00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011 #ifndef EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H
00012 #define EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H
00013
00014 namespace Eigen {
00015
00016 namespace internal {
00017
00018 template<typename MatrixType> struct FullPivHouseholderQRMatrixQReturnType;
00019
00020 template<typename MatrixType>
00021 struct traits<FullPivHouseholderQRMatrixQReturnType<MatrixType> >
00022 {
00023 typedef typename MatrixType::PlainObject ReturnType;
00024 };
00025
00026 }
00027
00049 template<typename _MatrixType> class FullPivHouseholderQR
00050 {
00051 public:
00052
00053 typedef _MatrixType MatrixType;
00054 enum {
00055 RowsAtCompileTime = MatrixType::RowsAtCompileTime,
00056 ColsAtCompileTime = MatrixType::ColsAtCompileTime,
00057 Options = MatrixType::Options,
00058 MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
00059 MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
00060 };
00061 typedef typename MatrixType::Scalar Scalar;
00062 typedef typename MatrixType::RealScalar RealScalar;
00063 typedef typename MatrixType::Index Index;
00064 typedef internal::FullPivHouseholderQRMatrixQReturnType<MatrixType> MatrixQReturnType;
00065 typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType;
00066 typedef Matrix<Index, 1, ColsAtCompileTime, RowMajor, 1, MaxColsAtCompileTime> IntRowVectorType;
00067 typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> PermutationType;
00068 typedef typename internal::plain_col_type<MatrixType, Index>::type IntColVectorType;
00069 typedef typename internal::plain_row_type<MatrixType>::type RowVectorType;
00070 typedef typename internal::plain_col_type<MatrixType>::type ColVectorType;
00071
00077 FullPivHouseholderQR()
00078 : m_qr(),
00079 m_hCoeffs(),
00080 m_rows_transpositions(),
00081 m_cols_transpositions(),
00082 m_cols_permutation(),
00083 m_temp(),
00084 m_isInitialized(false),
00085 m_usePrescribedThreshold(false) {}
00086
00093 FullPivHouseholderQR(Index rows, Index cols)
00094 : m_qr(rows, cols),
00095 m_hCoeffs((std::min)(rows,cols)),
00096 m_rows_transpositions(rows),
00097 m_cols_transpositions(cols),
00098 m_cols_permutation(cols),
00099 m_temp((std::min)(rows,cols)),
00100 m_isInitialized(false),
00101 m_usePrescribedThreshold(false) {}
00102
00115 FullPivHouseholderQR(const MatrixType& matrix)
00116 : m_qr(matrix.rows(), matrix.cols()),
00117 m_hCoeffs((std::min)(matrix.rows(), matrix.cols())),
00118 m_rows_transpositions(matrix.rows()),
00119 m_cols_transpositions(matrix.cols()),
00120 m_cols_permutation(matrix.cols()),
00121 m_temp((std::min)(matrix.rows(), matrix.cols())),
00122 m_isInitialized(false),
00123 m_usePrescribedThreshold(false)
00124 {
00125 compute(matrix);
00126 }
00127
00145 template<typename Rhs>
00146 inline const internal::solve_retval<FullPivHouseholderQR, Rhs>
00147 solve(const MatrixBase<Rhs>& b) const
00148 {
00149 eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
00150 return internal::solve_retval<FullPivHouseholderQR, Rhs>(*this, b.derived());
00151 }
00152
00155 MatrixQReturnType matrixQ(void) const;
00156
00159 const MatrixType& matrixQR() const
00160 {
00161 eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
00162 return m_qr;
00163 }
00164
00165 FullPivHouseholderQR& compute(const MatrixType& matrix);
00166
00168 const PermutationType& colsPermutation() const
00169 {
00170 eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
00171 return m_cols_permutation;
00172 }
00173
00175 const IntColVectorType& rowsTranspositions() const
00176 {
00177 eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
00178 return m_rows_transpositions;
00179 }
00180
00194 typename MatrixType::RealScalar absDeterminant() const;
00195
00208 typename MatrixType::RealScalar logAbsDeterminant() const;
00209
00216 inline Index rank() const
00217 {
00218 using std::abs;
00219 eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
00220 RealScalar premultiplied_threshold = abs(m_maxpivot) * threshold();
00221 Index result = 0;
00222 for(Index i = 0; i < m_nonzero_pivots; ++i)
00223 result += (abs(m_qr.coeff(i,i)) > premultiplied_threshold);
00224 return result;
00225 }
00226
00233 inline Index dimensionOfKernel() const
00234 {
00235 eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
00236 return cols() - rank();
00237 }
00238
00246 inline bool isInjective() const
00247 {
00248 eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
00249 return rank() == cols();
00250 }
00251
00259 inline bool isSurjective() const
00260 {
00261 eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
00262 return rank() == rows();
00263 }
00264
00271 inline bool isInvertible() const
00272 {
00273 eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
00274 return isInjective() && isSurjective();
00275 }
00276 inline const
00282 internal::solve_retval<FullPivHouseholderQR, typename MatrixType::IdentityReturnType>
00283 inverse() const
00284 {
00285 eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
00286 return internal::solve_retval<FullPivHouseholderQR,typename MatrixType::IdentityReturnType>
00287 (*this, MatrixType::Identity(m_qr.rows(), m_qr.cols()));
00288 }
00289
00290 inline Index rows() const { return m_qr.rows(); }
00291 inline Index cols() const { return m_qr.cols(); }
00292
00297 const HCoeffsType& hCoeffs() const { return m_hCoeffs; }
00298
00316 FullPivHouseholderQR& setThreshold(const RealScalar& threshold)
00317 {
00318 m_usePrescribedThreshold = true;
00319 m_prescribedThreshold = threshold;
00320 return *this;
00321 }
00322
00331 FullPivHouseholderQR& setThreshold(Default_t)
00332 {
00333 m_usePrescribedThreshold = false;
00334 return *this;
00335 }
00336
00341 RealScalar threshold() const
00342 {
00343 eigen_assert(m_isInitialized || m_usePrescribedThreshold);
00344 return m_usePrescribedThreshold ? m_prescribedThreshold
00345
00346
00347 : NumTraits<Scalar>::epsilon() * m_qr.diagonalSize();
00348 }
00349
00357 inline Index nonzeroPivots() const
00358 {
00359 eigen_assert(m_isInitialized && "LU is not initialized.");
00360 return m_nonzero_pivots;
00361 }
00362
00366 RealScalar maxPivot() const { return m_maxpivot; }
00367
00368 protected:
00369 MatrixType m_qr;
00370 HCoeffsType m_hCoeffs;
00371 IntColVectorType m_rows_transpositions;
00372 IntRowVectorType m_cols_transpositions;
00373 PermutationType m_cols_permutation;
00374 RowVectorType m_temp;
00375 bool m_isInitialized, m_usePrescribedThreshold;
00376 RealScalar m_prescribedThreshold, m_maxpivot;
00377 Index m_nonzero_pivots;
00378 RealScalar m_precision;
00379 Index m_det_pq;
00380 };
00381
00382 template<typename MatrixType>
00383 typename MatrixType::RealScalar FullPivHouseholderQR<MatrixType>::absDeterminant() const
00384 {
00385 using std::abs;
00386 eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
00387 eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
00388 return abs(m_qr.diagonal().prod());
00389 }
00390
00391 template<typename MatrixType>
00392 typename MatrixType::RealScalar FullPivHouseholderQR<MatrixType>::logAbsDeterminant() const
00393 {
00394 eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
00395 eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
00396 return m_qr.diagonal().cwiseAbs().array().log().sum();
00397 }
00398
00405 template<typename MatrixType>
00406 FullPivHouseholderQR<MatrixType>& FullPivHouseholderQR<MatrixType>::compute(const MatrixType& matrix)
00407 {
00408 using std::abs;
00409 Index rows = matrix.rows();
00410 Index cols = matrix.cols();
00411 Index size = (std::min)(rows,cols);
00412
00413 m_qr = matrix;
00414 m_hCoeffs.resize(size);
00415
00416 m_temp.resize(cols);
00417
00418 m_precision = NumTraits<Scalar>::epsilon() * size;
00419
00420 m_rows_transpositions.resize(matrix.rows());
00421 m_cols_transpositions.resize(matrix.cols());
00422 Index number_of_transpositions = 0;
00423
00424 RealScalar biggest(0);
00425
00426 m_nonzero_pivots = size;
00427 m_maxpivot = RealScalar(0);
00428
00429 for (Index k = 0; k < size; ++k)
00430 {
00431 Index row_of_biggest_in_corner, col_of_biggest_in_corner;
00432 RealScalar biggest_in_corner;
00433
00434 biggest_in_corner = m_qr.bottomRightCorner(rows-k, cols-k)
00435 .cwiseAbs()
00436 .maxCoeff(&row_of_biggest_in_corner, &col_of_biggest_in_corner);
00437 row_of_biggest_in_corner += k;
00438 col_of_biggest_in_corner += k;
00439 if(k==0) biggest = biggest_in_corner;
00440
00441
00442 if(internal::isMuchSmallerThan(biggest_in_corner, biggest, m_precision))
00443 {
00444 m_nonzero_pivots = k;
00445 for(Index i = k; i < size; i++)
00446 {
00447 m_rows_transpositions.coeffRef(i) = i;
00448 m_cols_transpositions.coeffRef(i) = i;
00449 m_hCoeffs.coeffRef(i) = Scalar(0);
00450 }
00451 break;
00452 }
00453
00454 m_rows_transpositions.coeffRef(k) = row_of_biggest_in_corner;
00455 m_cols_transpositions.coeffRef(k) = col_of_biggest_in_corner;
00456 if(k != row_of_biggest_in_corner) {
00457 m_qr.row(k).tail(cols-k).swap(m_qr.row(row_of_biggest_in_corner).tail(cols-k));
00458 ++number_of_transpositions;
00459 }
00460 if(k != col_of_biggest_in_corner) {
00461 m_qr.col(k).swap(m_qr.col(col_of_biggest_in_corner));
00462 ++number_of_transpositions;
00463 }
00464
00465 RealScalar beta;
00466 m_qr.col(k).tail(rows-k).makeHouseholderInPlace(m_hCoeffs.coeffRef(k), beta);
00467 m_qr.coeffRef(k,k) = beta;
00468
00469
00470 if(abs(beta) > m_maxpivot) m_maxpivot = abs(beta);
00471
00472 m_qr.bottomRightCorner(rows-k, cols-k-1)
00473 .applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), m_hCoeffs.coeffRef(k), &m_temp.coeffRef(k+1));
00474 }
00475
00476 m_cols_permutation.setIdentity(cols);
00477 for(Index k = 0; k < size; ++k)
00478 m_cols_permutation.applyTranspositionOnTheRight(k, m_cols_transpositions.coeff(k));
00479
00480 m_det_pq = (number_of_transpositions%2) ? -1 : 1;
00481 m_isInitialized = true;
00482
00483 return *this;
00484 }
00485
00486 namespace internal {
00487
00488 template<typename _MatrixType, typename Rhs>
00489 struct solve_retval<FullPivHouseholderQR<_MatrixType>, Rhs>
00490 : solve_retval_base<FullPivHouseholderQR<_MatrixType>, Rhs>
00491 {
00492 EIGEN_MAKE_SOLVE_HELPERS(FullPivHouseholderQR<_MatrixType>,Rhs)
00493
00494 template<typename Dest> void evalTo(Dest& dst) const
00495 {
00496 const Index rows = dec().rows(), cols = dec().cols();
00497 eigen_assert(rhs().rows() == rows);
00498
00499
00500
00501 if(dec().rank()==0)
00502 {
00503 dst.setZero();
00504 return;
00505 }
00506
00507 typename Rhs::PlainObject c(rhs());
00508
00509 Matrix<Scalar,1,Rhs::ColsAtCompileTime> temp(rhs().cols());
00510 for (Index k = 0; k < dec().rank(); ++k)
00511 {
00512 Index remainingSize = rows-k;
00513 c.row(k).swap(c.row(dec().rowsTranspositions().coeff(k)));
00514 c.bottomRightCorner(remainingSize, rhs().cols())
00515 .applyHouseholderOnTheLeft(dec().matrixQR().col(k).tail(remainingSize-1),
00516 dec().hCoeffs().coeff(k), &temp.coeffRef(0));
00517 }
00518
00519 if(!dec().isSurjective())
00520 {
00521
00522 RealScalar biggest_in_upper_part_of_c = c.topRows( dec().rank() ).cwiseAbs().maxCoeff();
00523 RealScalar biggest_in_lower_part_of_c = c.bottomRows(rows-dec().rank()).cwiseAbs().maxCoeff();
00524
00525 const RealScalar m_precision = NumTraits<Scalar>::epsilon() * (std::min)(rows,cols);
00526
00527 if(!internal::isMuchSmallerThan(biggest_in_lower_part_of_c, biggest_in_upper_part_of_c, m_precision))
00528 return;
00529 }
00530 dec().matrixQR()
00531 .topLeftCorner(dec().rank(), dec().rank())
00532 .template triangularView<Upper>()
00533 .solveInPlace(c.topRows(dec().rank()));
00534
00535 for(Index i = 0; i < dec().rank(); ++i) dst.row(dec().colsPermutation().indices().coeff(i)) = c.row(i);
00536 for(Index i = dec().rank(); i < cols; ++i) dst.row(dec().colsPermutation().indices().coeff(i)).setZero();
00537 }
00538 };
00539
00546 template<typename MatrixType> struct FullPivHouseholderQRMatrixQReturnType
00547 : public ReturnByValue<FullPivHouseholderQRMatrixQReturnType<MatrixType> >
00548 {
00549 public:
00550 typedef typename MatrixType::Index Index;
00551 typedef typename internal::plain_col_type<MatrixType, Index>::type IntColVectorType;
00552 typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType;
00553 typedef Matrix<typename MatrixType::Scalar, 1, MatrixType::RowsAtCompileTime, RowMajor, 1,
00554 MatrixType::MaxRowsAtCompileTime> WorkVectorType;
00555
00556 FullPivHouseholderQRMatrixQReturnType(const MatrixType& qr,
00557 const HCoeffsType& hCoeffs,
00558 const IntColVectorType& rowsTranspositions)
00559 : m_qr(qr),
00560 m_hCoeffs(hCoeffs),
00561 m_rowsTranspositions(rowsTranspositions)
00562 {}
00563
00564 template <typename ResultType>
00565 void evalTo(ResultType& result) const
00566 {
00567 const Index rows = m_qr.rows();
00568 WorkVectorType workspace(rows);
00569 evalTo(result, workspace);
00570 }
00571
00572 template <typename ResultType>
00573 void evalTo(ResultType& result, WorkVectorType& workspace) const
00574 {
00575 using numext::conj;
00576
00577
00578
00579 const Index rows = m_qr.rows();
00580 const Index cols = m_qr.cols();
00581 const Index size = (std::min)(rows, cols);
00582 workspace.resize(rows);
00583 result.setIdentity(rows, rows);
00584 for (Index k = size-1; k >= 0; k--)
00585 {
00586 result.block(k, k, rows-k, rows-k)
00587 .applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), conj(m_hCoeffs.coeff(k)), &workspace.coeffRef(k));
00588 result.row(k).swap(result.row(m_rowsTranspositions.coeff(k)));
00589 }
00590 }
00591
00592 Index rows() const { return m_qr.rows(); }
00593 Index cols() const { return m_qr.rows(); }
00594
00595 protected:
00596 typename MatrixType::Nested m_qr;
00597 typename HCoeffsType::Nested m_hCoeffs;
00598 typename IntColVectorType::Nested m_rowsTranspositions;
00599 };
00600
00601 }
00602
00603 template<typename MatrixType>
00604 inline typename FullPivHouseholderQR<MatrixType>::MatrixQReturnType FullPivHouseholderQR<MatrixType>::matrixQ() const
00605 {
00606 eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
00607 return MatrixQReturnType(m_qr, m_hCoeffs, m_rows_transpositions);
00608 }
00609
00614 template<typename Derived>
00615 const FullPivHouseholderQR<typename MatrixBase<Derived>::PlainObject>
00616 MatrixBase<Derived>::fullPivHouseholderQr() const
00617 {
00618 return FullPivHouseholderQR<PlainObject>(eval());
00619 }
00620
00621 }
00622
00623 #endif // EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H