00001
00002
00003
00004
00005
00006
00007
00008
00009
00010 #ifndef EIGEN_INCOMPLETE_CHOlESKY_H
00011 #define EIGEN_INCOMPLETE_CHOlESKY_H
00012 #include "Eigen/src/IterativeLinearSolvers/IncompleteLUT.h"
00013 #include <Eigen/OrderingMethods>
00014 #include <list>
00015
00016 namespace Eigen {
00029 template <typename Scalar, int _UpLo = Lower, typename _OrderingType = NaturalOrdering<int> >
00030 class IncompleteCholesky : internal::noncopyable
00031 {
00032 public:
00033 typedef SparseMatrix<Scalar,ColMajor> MatrixType;
00034 typedef _OrderingType OrderingType;
00035 typedef typename MatrixType::RealScalar RealScalar;
00036 typedef typename MatrixType::Index Index;
00037 typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType;
00038 typedef Matrix<Scalar,Dynamic,1> ScalarType;
00039 typedef Matrix<Index,Dynamic, 1> IndexType;
00040 typedef std::vector<std::list<Index> > VectorList;
00041 enum { UpLo = _UpLo };
00042 public:
00043 IncompleteCholesky() : m_shift(1),m_factorizationIsOk(false) {}
00044 IncompleteCholesky(const MatrixType& matrix) : m_shift(1),m_factorizationIsOk(false)
00045 {
00046 compute(matrix);
00047 }
00048
00049 Index rows() const { return m_L.rows(); }
00050
00051 Index cols() const { return m_L.cols(); }
00052
00053
00059 ComputationInfo info() const
00060 {
00061 eigen_assert(m_isInitialized && "IncompleteLLT is not initialized.");
00062 return m_info;
00063 }
00064
00068 void setShift( Scalar shift) { m_shift = shift; }
00069
00073 template<typename MatrixType>
00074 void analyzePattern(const MatrixType& mat)
00075 {
00076 OrderingType ord;
00077 ord(mat.template selfadjointView<UpLo>(), m_perm);
00078 m_analysisIsOk = true;
00079 }
00080
00081 template<typename MatrixType>
00082 void factorize(const MatrixType& amat);
00083
00084 template<typename MatrixType>
00085 void compute (const MatrixType& matrix)
00086 {
00087 analyzePattern(matrix);
00088 factorize(matrix);
00089 }
00090
00091 template<typename Rhs, typename Dest>
00092 void _solve(const Rhs& b, Dest& x) const
00093 {
00094 eigen_assert(m_factorizationIsOk && "factorize() should be called first");
00095 if (m_perm.rows() == b.rows())
00096 x = m_perm.inverse() * b;
00097 else
00098 x = b;
00099 x = m_scal.asDiagonal() * x;
00100 x = m_L.template triangularView<UnitLower>().solve(x);
00101 x = m_L.adjoint().template triangularView<Upper>().solve(x);
00102 if (m_perm.rows() == b.rows())
00103 x = m_perm * x;
00104 x = m_scal.asDiagonal() * x;
00105 }
00106 template<typename Rhs> inline const internal::solve_retval<IncompleteCholesky, Rhs>
00107 solve(const MatrixBase<Rhs>& b) const
00108 {
00109 eigen_assert(m_factorizationIsOk && "IncompleteLLT did not succeed");
00110 eigen_assert(m_isInitialized && "IncompleteLLT is not initialized.");
00111 eigen_assert(cols()==b.rows()
00112 && "IncompleteLLT::solve(): invalid number of rows of the right hand side matrix b");
00113 return internal::solve_retval<IncompleteCholesky, Rhs>(*this, b.derived());
00114 }
00115 protected:
00116 SparseMatrix<Scalar,ColMajor> m_L;
00117 ScalarType m_scal;
00118 Scalar m_shift;
00119 bool m_analysisIsOk;
00120 bool m_factorizationIsOk;
00121 bool m_isInitialized;
00122 ComputationInfo m_info;
00123 PermutationType m_perm;
00124
00125 private:
00126 template <typename IdxType, typename SclType>
00127 inline void updateList(const IdxType& colPtr, IdxType& rowIdx, SclType& vals, const Index& col, const Index& jk, IndexType& firstElt, VectorList& listCol);
00128 };
00129
00130 template<typename Scalar, int _UpLo, typename OrderingType>
00131 template<typename _MatrixType>
00132 void IncompleteCholesky<Scalar,_UpLo, OrderingType>::factorize(const _MatrixType& mat)
00133 {
00134 using std::sqrt;
00135 using std::min;
00136 eigen_assert(m_analysisIsOk && "analyzePattern() should be called first");
00137
00138
00139
00140
00141 if (m_perm.rows() == mat.rows() )
00142 m_L.template selfadjointView<Lower>() = mat.template selfadjointView<_UpLo>().twistedBy(m_perm);
00143 else
00144 m_L.template selfadjointView<Lower>() = mat.template selfadjointView<_UpLo>();
00145
00146 Index n = m_L.cols();
00147 Index nnz = m_L.nonZeros();
00148 Map<ScalarType> vals(m_L.valuePtr(), nnz);
00149 Map<IndexType> rowIdx(m_L.innerIndexPtr(), nnz);
00150 Map<IndexType> colPtr( m_L.outerIndexPtr(), n+1);
00151 IndexType firstElt(n-1);
00152 VectorList listCol(n);
00153 ScalarType curCol(n);
00154 IndexType irow(n);
00155
00156
00157
00158 m_scal.resize(n);
00159 for (int j = 0; j < n; j++)
00160 {
00161 m_scal(j) = m_L.col(j).norm();
00162 m_scal(j) = sqrt(m_scal(j));
00163 }
00164
00165 Scalar mindiag = vals[0];
00166 for (int j = 0; j < n; j++){
00167 for (int k = colPtr[j]; k < colPtr[j+1]; k++)
00168 vals[k] /= (m_scal(j) * m_scal(rowIdx[k]));
00169 mindiag = (min)(vals[colPtr[j]], mindiag);
00170 }
00171
00172 if(mindiag < Scalar(0.)) m_shift = m_shift - mindiag;
00173
00174 for (int j = 0; j < n; j++)
00175 vals[colPtr[j]] += m_shift;
00176
00177 for (int j=0; j < n; ++j)
00178 {
00179
00180
00181 Scalar diag = vals[colPtr[j]];
00182 curCol.setZero();
00183 irow.setLinSpaced(n,0,n-1);
00184 for (int i = colPtr[j] + 1; i < colPtr[j+1]; i++)
00185 {
00186 curCol(rowIdx[i]) = vals[i];
00187 irow(rowIdx[i]) = rowIdx[i];
00188 }
00189 std::list<int>::iterator k;
00190
00191 for(k = listCol[j].begin(); k != listCol[j].end(); k++)
00192 {
00193 int jk = firstElt(*k);
00194 jk += 1;
00195 for (int i = jk; i < colPtr[*k+1]; i++)
00196 {
00197 curCol(rowIdx[i]) -= vals[i] * vals[jk] ;
00198 }
00199 updateList(colPtr,rowIdx,vals, *k, jk, firstElt, listCol);
00200 }
00201
00202
00203 if(RealScalar(diag) <= 0)
00204 {
00205 std::cerr << "\nNegative diagonal during Incomplete factorization... "<< j << "\n";
00206 m_info = NumericalIssue;
00207 return;
00208 }
00209 RealScalar rdiag = sqrt(RealScalar(diag));
00210 vals[colPtr[j]] = rdiag;
00211 for (int i = j+1; i < n; i++)
00212 {
00213
00214 curCol(i) /= rdiag;
00215
00216 vals[colPtr[i]] -= curCol(i) * curCol(i);
00217 }
00218
00219
00220 int p = colPtr[j+1] - colPtr[j] - 1 ;
00221 internal::QuickSplit(curCol, irow, p);
00222
00223 int cpt = 0;
00224 for (int i = colPtr[j]+1; i < colPtr[j+1]; i++)
00225 {
00226 vals[i] = curCol(cpt);
00227 rowIdx[i] = irow(cpt);
00228 cpt ++;
00229 }
00230
00231 Index jk = colPtr(j)+1;
00232 updateList(colPtr,rowIdx,vals,j,jk,firstElt,listCol);
00233 }
00234 m_factorizationIsOk = true;
00235 m_isInitialized = true;
00236 m_info = Success;
00237 }
00238
00239 template<typename Scalar, int _UpLo, typename OrderingType>
00240 template <typename IdxType, typename SclType>
00241 inline void IncompleteCholesky<Scalar,_UpLo, OrderingType>::updateList(const IdxType& colPtr, IdxType& rowIdx, SclType& vals, const Index& col, const Index& jk, IndexType& firstElt, VectorList& listCol)
00242 {
00243 if (jk < colPtr(col+1) )
00244 {
00245 Index p = colPtr(col+1) - jk;
00246 Index minpos;
00247 rowIdx.segment(jk,p).minCoeff(&minpos);
00248 minpos += jk;
00249 if (rowIdx(minpos) != rowIdx(jk))
00250 {
00251
00252 std::swap(rowIdx(jk),rowIdx(minpos));
00253 std::swap(vals(jk),vals(minpos));
00254 }
00255 firstElt(col) = jk;
00256 listCol[rowIdx(jk)].push_back(col);
00257 }
00258 }
00259 namespace internal {
00260
00261 template<typename _Scalar, int _UpLo, typename OrderingType, typename Rhs>
00262 struct solve_retval<IncompleteCholesky<_Scalar, _UpLo, OrderingType>, Rhs>
00263 : solve_retval_base<IncompleteCholesky<_Scalar, _UpLo, OrderingType>, Rhs>
00264 {
00265 typedef IncompleteCholesky<_Scalar, _UpLo, OrderingType> Dec;
00266 EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
00267
00268 template<typename Dest> void evalTo(Dest& dst) const
00269 {
00270 dec()._solve(rhs(),dst);
00271 }
00272 };
00273
00274 }
00275
00276 }
00277
00278 #endif