444444444444444444L,
00239 0.2777777777777777777777777777777778L };
00240 eigen_assert(degree <= maxPadeDegree);
00241 MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
00242 result.setZero(T.rows(), T.rows());
00243 for (int k = 0; k < degree; ++k)
00244 result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
00245 .template triangularView<Upper>().solve(TminusI);
00246 }
00247
00248 template <typename MatrixType>
00249 void MatrixLogarithmAtomic<MatrixType>::computePade4(MatrixType& result, const MatrixType& T)
00250 {
00251 const int degree = 4;
00252 const RealScalar nodes[] = { 0.0694318442029737123880267555535953L, 0.3300094782075718675986671204483777L,
00253 0.6699905217924281324013328795516223L, 0.9305681557970262876119732444464048L };
00254 const RealScalar weights[] = { 0.1739274225687269286865319746109997L, 0.3260725774312730713134680253890003L,
00255 0.3260725774312730713134680253890003L, 0.1739274225687269286865319746109997L };
00256 eigen_assert(degree <= maxPadeDegree);
00257 MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
00258 result.setZero(T.rows(), T.rows());
00259 for (int k = 0; k < degree; ++k)
00260 result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
00261 .template triangularView<Upper>().solve(TminusI);
00262 }
00263
00264 template <typename MatrixType>
00265 void MatrixLogarithmAtomic<MatrixType>::computePade5(MatrixType& result, const MatrixType& T)
00266 {
00267 const int degree = 5;
00268 const RealScalar nodes[] = { 0.0469100770306680036011865608503035L, 0.2307653449471584544818427896498956L,
00269 0.5000000000000000000000000000000000L, 0.7692346550528415455181572103501044L,
00270 0.9530899229693319963988134391496965L };
00271 const RealScalar weights[] = { 0.1184634425280945437571320203599587L, 0.2393143352496832340206457574178191L,
00272 0.2844444444444444444444444444444444L, 0.2393143352496832340206457574178191L,
00273 0.1184634425280945437571320203599587L };
00274 eigen_assert(degree <= maxPadeDegree);
00275 MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
00276 result.setZero(T.rows(), T.rows());
00277 for (int k = 0; k < degree; ++k)
00278 result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
00279 .template triangularView<Upper>().solve(TminusI);
00280 }
00281
00282 template <typename MatrixType>
00283 void MatrixLogarithmAtomic<MatrixType>::computePade6(MatrixType& result, const MatrixType& T)
00284 {
00285 const int degree = 6;
00286 const RealScalar nodes[] = { 0.0337652428984239860938492227530027L, 0.1693953067668677431693002024900473L,
00287 0.3806904069584015456847491391596440L, 0.6193095930415984543152508608403560L,
00288 0.8306046932331322568306997975099527L, 0.9662347571015760139061507772469973L };
00289 const RealScalar weights[] = { 0.0856622461895851725201480710863665L, 0.1803807865240693037849167569188581L,
00290 0.2339569672863455236949351719947755L, 0.2339569672863455236949351719947755L,
00291 0.1803807865240693037849167569188581L, 0.0856622461895851725201480710863665L };
00292 eigen_assert(degree <= maxPadeDegree);
00293 MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
00294 result.setZero(T.rows(), T.rows());
00295 for (int k = 0; k < degree; ++k)
00296 result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
00297 .template triangularView<Upper>().solve(TminusI);
00298 }
00299
00300 template <typename MatrixType>
00301 void MatrixLogarithmAtomic<MatrixType>::computePade7(MatrixType& result, const MatrixType& T)
00302 {
00303 const int degree = 7;
00304 const RealScalar nodes[] = { 0.0254460438286207377369051579760744L, 0.1292344072003027800680676133596058L,
00305 0.2970774243113014165466967939615193L, 0.5000000000000000000000000000000000L,
00306 0.7029225756886985834533032060384807L, 0.8707655927996972199319323866403942L,
00307 0.9745539561713792622630948420239256L };
00308 const RealScalar weights[] = { 0.0647424830844348466353057163395410L, 0.1398526957446383339507338857118898L,
00309 0.1909150252525594724751848877444876L, 0.2089795918367346938775510204081633L,
00310 0.1909150252525594724751848877444876L, 0.1398526957446383339507338857118898L,
00311 0.0647424830844348466353057163395410L };
00312 eigen_assert(degree <= maxPadeDegree);
00313 MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
00314 result.setZero(T.rows(), T.rows());
00315 for (int k = 0; k < degree; ++k)
00316 result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
00317 .template triangularView<Upper>().solve(TminusI);
00318 }
00319
00320 template <typename MatrixType>
00321 void MatrixLogarithmAtomic<MatrixType>::computePade8(MatrixType& result, const MatrixType& T)
00322 {
00323 const int degree = 8;
00324 const RealScalar nodes[] = { 0.0198550717512318841582195657152635L, 0.1016667612931866302042230317620848L,
00325 0.2372337950418355070911304754053768L, 0.4082826787521750975302619288199080L,
00326 0.5917173212478249024697380711800920L, 0.7627662049581644929088695245946232L,
00327 0.8983332387068133697957769682379152L, 0.9801449282487681158417804342847365L };
00328 const RealScalar weights[] = { 0.0506142681451881295762656771549811L, 0.1111905172266872352721779972131204L,
00329 0.1568533229389436436689811009933007L, 0.1813418916891809914825752246385978L,
00330 0.1813418916891809914825752246385978L, 0.1568533229389436436689811009933007L,
00331 0.1111905172266872352721779972131204L, 0.0506142681451881295762656771549811L };
00332 eigen_assert(degree <= maxPadeDegree);
00333 MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
00334 result.setZero(T.rows(), T.rows());
00335 for (int k = 0; k < degree; ++k)
00336 result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
00337 .template triangularView<Upper>().solve(TminusI);
00338 }
00339
00340 template <typename MatrixType>
00341 void MatrixLogarithmAtomic<MatrixType>::computePade9(MatrixType& result, const MatrixType& T)
00342 {
00343 const int degree = 9;
00344 const RealScalar nodes[] = { 0.0159198802461869550822118985481636L, 0.0819844463366821028502851059651326L,
00345 0.1933142836497048013456489803292629L, 0.3378732882980955354807309926783317L,
00346 0.5000000000000000000000000000000000L, 0.6621267117019044645192690073216683L,
00347 0.8066857163502951986543510196707371L, 0.9180155536633178971497148940348674L,
00348 0.9840801197538130449177881014518364L };
00349 const RealScalar weights[] = { 0.0406371941807872059859460790552618L, 0.0903240803474287020292360156214564L,
00350 0.1303053482014677311593714347093164L, 0.1561735385200014200343152032922218L,
00351 0.1651196775006298815822625346434870L, 0.1561735385200014200343152032922218L,
00352 0.1303053482014677311593714347093164L, 0.0903240803474287020292360156214564L,
00353 0.0406371941807872059859460790552618L };
00354 eigen_assert(degree <= maxPadeDegree);
00355 MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
00356 result.setZero(T.rows(), T.rows());
00357 for (int k = 0; k < degree; ++k)
00358 result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
00359 .template triangularView<Upper>().solve(TminusI);
00360 }
00361
00362 template <typename MatrixType>
00363 void MatrixLogarithmAtomic<MatrixType>::computePade10(MatrixType& result, const MatrixType& T)
00364 {
00365 const int degree = 10;
00366 const RealScalar nodes[] = { 0.0130467357414141399610179939577740L, 0.0674683166555077446339516557882535L,
00367 0.1602952158504877968828363174425632L, 0.2833023029353764046003670284171079L,
00368 0.4255628305091843945575869994351400L, 0.5744371694908156054424130005648600L,
00369 0.7166976970646235953996329715828921L, 0.8397047841495122031171636825574368L,
00370 0.9325316833444922553660483442117465L, 0.9869532642585858600389820060422260L };
00371 const RealScalar weights[] = { 0.0333356721543440687967844049466659L, 0.0747256745752902965728881698288487L,
00372 0.1095431812579910219977674671140816L, 0.1346333596549981775456134607847347L,
00373 0.1477621123573764350869464973256692L, 0.1477621123573764350869464973256692L,
00374 0.1346333596549981775456134607847347L, 0.1095431812579910219977674671140816L,
00375 0.0747256745752902965728881698288487L, 0.0333356721543440687967844049466659L };
00376 eigen_assert(degree <= maxPadeDegree);
00377 MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
00378 result.setZero(T.rows(), T.rows());
00379 for (int k = 0; k < degree; ++k)
00380 result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
00381 .template triangularView<Upper>().solve(TminusI);
00382 }
00383
00384 template <typename MatrixType>
00385 void MatrixLogarithmAtomic<MatrixType>::computePade11(MatrixType& result, const MatrixType& T)
00386 {
00387 const int degree = 11;
00388 const RealScalar nodes[] = { 0.0108856709269715035980309994385713L, 0.0564687001159523504624211153480364L,
00389 0.1349239972129753379532918739844233L, 0.2404519353965940920371371652706952L,
00390 0.3652284220238275138342340072995692L, 0.5000000000000000000000000000000000L,
00391 0.6347715779761724861657659927004308L, 0.7595480646034059079628628347293048L,
00392 0.8650760027870246620467081260155767L, 0.9435312998840476495375788846519636L,
00393 0.9891143290730284964019690005614287L };
00394 const RealScalar weights[] = { 0.0278342835580868332413768602212743L, 0.0627901847324523123173471496119701L,
00395 0.0931451054638671257130488207158280L, 0.1165968822959952399592618524215876L,
00396 0.1314022722551233310903444349452546L, 0.1364625433889503153572417641681711L,
00397 0.1314022722551233310903444349452546L, 0.1165968822959952399592618524215876L,
00398 0.0931451054638671257130488207158280L, 0.0627901847324523123173471496119701L,
00399 0.0278342835580868332413768602212743L };
00400 eigen_assert(degree <= maxPadeDegree);
00401 MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
00402 result.setZero(T.rows(), T.rows());
00403 for (int k = 0; k < degree; ++k)
00404 result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
00405 .template triangularView<Upper>().solve(TminusI);
00406 }
00407
00420 template<typename Derived> class MatrixLogarithmReturnValue
00421 : public ReturnByValue<MatrixLogarithmReturnValue<Derived> >
00422 {
00423 public:
00424
00425 typedef typename Derived::Scalar Scalar;
00426 typedef typename Derived::Index Index;
00427
00432 MatrixLogarithmReturnValue(const Derived& A) : m_A(A) { }
00433
00438 template <typename ResultType>
00439 inline void evalTo(ResultType& result) const
00440 {
00441 typedef typename Derived::PlainObject PlainObject;
00442 typedef internal::traits<PlainObject> Traits;
00443 static const int RowsAtCompileTime = Traits::RowsAtCompileTime;
00444 static const int ColsAtCompileTime = Traits::ColsAtCompileTime;
00445 static const int Options = PlainObject::Options;
00446 typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
00447 typedef Matrix<ComplexScalar, Dynamic, Dynamic, Options, RowsAtCompileTime, ColsAtCompileTime> DynMatrixType;
00448 typedef MatrixLogarithmAtomic<DynMatrixType> AtomicType;
00449 AtomicType atomic;
00450
00451 const PlainObject Aevaluated = m_A.eval();
00452 MatrixFunction<PlainObject, AtomicType> mf(Aevaluated, atomic);
00453 mf.compute(result);
00454 }
00455
00456 Index rows() const { return m_A.rows(); }
00457 Index cols() const { return m_A.cols(); }
00458
00459 private:
00460 typename internal::nested<Derived>::type m_A;
00461
00462 MatrixLogarithmReturnValue& operator=(const MatrixLogarithmReturnValue&);
00463 };
00464
00465 namespace internal {
00466 template<typename Derived>
00467 struct traits<MatrixLogarithmReturnValue<Derived> >
00468 {
00469 typedef typename Derived::PlainObject ReturnType;
00470 };
00471 }
00472
00473
00474
00475
00476
00477 template <typename Derived>
00478 const MatrixLogarithmReturnValue<Derived> MatrixBase<Derived>::log() const
00479 {
00480 eigen_assert(rows() == cols());
00481 return MatrixLogarithmReturnValue<Derived>(derived());
00482 }
00483
00484 }
00485
00486 #endif // EIGEN_MATRIX_LOGARITHM