00001
00002
00003
00004
00005
00006
00007
00008
00009
00010 #ifndef EIGEN_GENERAL_MATRIX_MATRIX_TRIANGULAR_H
00011 #define EIGEN_GENERAL_MATRIX_MATRIX_TRIANGULAR_H
00012
00013 namespace Eigen {
00014
00015 template<typename Scalar, typename Index, int StorageOrder, int UpLo, bool ConjLhs, bool ConjRhs>
00016 struct selfadjoint_rank1_update;
00017
00018 namespace internal {
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028 template<typename LhsScalar, typename RhsScalar, typename Index, int mr, int nr, bool ConjLhs, bool ConjRhs, int UpLo>
00029 struct tribb_kernel;
00030
00031
00032 template <typename Index,
00033 typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs,
00034 typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs,
00035 int ResStorageOrder, int UpLo, int Version = Specialized>
00036 struct general_matrix_matrix_triangular_product;
00037
00038
00039 template <typename Index, typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs,
00040 typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs, int UpLo, int Version>
00041 struct general_matrix_matrix_triangular_product<Index,LhsScalar,LhsStorageOrder,ConjugateLhs,RhsScalar,RhsStorageOrder,ConjugateRhs,RowMajor,UpLo,Version>
00042 {
00043 typedef typename scalar_product_traits<LhsScalar, RhsScalar>::ReturnType ResScalar;
00044 static EIGEN_STRONG_INLINE void run(Index size, Index depth,const LhsScalar* lhs, Index lhsStride,
00045 const RhsScalar* rhs, Index rhsStride, ResScalar* res, Index resStride, const ResScalar& alpha)
00046 {
00047 general_matrix_matrix_triangular_product<Index,
00048 RhsScalar, RhsStorageOrder==RowMajor ? ColMajor : RowMajor, ConjugateRhs,
00049 LhsScalar, LhsStorageOrder==RowMajor ? ColMajor : RowMajor, ConjugateLhs,
00050 ColMajor, UpLo==Lower?Upper:Lower>
00051 ::run(size,depth,rhs,rhsStride,lhs,lhsStride,res,resStride,alpha);
00052 }
00053 };
00054
00055 template <typename Index, typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs,
00056 typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs, int UpLo, int Version>
00057 struct general_matrix_matrix_triangular_product<Index,LhsScalar,LhsStorageOrder,ConjugateLhs,RhsScalar,RhsStorageOrder,ConjugateRhs,ColMajor,UpLo,Version>
00058 {
00059 typedef typename scalar_product_traits<LhsScalar, RhsScalar>::ReturnType ResScalar;
00060 static EIGEN_STRONG_INLINE void run(Index size, Index depth,const LhsScalar* _lhs, Index lhsStride,
00061 const RhsScalar* _rhs, Index rhsStride, ResScalar* res, Index resStride, const ResScalar& alpha)
00062 {
00063 const_blas_data_mapper<LhsScalar, Index, LhsStorageOrder> lhs(_lhs,lhsStride);
00064 const_blas_data_mapper<RhsScalar, Index, RhsStorageOrder> rhs(_rhs,rhsStride);
00065
00066 typedef gebp_traits<LhsScalar,RhsScalar> Traits;
00067
00068 Index kc = depth;
00069 Index mc = size;
00070 Index nc = size;
00071 computeProductBlockingSizes<LhsScalar,RhsScalar>(kc, mc, nc);
00072
00073 if(mc > Traits::nr)
00074 mc = (mc/Traits::nr)*Traits::nr;
00075
00076 std::size_t sizeW = kc*Traits::WorkSpaceFactor;
00077 std::size_t sizeB = sizeW + kc*size;
00078 ei_declare_aligned_stack_constructed_variable(LhsScalar, blockA, kc*mc, 0);
00079 ei_declare_aligned_stack_constructed_variable(RhsScalar, allocatedBlockB, sizeB, 0);
00080 RhsScalar* blockB = allocatedBlockB + sizeW;
00081
00082 gemm_pack_lhs<LhsScalar, Index, Traits::mr, Traits::LhsProgress, LhsStorageOrder> pack_lhs;
00083 gemm_pack_rhs<RhsScalar, Index, Traits::nr, RhsStorageOrder> pack_rhs;
00084 gebp_kernel <LhsScalar, RhsScalar, Index, Traits::mr, Traits::nr, ConjugateLhs, ConjugateRhs> gebp;
00085 tribb_kernel<LhsScalar, RhsScalar, Index, Traits::mr, Traits::nr, ConjugateLhs, ConjugateRhs, UpLo> sybb;
00086
00087 for(Index k2=0; k2<depth; k2+=kc)
00088 {
00089 const Index actual_kc = (std::min)(k2+kc,depth)-k2;
00090
00091
00092 pack_rhs(blockB, &rhs(k2,0), rhsStride, actual_kc, size);
00093
00094 for(Index i2=0; i2<size; i2+=mc)
00095 {
00096 const Index actual_mc = (std::min)(i2+mc,size)-i2;
00097
00098 pack_lhs(blockA, &lhs(i2, k2), lhsStride, actual_kc, actual_mc);
00099
00100
00101
00102
00103
00104 if (UpLo==Lower)
00105 gebp(res+i2, resStride, blockA, blockB, actual_mc, actual_kc, (std::min)(size,i2), alpha,
00106 -1, -1, 0, 0, allocatedBlockB);
00107
00108 sybb(res+resStride*i2 + i2, resStride, blockA, blockB + actual_kc*i2, actual_mc, actual_kc, alpha, allocatedBlockB);
00109
00110 if (UpLo==Upper)
00111 {
00112 Index j2 = i2+actual_mc;
00113 gebp(res+resStride*j2+i2, resStride, blockA, blockB+actual_kc*j2, actual_mc, actual_kc, (std::max)(Index(0), size-j2), alpha,
00114 -1, -1, 0, 0, allocatedBlockB);
00115 }
00116 }
00117 }
00118 }
00119 };
00120
00121
00122
00123
00124
00125
00126
00127
00128
00129
00130 template<typename LhsScalar, typename RhsScalar, typename Index, int mr, int nr, bool ConjLhs, bool ConjRhs, int UpLo>
00131 struct tribb_kernel
00132 {
00133 typedef gebp_traits<LhsScalar,RhsScalar,ConjLhs,ConjRhs> Traits;
00134 typedef typename Traits::ResScalar ResScalar;
00135
00136 enum {
00137 BlockSize = EIGEN_PLAIN_ENUM_MAX(mr,nr)
00138 };
00139 void operator()(ResScalar* res, Index resStride, const LhsScalar* blockA, const RhsScalar* blockB, Index size, Index depth, const ResScalar& alpha, RhsScalar* workspace)
00140 {
00141 gebp_kernel<LhsScalar, RhsScalar, Index, mr, nr, ConjLhs, ConjRhs> gebp_kernel;
00142 Matrix<ResScalar,BlockSize,BlockSize,ColMajor> buffer;
00143
00144
00145
00146 for (Index j=0; j<size; j+=BlockSize)
00147 {
00148 Index actualBlockSize = std::min<Index>(BlockSize,size - j);
00149 const RhsScalar* actual_b = blockB+j*depth;
00150
00151 if(UpLo==Upper)
00152 gebp_kernel(res+j*resStride, resStride, blockA, actual_b, j, depth, actualBlockSize, alpha,
00153 -1, -1, 0, 0, workspace);
00154
00155
00156 {
00157 Index i = j;
00158 buffer.setZero();
00159
00160 gebp_kernel(buffer.data(), BlockSize, blockA+depth*i, actual_b, actualBlockSize, depth, actualBlockSize, alpha,
00161 -1, -1, 0, 0, workspace);
00162
00163 for(Index j1=0; j1<actualBlockSize; ++j1)
00164 {
00165 ResScalar* r = res + (j+j1)*resStride + i;
00166 for(Index i1=UpLo==Lower ? j1 : 0;
00167 UpLo==Lower ? i1<actualBlockSize : i1<=j1; ++i1)
00168 r[i1] += buffer(i1,j1);
00169 }
00170 }
00171
00172 if(UpLo==Lower)
00173 {
00174 Index i = j+actualBlockSize;
00175 gebp_kernel(res+j*resStride+i, resStride, blockA+depth*i, actual_b, size-i, depth, actualBlockSize, alpha,
00176 -1, -1, 0, 0, workspace);
00177 }
00178 }
00179 }
00180 };
00181
00182 }
00183
00184
00185
00186 template<typename MatrixType, typename ProductType, int UpLo, bool IsOuterProduct>
00187 struct general_product_to_triangular_selector;
00188
00189
00190 template<typename MatrixType, typename ProductType, int UpLo>
00191 struct general_product_to_triangular_selector<MatrixType,ProductType,UpLo,true>
00192 {
00193 static void run(MatrixType& mat, const ProductType& prod, const typename MatrixType::Scalar& alpha)
00194 {
00195 typedef typename MatrixType::Scalar Scalar;
00196 typedef typename MatrixType::Index Index;
00197
00198 typedef typename internal::remove_all<typename ProductType::LhsNested>::type Lhs;
00199 typedef internal::blas_traits<Lhs> LhsBlasTraits;
00200 typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhs;
00201 typedef typename internal::remove_all<ActualLhs>::type _ActualLhs;
00202 typename internal::add_const_on_value_type<ActualLhs>::type actualLhs = LhsBlasTraits::extract(prod.lhs());
00203
00204 typedef typename internal::remove_all<typename ProductType::RhsNested>::type Rhs;
00205 typedef internal::blas_traits<Rhs> RhsBlasTraits;
00206 typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhs;
00207 typedef typename internal::remove_all<ActualRhs>::type _ActualRhs;
00208 typename internal::add_const_on_value_type<ActualRhs>::type actualRhs = RhsBlasTraits::extract(prod.rhs());
00209
00210 Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(prod.lhs().derived()) * RhsBlasTraits::extractScalarFactor(prod.rhs().derived());
00211
00212 enum {
00213 StorageOrder = (internal::traits<MatrixType>::Flags&RowMajorBit) ? RowMajor : ColMajor,
00214 UseLhsDirectly = _ActualLhs::InnerStrideAtCompileTime==1,
00215 UseRhsDirectly = _ActualRhs::InnerStrideAtCompileTime==1
00216 };
00217
00218 internal::gemv_static_vector_if<Scalar,Lhs::SizeAtCompileTime,Lhs::MaxSizeAtCompileTime,!UseLhsDirectly> static_lhs;
00219 ei_declare_aligned_stack_constructed_variable(Scalar, actualLhsPtr, actualLhs.size(),
00220 (UseLhsDirectly ? const_cast<Scalar*>(actualLhs.data()) : static_lhs.data()));
00221 if(!UseLhsDirectly) Map<typename _ActualLhs::PlainObject>(actualLhsPtr, actualLhs.size()) = actualLhs;
00222
00223 internal::gemv_static_vector_if<Scalar,Rhs::SizeAtCompileTime,Rhs::MaxSizeAtCompileTime,!UseRhsDirectly> static_rhs;
00224 ei_declare_aligned_stack_constructed_variable(Scalar, actualRhsPtr, actualRhs.size(),
00225 (UseRhsDirectly ? const_cast<Scalar*>(actualRhs.data()) : static_rhs.data()));
00226 if(!UseRhsDirectly) Map<typename _ActualRhs::PlainObject>(actualRhsPtr, actualRhs.size()) = actualRhs;
00227
00228
00229 selfadjoint_rank1_update<Scalar,Index,StorageOrder,UpLo,
00230 LhsBlasTraits::NeedToConjugate && NumTraits<Scalar>::IsComplex,
00231 RhsBlasTraits::NeedToConjugate && NumTraits<Scalar>::IsComplex>
00232 ::run(actualLhs.size(), mat.data(), mat.outerStride(), actualLhsPtr, actualRhsPtr, actualAlpha);
00233 }
00234 };
00235
00236 template<typename MatrixType, typename ProductType, int UpLo>
00237 struct general_product_to_triangular_selector<MatrixType,ProductType,UpLo,false>
00238 {
00239 static void run(MatrixType& mat, const ProductType& prod, const typename MatrixType::Scalar& alpha)
00240 {
00241 typedef typename MatrixType::Index Index;
00242
00243 typedef typename internal::remove_all<typename ProductType::LhsNested>::type Lhs;
00244 typedef internal::blas_traits<Lhs> LhsBlasTraits;
00245 typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhs;
00246 typedef typename internal::remove_all<ActualLhs>::type _ActualLhs;
00247 typename internal::add_const_on_value_type<ActualLhs>::type actualLhs = LhsBlasTraits::extract(prod.lhs());
00248
00249 typedef typename internal::remove_all<typename ProductType::RhsNested>::type Rhs;
00250 typedef internal::blas_traits<Rhs> RhsBlasTraits;
00251 typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhs;
00252 typedef typename internal::remove_all<ActualRhs>::type _ActualRhs;
00253 typename internal::add_const_on_value_type<ActualRhs>::type actualRhs = RhsBlasTraits::extract(prod.rhs());
00254
00255 typename ProductType::Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(prod.lhs().derived()) * RhsBlasTraits::extractScalarFactor(prod.rhs().derived());
00256
00257 internal::general_matrix_matrix_triangular_product<Index,
00258 typename Lhs::Scalar, _ActualLhs::Flags&RowMajorBit ? RowMajor : ColMajor, LhsBlasTraits::NeedToConjugate,
00259 typename Rhs::Scalar, _ActualRhs::Flags&RowMajorBit ? RowMajor : ColMajor, RhsBlasTraits::NeedToConjugate,
00260 MatrixType::Flags&RowMajorBit ? RowMajor : ColMajor, UpLo>
00261 ::run(mat.cols(), actualLhs.cols(),
00262 &actualLhs.coeffRef(0,0), actualLhs.outerStride(), &actualRhs.coeffRef(0,0), actualRhs.outerStride(),
00263 mat.data(), mat.outerStride(), actualAlpha);
00264 }
00265 };
00266
00267 template<typename MatrixType, unsigned int UpLo>
00268 template<typename ProductDerived, typename _Lhs, typename _Rhs>
00269 TriangularView<MatrixType,UpLo>& TriangularView<MatrixType,UpLo>::assignProduct(const ProductBase<ProductDerived, _Lhs,_Rhs>& prod, const Scalar& alpha)
00270 {
00271 general_product_to_triangular_selector<MatrixType, ProductDerived, UpLo, (_Lhs::ColsAtCompileTime==1) || (_Rhs::RowsAtCompileTime==1)>::run(m_matrix.const_cast_derived(), prod.derived(), alpha);
00272
00273 return *this;
00274 }
00275
00276 }
00277
00278 #endif // EIGEN_GENERAL_MATRIX_MATRIX_TRIANGULAR_H