00001
00002
00003
00004
00005
00006
00007
00008
00009
00010 #ifndef EIGEN_DGMRES_H
00011 #define EIGEN_DGMRES_H
00012
00013 #include <Eigen/Eigenvalues>
00014
00015 namespace Eigen {
00016
00017 template< typename _MatrixType,
00018 typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> >
00019 class DGMRES;
00020
00021 namespace internal {
00022
00023 template< typename _MatrixType, typename _Preconditioner>
00024 struct traits<DGMRES<_MatrixType,_Preconditioner> >
00025 {
00026 typedef _MatrixType MatrixType;
00027 typedef _Preconditioner Preconditioner;
00028 };
00029
00038 template <typename VectorType, typename IndexType>
00039 void sortWithPermutation (VectorType& vec, IndexType& perm, typename IndexType::Scalar& ncut)
00040 {
00041 eigen_assert(vec.size() == perm.size());
00042 typedef typename IndexType::Scalar Index;
00043 typedef typename VectorType::Scalar Scalar;
00044 bool flag;
00045 for (Index k = 0; k < ncut; k++)
00046 {
00047 flag = false;
00048 for (Index j = 0; j < vec.size()-1; j++)
00049 {
00050 if ( vec(perm(j)) < vec(perm(j+1)) )
00051 {
00052 std::swap(perm(j),perm(j+1));
00053 flag = true;
00054 }
00055 if (!flag) break;
00056 }
00057 }
00058 }
00059
00060 }
00100 template< typename _MatrixType, typename _Preconditioner>
00101 class DGMRES : public IterativeSolverBase<DGMRES<_MatrixType,_Preconditioner> >
00102 {
00103 typedef IterativeSolverBase<DGMRES> Base;
00104 using Base::mp_matrix;
00105 using Base::m_error;
00106 using Base::m_iterations;
00107 using Base::m_info;
00108 using Base::m_isInitialized;
00109 using Base::m_tolerance;
00110 public:
00111 typedef _MatrixType MatrixType;
00112 typedef typename MatrixType::Scalar Scalar;
00113 typedef typename MatrixType::Index Index;
00114 typedef typename MatrixType::RealScalar RealScalar;
00115 typedef _Preconditioner Preconditioner;
00116 typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
00117 typedef Matrix<RealScalar,Dynamic,Dynamic> DenseRealMatrix;
00118 typedef Matrix<Scalar,Dynamic,1> DenseVector;
00119 typedef Matrix<RealScalar,Dynamic,1> DenseRealVector;
00120 typedef Matrix<std::complex<RealScalar>, Dynamic, 1> ComplexVector;
00121
00122
00124 DGMRES() : Base(),m_restart(30),m_neig(0),m_r(0),m_maxNeig(5),m_isDeflAllocated(false),m_isDeflInitialized(false) {}
00125
00136 DGMRES(const MatrixType& A) : Base(A),m_restart(30),m_neig(0),m_r(0),m_maxNeig(5),m_isDeflAllocated(false),m_isDeflInitialized(false)
00137 {}
00138
00139 ~DGMRES() {}
00140
00146 template<typename Rhs,typename Guess>
00147 inline const internal::solve_retval_with_guess<DGMRES, Rhs, Guess>
00148 solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const
00149 {
00150 eigen_assert(m_isInitialized && "DGMRES is not initialized.");
00151 eigen_assert(Base::rows()==b.rows()
00152 && "DGMRES::solve(): invalid number of rows of the right hand side matrix b");
00153 return internal::solve_retval_with_guess
00154 <DGMRES, Rhs, Guess>(*this, b.derived(), x0);
00155 }
00156
00158 template<typename Rhs,typename Dest>
00159 void _solveWithGuess(const Rhs& b, Dest& x) const
00160 {
00161 bool failed = false;
00162 for(int j=0; j<b.cols(); ++j)
00163 {
00164 m_iterations = Base::maxIterations();
00165 m_error = Base::m_tolerance;
00166
00167 typename Dest::ColXpr xj(x,j);
00168 dgmres(*mp_matrix, b.col(j), xj, Base::m_preconditioner);
00169 }
00170 m_info = failed ? NumericalIssue
00171 : m_error <= Base::m_tolerance ? Success
00172 : NoConvergence;
00173 m_isInitialized = true;
00174 }
00175
00177 template<typename Rhs,typename Dest>
00178 void _solve(const Rhs& b, Dest& x) const
00179 {
00180 x = b;
00181 _solveWithGuess(b,x);
00182 }
00186 int restart() { return m_restart; }
00187
00191 void set_restart(const int restart) { m_restart=restart; }
00192
00196 void setEigenv(const int neig)
00197 {
00198 m_neig = neig;
00199 if (neig+1 > m_maxNeig) m_maxNeig = neig+1;
00200 }
00201
00205 int deflSize() {return m_r; }
00206
00210 void setMaxEigenv(const int maxNeig) { m_maxNeig = maxNeig; }
00211
00212 protected:
00213
00214 template<typename Rhs, typename Dest>
00215 void dgmres(const MatrixType& mat,const Rhs& rhs, Dest& x, const Preconditioner& precond) const;
00216
00217 template<typename Dest>
00218 int dgmresCycle(const MatrixType& mat, const Preconditioner& precond, Dest& x, DenseVector& r0, RealScalar& beta, const RealScalar& normRhs, int& nbIts) const;
00219
00220 int dgmresComputeDeflationData(const MatrixType& mat, const Preconditioner& precond, const Index& it, Index& neig) const;
00221
00222 template<typename RhsType, typename DestType>
00223 int dgmresApplyDeflation(const RhsType& In, DestType& Out) const;
00224 ComplexVector schurValues(const ComplexSchur<DenseMatrix>& schurofH) const;
00225 ComplexVector schurValues(const RealSchur<DenseMatrix>& schurofH) const;
00226
00227 void dgmresInitDeflation(Index& rows) const;
00228 mutable DenseMatrix m_V;
00229 mutable DenseMatrix m_H;
00230 mutable DenseMatrix m_Hes;
00231 mutable Index m_restart;
00232 mutable DenseMatrix m_U;
00233 mutable DenseMatrix m_MU;
00234 mutable DenseMatrix m_T;
00235 mutable PartialPivLU<DenseMatrix> m_luT;
00236 mutable int m_neig;
00237 mutable int m_r;
00238 mutable int m_maxNeig;
00239 mutable RealScalar m_lambdaN;
00240 mutable bool m_isDeflAllocated;
00241 mutable bool m_isDeflInitialized;
00242
00243
00244 mutable RealScalar m_smv;
00245 mutable bool m_force;
00246
00247 };
00254 template< typename _MatrixType, typename _Preconditioner>
00255 template<typename Rhs, typename Dest>
00256 void DGMRES<_MatrixType, _Preconditioner>::dgmres(const MatrixType& mat,const Rhs& rhs, Dest& x,
00257 const Preconditioner& precond) const
00258 {
00259
00260 int n = mat.rows();
00261 DenseVector r0(n);
00262 int nbIts = 0;
00263 m_H.resize(m_restart+1, m_restart);
00264 m_Hes.resize(m_restart, m_restart);
00265 m_V.resize(n,m_restart+1);
00266
00267 x = precond.solve(x);
00268 r0 = rhs - mat * x;
00269 RealScalar beta = r0.norm();
00270 RealScalar normRhs = rhs.norm();
00271 m_error = beta/normRhs;
00272 if(m_error < m_tolerance)
00273 m_info = Success;
00274 else
00275 m_info = NoConvergence;
00276
00277
00278 while (nbIts < m_iterations && m_info == NoConvergence)
00279 {
00280 dgmresCycle(mat, precond, x, r0, beta, normRhs, nbIts);
00281
00282
00283 if (nbIts < m_iterations && m_info == NoConvergence)
00284 r0 = rhs - mat * x;
00285 }
00286 }
00287
00298 template< typename _MatrixType, typename _Preconditioner>
00299 template<typename Dest>
00300 int DGMRES<_MatrixType, _Preconditioner>::dgmresCycle(const MatrixType& mat, const Preconditioner& precond, Dest& x, DenseVector& r0, RealScalar& beta, const RealScalar& normRhs, int& nbIts) const
00301 {
00302
00303 DenseVector g(m_restart+1);
00304 g.setZero();
00305 g(0) = Scalar(beta);
00306 m_V.col(0) = r0/beta;
00307 m_info = NoConvergence;
00308 std::vector<JacobiRotation<Scalar> >gr(m_restart);
00309 int it = 0;
00310 int n = mat.rows();
00311 DenseVector tv1(n), tv2(n);
00312 while (m_info == NoConvergence && it < m_restart && nbIts < m_iterations)
00313 {
00314
00315 if (m_isDeflInitialized )
00316 {
00317 dgmresApplyDeflation(m_V.col(it), tv1);
00318 tv2 = precond.solve(tv1);
00319 }
00320 else
00321 {
00322 tv2 = precond.solve(m_V.col(it));
00323 }
00324 tv1 = mat * tv2;
00325
00326
00327 Scalar coef;
00328 for (int i = 0; i <= it; ++i)
00329 {
00330 coef = tv1.dot(m_V.col(i));
00331 tv1 = tv1 - coef * m_V.col(i);
00332 m_H(i,it) = coef;
00333 m_Hes(i,it) = coef;
00334 }
00335
00336 coef = tv1.norm();
00337 m_V.col(it+1) = tv1/coef;
00338 m_H(it+1, it) = coef;
00339
00340
00341
00342
00343
00344 for (int i = 1; i <= it; ++i)
00345 {
00346 m_H.col(it).applyOnTheLeft(i-1,i,gr[i-1].adjoint());
00347 }
00348
00349 gr[it].makeGivens(m_H(it, it), m_H(it+1,it));
00350
00351 m_H.col(it).applyOnTheLeft(it,it+1,gr[it].adjoint());
00352 g.applyOnTheLeft(it,it+1, gr[it].adjoint());
00353
00354 beta = std::abs(g(it+1));
00355 m_error = beta/normRhs;
00356 std::cerr << nbIts << " Relative Residual Norm " << m_error << std::endl;
00357 it++; nbIts++;
00358
00359 if (m_error < m_tolerance)
00360 {
00361
00362 m_info = Success;
00363 break;
00364 }
00365 }
00366
00367
00368
00369
00370 DenseVector nrs(m_restart);
00371 nrs = m_H.topLeftCorner(it,it).template triangularView<Upper>().solve(g.head(it));
00372
00373
00374 if (m_isDeflInitialized)
00375 {
00376 tv1 = m_V.leftCols(it) * nrs;
00377 dgmresApplyDeflation(tv1, tv2);
00378 x = x + precond.solve(tv2);
00379 }
00380 else
00381 x = x + precond.solve(m_V.leftCols(it) * nrs);
00382
00383
00384 if(nbIts < m_iterations && m_info == NoConvergence && m_neig > 0 && (m_r+m_neig) < m_maxNeig)
00385 dgmresComputeDeflationData(mat, precond, it, m_neig);
00386 return 0;
00387
00388 }
00389
00390
00391 template< typename _MatrixType, typename _Preconditioner>
00392 void DGMRES<_MatrixType, _Preconditioner>::dgmresInitDeflation(Index& rows) const
00393 {
00394 m_U.resize(rows, m_maxNeig);
00395 m_MU.resize(rows, m_maxNeig);
00396 m_T.resize(m_maxNeig, m_maxNeig);
00397 m_lambdaN = 0.0;
00398 m_isDeflAllocated = true;
00399 }
00400
00401 template< typename _MatrixType, typename _Preconditioner>
00402 inline typename DGMRES<_MatrixType, _Preconditioner>::ComplexVector DGMRES<_MatrixType, _Preconditioner>::schurValues(const ComplexSchur<DenseMatrix>& schurofH) const
00403 {
00404 return schurofH.matrixT().diagonal();
00405 }
00406
00407 template< typename _MatrixType, typename _Preconditioner>
00408 inline typename DGMRES<_MatrixType, _Preconditioner>::ComplexVector DGMRES<_MatrixType, _Preconditioner>::schurValues(const RealSchur<DenseMatrix>& schurofH) const
00409 {
00410 typedef typename MatrixType::Index Index;
00411 const DenseMatrix& T = schurofH.matrixT();
00412 Index it = T.rows();
00413 ComplexVector eig(it);
00414 Index j = 0;
00415 while (j < it-1)
00416 {
00417 if (T(j+1,j) ==Scalar(0))
00418 {
00419 eig(j) = std::complex<RealScalar>(T(j,j),RealScalar(0));
00420 j++;
00421 }
00422 else
00423 {
00424 eig(j) = std::complex<RealScalar>(T(j,j),T(j+1,j));
00425 eig(j+1) = std::complex<RealScalar>(T(j,j+1),T(j+1,j+1));
00426 j++;
00427 }
00428 }
00429 if (j < it-1) eig(j) = std::complex<RealScalar>(T(j,j),RealScalar(0));
00430 return eig;
00431 }
00432
00433 template< typename _MatrixType, typename _Preconditioner>
00434 int DGMRES<_MatrixType, _Preconditioner>::dgmresComputeDeflationData(const MatrixType& mat, const Preconditioner& precond, const Index& it, Index& neig) const
00435 {
00436
00437 typename internal::conditional<NumTraits<Scalar>::IsComplex, ComplexSchur<DenseMatrix>, RealSchur<DenseMatrix> >::type schurofH;
00438 bool computeU = true;
00439 DenseMatrix matrixQ(it,it);
00440 matrixQ.setIdentity();
00441 schurofH.computeFromHessenberg(m_Hes.topLeftCorner(it,it), matrixQ, computeU);
00442
00443 ComplexVector eig(it);
00444 Matrix<Index,Dynamic,1>perm(it);
00445 eig = this->schurValues(schurofH);
00446
00447
00448 DenseRealVector modulEig(it);
00449 for (int j=0; j<it; ++j) modulEig(j) = std::abs(eig(j));
00450 perm.setLinSpaced(it,0,it-1);
00451 internal::sortWithPermutation(modulEig, perm, neig);
00452
00453 if (!m_lambdaN)
00454 {
00455 m_lambdaN = (std::max)(modulEig.maxCoeff(), m_lambdaN);
00456 }
00457
00458 int nbrEig = 0;
00459 while (nbrEig < neig)
00460 {
00461 if(eig(perm(it-nbrEig-1)).imag() == RealScalar(0)) nbrEig++;
00462 else nbrEig += 2;
00463 }
00464
00465 DenseMatrix Sr(it, nbrEig);
00466 Sr.setZero();
00467 for (int j = 0; j < nbrEig; j++)
00468 {
00469 Sr.col(j) = schurofH.matrixU().col(perm(it-j-1));
00470 }
00471
00472
00473 DenseMatrix X;
00474 X = m_V.leftCols(it) * Sr;
00475 if (m_r)
00476 {
00477
00478 for (int j = 0; j < nbrEig; j++)
00479 for (int k =0; k < m_r; k++)
00480 X.col(j) = X.col(j) - (m_U.col(k).dot(X.col(j)))*m_U.col(k);
00481 }
00482
00483
00484 Index m = m_V.rows();
00485 if (!m_isDeflAllocated)
00486 dgmresInitDeflation(m);
00487 DenseMatrix MX(m, nbrEig);
00488 DenseVector tv1(m);
00489 for (int j = 0; j < nbrEig; j++)
00490 {
00491 tv1 = mat * X.col(j);
00492 MX.col(j) = precond.solve(tv1);
00493 }
00494
00495
00496 m_T.block(m_r, m_r, nbrEig, nbrEig) = X.transpose() * MX;
00497 if(m_r)
00498 {
00499 m_T.block(0, m_r, m_r, nbrEig) = m_U.leftCols(m_r).transpose() * MX;
00500 m_T.block(m_r, 0, nbrEig, m_r) = X.transpose() * m_MU.leftCols(m_r);
00501 }
00502
00503
00504 for (int j = 0; j < nbrEig; j++) m_U.col(m_r+j) = X.col(j);
00505 for (int j = 0; j < nbrEig; j++) m_MU.col(m_r+j) = MX.col(j);
00506
00507 m_r += nbrEig;
00508
00509
00510 m_luT.compute(m_T.topLeftCorner(m_r, m_r));
00511
00512
00513 m_isDeflInitialized = true;
00514 return 0;
00515 }
00516 template<typename _MatrixType, typename _Preconditioner>
00517 template<typename RhsType, typename DestType>
00518 int DGMRES<_MatrixType, _Preconditioner>::dgmresApplyDeflation(const RhsType &x, DestType &y) const
00519 {
00520 DenseVector x1 = m_U.leftCols(m_r).transpose() * x;
00521 y = x + m_U.leftCols(m_r) * ( m_lambdaN * m_luT.solve(x1) - x1);
00522 return 0;
00523 }
00524
00525 namespace internal {
00526
00527 template<typename _MatrixType, typename _Preconditioner, typename Rhs>
00528 struct solve_retval<DGMRES<_MatrixType, _Preconditioner>, Rhs>
00529 : solve_retval_base<DGMRES<_MatrixType, _Preconditioner>, Rhs>
00530 {
00531 typedef DGMRES<_MatrixType, _Preconditioner> Dec;
00532 EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
00533
00534 template<typename Dest> void evalTo(Dest& dst) const
00535 {
00536 dec()._solve(rhs(),dst);
00537 }
00538 };
00539 }
00540
00541 }
00542 #endif