00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019 #ifndef EIGEN_MEMORY_H
00020 #define EIGEN_MEMORY_H
00021
00022 #ifndef EIGEN_MALLOC_ALREADY_ALIGNED
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033 #if defined(__GLIBC__) && ((__GLIBC__>=2 && __GLIBC_MINOR__ >= 8) || __GLIBC__>2) \
00034 && defined(__LP64__) && ! defined( __SANITIZE_ADDRESS__ )
00035 #define EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED 1
00036 #else
00037 #define EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED 0
00038 #endif
00039
00040
00041
00042
00043
00044 #if defined(__FreeBSD__) && !defined(__arm__) && !defined(__mips__)
00045 #define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 1
00046 #else
00047 #define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 0
00048 #endif
00049
00050 #if defined(__APPLE__) \
00051 || defined(_WIN64) \
00052 || EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED \
00053 || EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED
00054 #define EIGEN_MALLOC_ALREADY_ALIGNED 1
00055 #else
00056 #define EIGEN_MALLOC_ALREADY_ALIGNED 0
00057 #endif
00058
00059 #endif
00060
00061
00062
00063
00064 #if defined(__unix__) || defined(__unix)
00065 #include <unistd.h>
00066 #if ((defined __QNXNTO__) || (defined _GNU_SOURCE) || ((defined _XOPEN_SOURCE) && (_XOPEN_SOURCE >= 600))) && (defined _POSIX_ADVISORY_INFO) && (_POSIX_ADVISORY_INFO > 0)
00067 #define EIGEN_HAS_POSIX_MEMALIGN 1
00068 #endif
00069 #endif
00070
00071 #ifndef EIGEN_HAS_POSIX_MEMALIGN
00072 #define EIGEN_HAS_POSIX_MEMALIGN 0
00073 #endif
00074
00075 #ifdef EIGEN_VECTORIZE_SSE
00076 #define EIGEN_HAS_MM_MALLOC 1
00077 #else
00078 #define EIGEN_HAS_MM_MALLOC 0
00079 #endif
00080
00081 namespace Eigen {
00082
00083 namespace internal {
00084
00085 inline void throw_std_bad_alloc()
00086 {
00087 #ifdef EIGEN_EXCEPTIONS
00088 throw std::bad_alloc();
00089 #else
00090 std::size_t huge = -1;
00091 new int[huge];
00092 #endif
00093 }
00094
00095
00096
00097
00098
00099
00100
00104 inline void* handmade_aligned_malloc(std::size_t size)
00105 {
00106 void *original = std::malloc(size+16);
00107 if (original == 0) return 0;
00108 void *aligned = reinterpret_cast<void*>((reinterpret_cast<std::size_t>(original) & ~(std::size_t(15))) + 16);
00109 *(reinterpret_cast<void**>(aligned) - 1) = original;
00110 return aligned;
00111 }
00112
00114 inline void handmade_aligned_free(void *ptr)
00115 {
00116 if (ptr) std::free(*(reinterpret_cast<void**>(ptr) - 1));
00117 }
00118
00124 inline void* handmade_aligned_realloc(void* ptr, std::size_t size, std::size_t = 0)
00125 {
00126 if (ptr == 0) return handmade_aligned_malloc(size);
00127 void *original = *(reinterpret_cast<void**>(ptr) - 1);
00128 std::ptrdiff_t previous_offset = static_cast<char *>(ptr)-static_cast<char *>(original);
00129 original = std::realloc(original,size+16);
00130 if (original == 0) return 0;
00131 void *aligned = reinterpret_cast<void*>((reinterpret_cast<std::size_t>(original) & ~(std::size_t(15))) + 16);
00132 void *previous_aligned = static_cast<char *>(original)+previous_offset;
00133 if(aligned!=previous_aligned)
00134 std::memmove(aligned, previous_aligned, size);
00135
00136 *(reinterpret_cast<void**>(aligned) - 1) = original;
00137 return aligned;
00138 }
00139
00140
00141
00142
00143
00144 void* aligned_malloc(std::size_t size);
00145 void aligned_free(void *ptr);
00146
00152 inline void* generic_aligned_realloc(void* ptr, size_t size, size_t old_size)
00153 {
00154 if (ptr==0)
00155 return aligned_malloc(size);
00156
00157 if (size==0)
00158 {
00159 aligned_free(ptr);
00160 return 0;
00161 }
00162
00163 void* newptr = aligned_malloc(size);
00164 if (newptr == 0)
00165 {
00166 #ifdef EIGEN_HAS_ERRNO
00167 errno = ENOMEM;
00168 #endif
00169 return 0;
00170 }
00171
00172 if (ptr != 0)
00173 {
00174 std::memcpy(newptr, ptr, (std::min)(size,old_size));
00175 aligned_free(ptr);
00176 }
00177
00178 return newptr;
00179 }
00180
00181
00182
00183
00184
00185 #ifdef EIGEN_NO_MALLOC
00186 inline void check_that_malloc_is_allowed()
00187 {
00188 eigen_assert(false && "heap allocation is forbidden (EIGEN_NO_MALLOC is defined)");
00189 }
00190 #elif defined EIGEN_RUNTIME_NO_MALLOC
00191 inline bool is_malloc_allowed_impl(bool update, bool new_value = false)
00192 {
00193 static bool value = true;
00194 if (update == 1)
00195 value = new_value;
00196 return value;
00197 }
00198 inline bool is_malloc_allowed() { return is_malloc_allowed_impl(false); }
00199 inline bool set_is_malloc_allowed(bool new_value) { return is_malloc_allowed_impl(true, new_value); }
00200 inline void check_that_malloc_is_allowed()
00201 {
00202 eigen_assert(is_malloc_allowed() && "heap allocation is forbidden (EIGEN_RUNTIME_NO_MALLOC is defined and g_is_malloc_allowed is false)");
00203 }
00204 #else
00205 inline void check_that_malloc_is_allowed()
00206 {}
00207 #endif
00208
00212 inline void* aligned_malloc(size_t size)
00213 {
00214 check_that_malloc_is_allowed();
00215
00216 void *result;
00217 #if !EIGEN_ALIGN
00218 result = std::malloc(size);
00219 #elif EIGEN_MALLOC_ALREADY_ALIGNED
00220 result = std::malloc(size);
00221 #elif EIGEN_HAS_POSIX_MEMALIGN
00222 if(posix_memalign(&result, 16, size)) result = 0;
00223 #elif EIGEN_HAS_MM_MALLOC
00224 result = _mm_malloc(size, 16);
00225 #elif defined(_MSC_VER) && (!defined(_WIN32_WCE))
00226 result = _aligned_malloc(size, 16);
00227 #else
00228 result = handmade_aligned_malloc(size);
00229 #endif
00230
00231 if(!result && size)
00232 throw_std_bad_alloc();
00233
00234 return result;
00235 }
00236
00238 inline void aligned_free(void *ptr)
00239 {
00240 #if !EIGEN_ALIGN
00241 std::free(ptr);
00242 #elif EIGEN_MALLOC_ALREADY_ALIGNED
00243 std::free(ptr);
00244 #elif EIGEN_HAS_POSIX_MEMALIGN
00245 std::free(ptr);
00246 #elif EIGEN_HAS_MM_MALLOC
00247 _mm_free(ptr);
00248 #elif defined(_MSC_VER) && (!defined(_WIN32_WCE))
00249 _aligned_free(ptr);
00250 #else
00251 handmade_aligned_free(ptr);
00252 #endif
00253 }
00254
00260 inline void* aligned_realloc(void *ptr, size_t new_size, size_t old_size)
00261 {
00262 EIGEN_UNUSED_VARIABLE(old_size);
00263
00264 void *result;
00265 #if !EIGEN_ALIGN
00266 result = std::realloc(ptr,new_size);
00267 #elif EIGEN_MALLOC_ALREADY_ALIGNED
00268 result = std::realloc(ptr,new_size);
00269 #elif EIGEN_HAS_POSIX_MEMALIGN
00270 result = generic_aligned_realloc(ptr,new_size,old_size);
00271 #elif EIGEN_HAS_MM_MALLOC
00272
00273
00274
00275 #if defined(_MSC_VER) && defined(_mm_free)
00276 result = _aligned_realloc(ptr,new_size,16);
00277 #else
00278 result = generic_aligned_realloc(ptr,new_size,old_size);
00279 #endif
00280 #elif defined(_MSC_VER)
00281 result = _aligned_realloc(ptr,new_size,16);
00282 #else
00283 result = handmade_aligned_realloc(ptr,new_size,old_size);
00284 #endif
00285
00286 if (!result && new_size)
00287 throw_std_bad_alloc();
00288
00289 return result;
00290 }
00291
00292
00293
00294
00295
00299 template<bool Align> inline void* conditional_aligned_malloc(size_t size)
00300 {
00301 return aligned_malloc(size);
00302 }
00303
00304 template<> inline void* conditional_aligned_malloc<false>(size_t size)
00305 {
00306 check_that_malloc_is_allowed();
00307
00308 void *result = std::malloc(size);
00309 if(!result && size)
00310 throw_std_bad_alloc();
00311 return result;
00312 }
00313
00315 template<bool Align> inline void conditional_aligned_free(void *ptr)
00316 {
00317 aligned_free(ptr);
00318 }
00319
00320 template<> inline void conditional_aligned_free<false>(void *ptr)
00321 {
00322 std::free(ptr);
00323 }
00324
00325 template<bool Align> inline void* conditional_aligned_realloc(void* ptr, size_t new_size, size_t old_size)
00326 {
00327 return aligned_realloc(ptr, new_size, old_size);
00328 }
00329
00330 template<> inline void* conditional_aligned_realloc<false>(void* ptr, size_t new_size, size_t)
00331 {
00332 return std::realloc(ptr, new_size);
00333 }
00334
00335
00336
00337
00338
00342 template<typename T> inline T* construct_elements_of_array(T *ptr, size_t size)
00343 {
00344 for (size_t i=0; i < size; ++i) ::new (ptr + i) T;
00345 return ptr;
00346 }
00347
00351 template<typename T> inline void destruct_elements_of_array(T *ptr, size_t size)
00352 {
00353
00354 if(ptr)
00355 while(size) ptr[--size].~T();
00356 }
00357
00358
00359
00360
00361
00362 template<typename T>
00363 EIGEN_ALWAYS_INLINE void check_size_for_overflow(size_t size)
00364 {
00365 if(size > size_t(-1) / sizeof(T))
00366 throw_std_bad_alloc();
00367 }
00368
00373 template<typename T> inline T* aligned_new(size_t size)
00374 {
00375 check_size_for_overflow<T>(size);
00376 T *result = reinterpret_cast<T*>(aligned_malloc(sizeof(T)*size));
00377 return construct_elements_of_array(result, size);
00378 }
00379
00380 template<typename T, bool Align> inline T* conditional_aligned_new(size_t size)
00381 {
00382 check_size_for_overflow<T>(size);
00383 T *result = reinterpret_cast<T*>(conditional_aligned_malloc<Align>(sizeof(T)*size));
00384 return construct_elements_of_array(result, size);
00385 }
00386
00390 template<typename T> inline void aligned_delete(T *ptr, size_t size)
00391 {
00392 destruct_elements_of_array<T>(ptr, size);
00393 aligned_free(ptr);
00394 }
00395
00399 template<typename T, bool Align> inline void conditional_aligned_delete(T *ptr, size_t size)
00400 {
00401 destruct_elements_of_array<T>(ptr, size);
00402 conditional_aligned_free<Align>(ptr);
00403 }
00404
00405 template<typename T, bool Align> inline T* conditional_aligned_realloc_new(T* pts, size_t new_size, size_t old_size)
00406 {
00407 check_size_for_overflow<T>(new_size);
00408 check_size_for_overflow<T>(old_size);
00409 if(new_size < old_size)
00410 destruct_elements_of_array(pts+new_size, old_size-new_size);
00411 T *result = reinterpret_cast<T*>(conditional_aligned_realloc<Align>(reinterpret_cast<void*>(pts), sizeof(T)*new_size, sizeof(T)*old_size));
00412 if(new_size > old_size)
00413 construct_elements_of_array(result+old_size, new_size-old_size);
00414 return result;
00415 }
00416
00417
00418 template<typename T, bool Align> inline T* conditional_aligned_new_auto(size_t size)
00419 {
00420 check_size_for_overflow<T>(size);
00421 T *result = reinterpret_cast<T*>(conditional_aligned_malloc<Align>(sizeof(T)*size));
00422 if(NumTraits<T>::RequireInitialization)
00423 construct_elements_of_array(result, size);
00424 return result;
00425 }
00426
00427 template<typename T, bool Align> inline T* conditional_aligned_realloc_new_auto(T* pts, size_t new_size, size_t old_size)
00428 {
00429 check_size_for_overflow<T>(new_size);
00430 check_size_for_overflow<T>(old_size);
00431 if(NumTraits<T>::RequireInitialization && (new_size < old_size))
00432 destruct_elements_of_array(pts+new_size, old_size-new_size);
00433 T *result = reinterpret_cast<T*>(conditional_aligned_realloc<Align>(reinterpret_cast<void*>(pts), sizeof(T)*new_size, sizeof(T)*old_size));
00434 if(NumTraits<T>::RequireInitialization && (new_size > old_size))
00435 construct_elements_of_array(result+old_size, new_size-old_size);
00436 return result;
00437 }
00438
00439 template<typename T, bool Align> inline void conditional_aligned_delete_auto(T *ptr, size_t size)
00440 {
00441 if(NumTraits<T>::RequireInitialization)
00442 destruct_elements_of_array<T>(ptr, size);
00443 conditional_aligned_free<Align>(ptr);
00444 }
00445
00446
00447
00464 template<typename Scalar, typename Index>
00465 static inline Index first_aligned(const Scalar* array, Index size)
00466 {
00467 enum { PacketSize = packet_traits<Scalar>::size,
00468 PacketAlignedMask = PacketSize-1
00469 };
00470
00471 if(PacketSize==1)
00472 {
00473
00474
00475 return 0;
00476 }
00477 else if(size_t(array) & (sizeof(Scalar)-1))
00478 {
00479
00480
00481 return size;
00482 }
00483 else
00484 {
00485 return std::min<Index>( (PacketSize - (Index((size_t(array)/sizeof(Scalar))) & PacketAlignedMask))
00486 & PacketAlignedMask, size);
00487 }
00488 }
00489
00492 template<typename Index>
00493 inline static Index first_multiple(Index size, Index base)
00494 {
00495 return ((size+base-1)/base)*base;
00496 }
00497
00498
00499
00500 template<typename T, bool UseMemcpy> struct smart_copy_helper;
00501
00502 template<typename T> void smart_copy(const T* start, const T* end, T* target)
00503 {
00504 smart_copy_helper<T,!NumTraits<T>::RequireInitialization>::run(start, end, target);
00505 }
00506
00507 template<typename T> struct smart_copy_helper<T,true> {
00508 static inline void run(const T* start, const T* end, T* target)
00509 { memcpy(target, start, std::ptrdiff_t(end)-std::ptrdiff_t(start)); }
00510 };
00511
00512 template<typename T> struct smart_copy_helper<T,false> {
00513 static inline void run(const T* start, const T* end, T* target)
00514 { std::copy(start, end, target); }
00515 };
00516
00517
00518
00519
00520
00521
00522
00523
00524 #ifndef EIGEN_ALLOCA
00525 #if (defined __linux__)
00526 #define EIGEN_ALLOCA alloca
00527 #elif defined(_MSC_VER)
00528 #define EIGEN_ALLOCA _alloca
00529 #endif
00530 #endif
00531
00532
00533
00534 template<typename T> class aligned_stack_memory_handler
00535 {
00536 public:
00537
00538
00539
00540
00541
00542
00543 aligned_stack_memory_handler(T* ptr, size_t size, bool dealloc)
00544 : m_ptr(ptr), m_size(size), m_deallocate(dealloc)
00545 {
00546 if(NumTraits<T>::RequireInitialization && m_ptr)
00547 Eigen::internal::construct_elements_of_array(m_ptr, size);
00548 }
00549 ~aligned_stack_memory_handler()
00550 {
00551 if(NumTraits<T>::RequireInitialization && m_ptr)
00552 Eigen::internal::destruct_elements_of_array<T>(m_ptr, m_size);
00553 if(m_deallocate)
00554 Eigen::internal::aligned_free(m_ptr);
00555 }
00556 protected:
00557 T* m_ptr;
00558 size_t m_size;
00559 bool m_deallocate;
00560 };
00561
00562 }
00563
00579 #ifdef EIGEN_ALLOCA
00580
00581 #ifdef __arm__
00582 #define EIGEN_ALIGNED_ALLOCA(SIZE) reinterpret_cast<void*>((reinterpret_cast<size_t>(EIGEN_ALLOCA(SIZE+16)) & ~(size_t(15))) + 16)
00583 #else
00584 #define EIGEN_ALIGNED_ALLOCA EIGEN_ALLOCA
00585 #endif
00586
00587 #define ei_declare_aligned_stack_constructed_variable(TYPE,NAME,SIZE,BUFFER) \
00588 Eigen::internal::check_size_for_overflow<TYPE>(SIZE); \
00589 TYPE* NAME = (BUFFER)!=0 ? (BUFFER) \
00590 : reinterpret_cast<TYPE*>( \
00591 (sizeof(TYPE)*SIZE<=EIGEN_STACK_ALLOCATION_LIMIT) ? EIGEN_ALIGNED_ALLOCA(sizeof(TYPE)*SIZE) \
00592 : Eigen::internal::aligned_malloc(sizeof(TYPE)*SIZE) ); \
00593 Eigen::internal::aligned_stack_memory_handler<TYPE> EIGEN_CAT(NAME,_stack_memory_destructor)((BUFFER)==0 ? NAME : 0,SIZE,sizeof(TYPE)*SIZE>EIGEN_STACK_ALLOCATION_LIMIT)
00594
00595 #else
00596
00597 #define ei_declare_aligned_stack_constructed_variable(TYPE,NAME,SIZE,BUFFER) \
00598 Eigen::internal::check_size_for_overflow<TYPE>(SIZE); \
00599 TYPE* NAME = (BUFFER)!=0 ? BUFFER : reinterpret_cast<TYPE*>(Eigen::internal::aligned_malloc(sizeof(TYPE)*SIZE)); \
00600 Eigen::internal::aligned_stack_memory_handler<TYPE> EIGEN_CAT(NAME,_stack_memory_destructor)((BUFFER)==0 ? NAME : 0,SIZE,true)
00601
00602 #endif
00603
00604
00605
00606
00607
00608
00609 #if EIGEN_ALIGN
00610 #ifdef EIGEN_EXCEPTIONS
00611 #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
00612 void* operator new(size_t size, const std::nothrow_t&) throw() { \
00613 try { return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); } \
00614 catch (...) { return 0; } \
00615 return 0; \
00616 }
00617 #else
00618 #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
00619 void* operator new(size_t size, const std::nothrow_t&) throw() { \
00620 return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \
00621 }
00622 #endif
00623
00624 #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign) \
00625 void *operator new(size_t size) { \
00626 return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \
00627 } \
00628 void *operator new[](size_t size) { \
00629 return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \
00630 } \
00631 void operator delete(void * ptr) throw() { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
00632 void operator delete[](void * ptr) throw() { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
00633 \
00634 \
00635 \
00636 static void *operator new(size_t size, void *ptr) { return ::operator new(size,ptr); } \
00637 void operator delete(void * memory, void *ptr) throw() { return ::operator delete(memory,ptr); } \
00638 \
00639 EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
00640 void operator delete(void *ptr, const std::nothrow_t&) throw() { \
00641 Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); \
00642 } \
00643 typedef void eigen_aligned_operator_new_marker_type;
00644 #else
00645 #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign)
00646 #endif
00647
00648 #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(true)
00649 #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(Scalar,Size) \
00650 EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(bool(((Size)!=Eigen::Dynamic) && ((sizeof(Scalar)*(Size))%16==0)))
00651
00652
00653
00670 template<class T>
00671 class aligned_allocator
00672 {
00673 public:
00674 typedef size_t size_type;
00675 typedef std::ptrdiff_t difference_type;
00676 typedef T* pointer;
00677 typedef const T* const_pointer;
00678 typedef T& reference;
00679 typedef const T& const_reference;
00680 typedef T value_type;
00681
00682 template<class U>
00683 struct rebind
00684 {
00685 typedef aligned_allocator<U> other;
00686 };
00687
00688 pointer address( reference value ) const
00689 {
00690 return &value;
00691 }
00692
00693 const_pointer address( const_reference value ) const
00694 {
00695 return &value;
00696 }
00697
00698 aligned_allocator()
00699 {
00700 }
00701
00702 aligned_allocator( const aligned_allocator& )
00703 {
00704 }
00705
00706 template<class U>
00707 aligned_allocator( const aligned_allocator<U>& )
00708 {
00709 }
00710
00711 ~aligned_allocator()
00712 {
00713 }
00714
00715 size_type max_size() const
00716 {
00717 return (std::numeric_limits<size_type>::max)();
00718 }
00719
00720 pointer allocate( size_type num, const void* hint = 0 )
00721 {
00722 EIGEN_UNUSED_VARIABLE(hint);
00723 internal::check_size_for_overflow<T>(num);
00724 return static_cast<pointer>( internal::aligned_malloc( num * sizeof(T) ) );
00725 }
00726
00727 void construct( pointer p, const T& value )
00728 {
00729 ::new( p ) T( value );
00730 }
00731
00732
00733 #if (__cplusplus >= 201103L)
00734 template<typename... Args>
00735 void construct(pointer p, Args&&... args)
00736 {
00737 ::new(p) T(std::forward<Args>(args)...);
00738 }
00739 #endif
00740
00741 void destroy( pointer p )
00742 {
00743 p->~T();
00744 }
00745
00746 void deallocate( pointer p, size_type )
00747 {
00748 internal::aligned_free( p );
00749 }
00750
00751 bool operator!=(const aligned_allocator<T>& ) const
00752 { return false; }
00753
00754 bool operator==(const aligned_allocator<T>& ) const
00755 { return true; }
00756 };
00757
00758
00759
00760 #if !defined(EIGEN_NO_CPUID)
00761 # if defined(__GNUC__) && ( defined(__i386__) || defined(__x86_64__) )
00762 # if defined(__PIC__) && defined(__i386__)
00763
00764 # define EIGEN_CPUID(abcd,func,id) \
00765 __asm__ __volatile__ ("xchgl %%ebx, %k1;cpuid; xchgl %%ebx,%k1": "=a" (abcd[0]), "=&r" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "a" (func), "c" (id));
00766 # elif defined(__PIC__) && defined(__x86_64__)
00767
00768
00769 # define EIGEN_CPUID(abcd,func,id) \
00770 __asm__ __volatile__ ("xchg{q}\t{%%}rbx, %q1; cpuid; xchg{q}\t{%%}rbx, %q1": "=a" (abcd[0]), "=&r" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "0" (func), "2" (id));
00771 # else
00772
00773 # define EIGEN_CPUID(abcd,func,id) \
00774 __asm__ __volatile__ ("cpuid": "=a" (abcd[0]), "=b" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "0" (func), "2" (id) );
00775 # endif
00776 # elif defined(_MSC_VER)
00777 # if (_MSC_VER > 1500) && ( defined(_M_IX86) || defined(_M_X64) )
00778 # define EIGEN_CPUID(abcd,func,id) __cpuidex((int*)abcd,func,id)
00779 # endif
00780 # endif
00781 #endif
00782
00783 namespace internal {
00784
00785 #ifdef EIGEN_CPUID
00786
00787 inline bool cpuid_is_vendor(int abcd[4], const char* vendor)
00788 {
00789 return abcd[1]==(reinterpret_cast<const int*>(vendor))[0] && abcd[3]==(reinterpret_cast<const int*>(vendor))[1] && abcd[2]==(reinterpret_cast<const int*>(vendor))[2];
00790 }
00791
00792 inline void queryCacheSizes_intel_direct(int& l1, int& l2, int& l3)
00793 {
00794 int abcd[4];
00795 l1 = l2 = l3 = 0;
00796 int cache_id = 0;
00797 int cache_type = 0;
00798 do {
00799 abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
00800 EIGEN_CPUID(abcd,0x4,cache_id);
00801 cache_type = (abcd[0] & 0x0F) >> 0;
00802 if(cache_type==1||cache_type==3)
00803 {
00804 int cache_level = (abcd[0] & 0xE0) >> 5;
00805 int ways = (abcd[1] & 0xFFC00000) >> 22;
00806 int partitions = (abcd[1] & 0x003FF000) >> 12;
00807 int line_size = (abcd[1] & 0x00000FFF) >> 0;
00808 int sets = (abcd[2]);
00809
00810 int cache_size = (ways+1) * (partitions+1) * (line_size+1) * (sets+1);
00811
00812 switch(cache_level)
00813 {
00814 case 1: l1 = cache_size; break;
00815 case 2: l2 = cache_size; break;
00816 case 3: l3 = cache_size; break;
00817 default: break;
00818 }
00819 }
00820 cache_id++;
00821 } while(cache_type>0 && cache_id<16);
00822 }
00823
00824 inline void queryCacheSizes_intel_codes(int& l1, int& l2, int& l3)
00825 {
00826 int abcd[4];
00827 abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
00828 l1 = l2 = l3 = 0;
00829 EIGEN_CPUID(abcd,0x00000002,0);
00830 unsigned char * bytes = reinterpret_cast<unsigned char *>(abcd)+2;
00831 bool check_for_p2_core2 = false;
00832 for(int i=0; i<14; ++i)
00833 {
00834 switch(bytes[i])
00835 {
00836 case 0x0A: l1 = 8; break;
00837 case 0x0C: l1 = 16; break;
00838 case 0x0E: l1 = 24; break;
00839 case 0x10: l1 = 16; break;
00840 case 0x15: l1 = 16; break;
00841 case 0x2C: l1 = 32; break;
00842 case 0x30: l1 = 32; break;
00843 case 0x60: l1 = 16; break;
00844 case 0x66: l1 = 8; break;
00845 case 0x67: l1 = 16; break;
00846 case 0x68: l1 = 32; break;
00847 case 0x1A: l2 = 96; break;
00848 case 0x22: l3 = 512; break;
00849 case 0x23: l3 = 1024; break;
00850 case 0x25: l3 = 2048; break;
00851 case 0x29: l3 = 4096; break;
00852 case 0x39: l2 = 128; break;
00853 case 0x3A: l2 = 192; break;
00854 case 0x3B: l2 = 128; break;
00855 case 0x3C: l2 = 256; break;
00856 case 0x3D: l2 = 384; break;
00857 case 0x3E: l2 = 512; break;
00858 case 0x40: l2 = 0; break;
00859 case 0x41: l2 = 128; break;
00860 case 0x42: l2 = 256; break;
00861 case 0x43: l2 = 512; break;
00862 case 0x44: l2 = 1024; break;
00863 case 0x45: l2 = 2048; break;
00864 case 0x46: l3 = 4096; break;
00865 case 0x47: l3 = 8192; break;
00866 case 0x48: l2 = 3072; break;
00867 case 0x49: if(l2!=0) l3 = 4096; else {check_for_p2_core2=true; l3 = l2 = 4096;} break;
00868 case 0x4A: l3 = 6144; break;
00869 case 0x4B: l3 = 8192; break;
00870 case 0x4C: l3 = 12288; break;
00871 case 0x4D: l3 = 16384; break;
00872 case 0x4E: l2 = 6144; break;
00873 case 0x78: l2 = 1024; break;
00874 case 0x79: l2 = 128; break;
00875 case 0x7A: l2 = 256; break;
00876 case 0x7B: l2 = 512; break;
00877 case 0x7C: l2 = 1024; break;
00878 case 0x7D: l2 = 2048; break;
00879 case 0x7E: l2 = 256; break;
00880 case 0x7F: l2 = 512; break;
00881 case 0x80: l2 = 512; break;
00882 case 0x81: l2 = 128; break;
00883 case 0x82: l2 = 256; break;
00884 case 0x83: l2 = 512; break;
00885 case 0x84: l2 = 1024; break;
00886 case 0x85: l2 = 2048; break;
00887 case 0x86: l2 = 512; break;
00888 case 0x87: l2 = 1024; break;
00889 case 0x88: l3 = 2048; break;
00890 case 0x89: l3 = 4096; break;
00891 case 0x8A: l3 = 8192; break;
00892 case 0x8D: l3 = 3072; break;
00893
00894 default: break;
00895 }
00896 }
00897 if(check_for_p2_core2 && l2 == l3)
00898 l3 = 0;
00899 l1 *= 1024;
00900 l2 *= 1024;
00901 l3 *= 1024;
00902 }
00903
00904 inline void queryCacheSizes_intel(int& l1, int& l2, int& l3, int max_std_funcs)
00905 {
00906 if(max_std_funcs>=4)
00907 queryCacheSizes_intel_direct(l1,l2,l3);
00908 else
00909 queryCacheSizes_intel_codes(l1,l2,l3);
00910 }
00911
00912 inline void queryCacheSizes_amd(int& l1, int& l2, int& l3)
00913 {
00914 int abcd[4];
00915 abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
00916 EIGEN_CPUID(abcd,0x80000005,0);
00917 l1 = (abcd[2] >> 24) * 1024;
00918 abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
00919 EIGEN_CPUID(abcd,0x80000006,0);
00920 l2 = (abcd[2] >> 16) * 1024;
00921 l3 = ((abcd[3] & 0xFFFC000) >> 18) * 512 * 1024;
00922 }
00923 #endif
00924
00927 inline void queryCacheSizes(int& l1, int& l2, int& l3)
00928 {
00929 #ifdef EIGEN_CPUID
00930 int abcd[4];
00931
00932
00933 EIGEN_CPUID(abcd,0x0,0);
00934 int max_std_funcs = abcd[1];
00935 if(cpuid_is_vendor(abcd,"GenuineIntel"))
00936 queryCacheSizes_intel(l1,l2,l3,max_std_funcs);
00937 else if(cpuid_is_vendor(abcd,"AuthenticAMD") || cpuid_is_vendor(abcd,"AMDisbetter!"))
00938 queryCacheSizes_amd(l1,l2,l3);
00939 else
00940
00941 queryCacheSizes_intel(l1,l2,l3,max_std_funcs);
00942
00943
00944
00945
00946
00947
00948
00949
00950
00951
00952
00953
00954 #else
00955 l1 = l2 = l3 = -1;
00956 #endif
00957 }
00958
00961 inline int queryL1CacheSize()
00962 {
00963 int l1(-1), l2, l3;
00964 queryCacheSizes(l1,l2,l3);
00965 return l1;
00966 }
00967
00970 inline int queryTopLevelCacheSize()
00971 {
00972 int l1, l2(-1), l3(-1);
00973 queryCacheSizes(l1,l2,l3);
00974 return (std::max)(l2,l3);
00975 }
00976
00977 }
00978
00979 }
00980
00981 #endif // EIGEN_MEMORY_H