Memory.h
Go to the documentation of this file.
00001 // This file is part of Eigen, a lightweight C++ template library
00002 // for linear algebra.
00003 //
00004 // Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
00005 // Copyright (C) 2008-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
00006 // Copyright (C) 2009 Kenneth Riddile <kfriddile@yahoo.com>
00007 // Copyright (C) 2010 Hauke Heibel <hauke.heibel@gmail.com>
00008 // Copyright (C) 2010 Thomas Capricelli <orzel@freehackers.org>
00009 //
00010 // This Source Code Form is subject to the terms of the Mozilla
00011 // Public License v. 2.0. If a copy of the MPL was not distributed
00012 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
00013 
00014 
00015 /*****************************************************************************
00016 *** Platform checks for aligned malloc functions                           ***
00017 *****************************************************************************/
00018 
00019 #ifndef EIGEN_MEMORY_H
00020 #define EIGEN_MEMORY_H
00021 
00022 #ifndef EIGEN_MALLOC_ALREADY_ALIGNED
00023 
00024 // Try to determine automatically if malloc is already aligned.
00025 
00026 // On 64-bit systems, glibc's malloc returns 16-byte-aligned pointers, see:
00027 //   http://www.gnu.org/s/libc/manual/html_node/Aligned-Memory-Blocks.html
00028 // This is true at least since glibc 2.8.
00029 // This leaves the question how to detect 64-bit. According to this document,
00030 //   http://gcc.fyxm.net/summit/2003/Porting%20to%2064%20bit.pdf
00031 // page 114, "[The] LP64 model [...] is used by all 64-bit UNIX ports" so it's indeed
00032 // quite safe, at least within the context of glibc, to equate 64-bit with LP64.
00033 #if defined(__GLIBC__) && ((__GLIBC__>=2 && __GLIBC_MINOR__ >= 8) || __GLIBC__>2) \
00034  && defined(__LP64__) && ! defined( __SANITIZE_ADDRESS__ )
00035   #define EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED 1
00036 #else
00037   #define EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED 0
00038 #endif
00039 
00040 // FreeBSD 6 seems to have 16-byte aligned malloc
00041 //   See http://svn.freebsd.org/viewvc/base/stable/6/lib/libc/stdlib/malloc.c?view=markup
00042 // FreeBSD 7 seems to have 16-byte aligned malloc except on ARM and MIPS architectures
00043 //   See http://svn.freebsd.org/viewvc/base/stable/7/lib/libc/stdlib/malloc.c?view=markup
00044 #if defined(__FreeBSD__) && !defined(__arm__) && !defined(__mips__)
00045   #define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 1
00046 #else
00047   #define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 0
00048 #endif
00049 
00050 #if defined(__APPLE__) \
00051  || defined(_WIN64) \
00052  || EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED \
00053  || EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED
00054   #define EIGEN_MALLOC_ALREADY_ALIGNED 1
00055 #else
00056   #define EIGEN_MALLOC_ALREADY_ALIGNED 0
00057 #endif
00058 
00059 #endif
00060 
00061 // See bug 554 (http://eigen.tuxfamily.org/bz/show_bug.cgi?id=554)
00062 // It seems to be unsafe to check _POSIX_ADVISORY_INFO without including unistd.h first.
00063 // Currently, let's include it only on unix systems:
00064 #if defined(__unix__) || defined(__unix)
00065   #include <unistd.h>
00066   #if ((defined __QNXNTO__) || (defined _GNU_SOURCE) || ((defined _XOPEN_SOURCE) && (_XOPEN_SOURCE >= 600))) && (defined _POSIX_ADVISORY_INFO) && (_POSIX_ADVISORY_INFO > 0)
00067     #define EIGEN_HAS_POSIX_MEMALIGN 1
00068   #endif
00069 #endif
00070 
00071 #ifndef EIGEN_HAS_POSIX_MEMALIGN
00072   #define EIGEN_HAS_POSIX_MEMALIGN 0
00073 #endif
00074 
00075 #ifdef EIGEN_VECTORIZE_SSE
00076   #define EIGEN_HAS_MM_MALLOC 1
00077 #else
00078   #define EIGEN_HAS_MM_MALLOC 0
00079 #endif
00080 
00081 namespace Eigen {
00082 
00083 namespace internal {
00084 
00085 inline void throw_std_bad_alloc()
00086 {
00087   #ifdef EIGEN_EXCEPTIONS
00088     throw std::bad_alloc();
00089   #else
00090     std::size_t huge = -1;
00091     new int[huge];
00092   #endif
00093 }
00094 
00095 /*****************************************************************************
00096 *** Implementation of handmade aligned functions                           ***
00097 *****************************************************************************/
00098 
00099 /* ----- Hand made implementations of aligned malloc/free and realloc ----- */
00100 
00104 inline void* handmade_aligned_malloc(std::size_t size)
00105 {
00106   void *original = std::malloc(size+16);
00107   if (original == 0) return 0;
00108   void *aligned = reinterpret_cast<void*>((reinterpret_cast<std::size_t>(original) & ~(std::size_t(15))) + 16);
00109   *(reinterpret_cast<void**>(aligned) - 1) = original;
00110   return aligned;
00111 }
00112 
00114 inline void handmade_aligned_free(void *ptr)
00115 {
00116   if (ptr) std::free(*(reinterpret_cast<void**>(ptr) - 1));
00117 }
00118 
00124 inline void* handmade_aligned_realloc(void* ptr, std::size_t size, std::size_t = 0)
00125 {
00126   if (ptr == 0) return handmade_aligned_malloc(size);
00127   void *original = *(reinterpret_cast<void**>(ptr) - 1);
00128   std::ptrdiff_t previous_offset = static_cast<char *>(ptr)-static_cast<char *>(original);
00129   original = std::realloc(original,size+16);
00130   if (original == 0) return 0;
00131   void *aligned = reinterpret_cast<void*>((reinterpret_cast<std::size_t>(original) & ~(std::size_t(15))) + 16);
00132   void *previous_aligned = static_cast<char *>(original)+previous_offset;
00133   if(aligned!=previous_aligned)
00134     std::memmove(aligned, previous_aligned, size);
00135   
00136   *(reinterpret_cast<void**>(aligned) - 1) = original;
00137   return aligned;
00138 }
00139 
00140 /*****************************************************************************
00141 *** Implementation of generic aligned realloc (when no realloc can be used)***
00142 *****************************************************************************/
00143 
00144 void* aligned_malloc(std::size_t size);
00145 void  aligned_free(void *ptr);
00146 
00152 inline void* generic_aligned_realloc(void* ptr, size_t size, size_t old_size)
00153 {
00154   if (ptr==0)
00155     return aligned_malloc(size);
00156 
00157   if (size==0)
00158   {
00159     aligned_free(ptr);
00160     return 0;
00161   }
00162 
00163   void* newptr = aligned_malloc(size);
00164   if (newptr == 0)
00165   {
00166     #ifdef EIGEN_HAS_ERRNO
00167     errno = ENOMEM; // according to the standard
00168     #endif
00169     return 0;
00170   }
00171 
00172   if (ptr != 0)
00173   {
00174     std::memcpy(newptr, ptr, (std::min)(size,old_size));
00175     aligned_free(ptr);
00176   }
00177 
00178   return newptr;
00179 }
00180 
00181 /*****************************************************************************
00182 *** Implementation of portable aligned versions of malloc/free/realloc     ***
00183 *****************************************************************************/
00184 
00185 #ifdef EIGEN_NO_MALLOC
00186 inline void check_that_malloc_is_allowed()
00187 {
00188   eigen_assert(false && "heap allocation is forbidden (EIGEN_NO_MALLOC is defined)");
00189 }
00190 #elif defined EIGEN_RUNTIME_NO_MALLOC
00191 inline bool is_malloc_allowed_impl(bool update, bool new_value = false)
00192 {
00193   static bool value = true;
00194   if (update == 1)
00195     value = new_value;
00196   return value;
00197 }
00198 inline bool is_malloc_allowed() { return is_malloc_allowed_impl(false); }
00199 inline bool set_is_malloc_allowed(bool new_value) { return is_malloc_allowed_impl(true, new_value); }
00200 inline void check_that_malloc_is_allowed()
00201 {
00202   eigen_assert(is_malloc_allowed() && "heap allocation is forbidden (EIGEN_RUNTIME_NO_MALLOC is defined and g_is_malloc_allowed is false)");
00203 }
00204 #else 
00205 inline void check_that_malloc_is_allowed()
00206 {}
00207 #endif
00208 
00212 inline void* aligned_malloc(size_t size)
00213 {
00214   check_that_malloc_is_allowed();
00215 
00216   void *result;
00217   #if !EIGEN_ALIGN
00218     result = std::malloc(size);
00219   #elif EIGEN_MALLOC_ALREADY_ALIGNED
00220     result = std::malloc(size);
00221   #elif EIGEN_HAS_POSIX_MEMALIGN
00222     if(posix_memalign(&result, 16, size)) result = 0;
00223   #elif EIGEN_HAS_MM_MALLOC
00224     result = _mm_malloc(size, 16);
00225   #elif defined(_MSC_VER) && (!defined(_WIN32_WCE))
00226     result = _aligned_malloc(size, 16);
00227   #else
00228     result = handmade_aligned_malloc(size);
00229   #endif
00230 
00231   if(!result && size)
00232     throw_std_bad_alloc();
00233 
00234   return result;
00235 }
00236 
00238 inline void aligned_free(void *ptr)
00239 {
00240   #if !EIGEN_ALIGN
00241     std::free(ptr);
00242   #elif EIGEN_MALLOC_ALREADY_ALIGNED
00243     std::free(ptr);
00244   #elif EIGEN_HAS_POSIX_MEMALIGN
00245     std::free(ptr);
00246   #elif EIGEN_HAS_MM_MALLOC
00247     _mm_free(ptr);
00248   #elif defined(_MSC_VER) && (!defined(_WIN32_WCE))
00249     _aligned_free(ptr);
00250   #else
00251     handmade_aligned_free(ptr);
00252   #endif
00253 }
00254 
00260 inline void* aligned_realloc(void *ptr, size_t new_size, size_t old_size)
00261 {
00262   EIGEN_UNUSED_VARIABLE(old_size);
00263 
00264   void *result;
00265 #if !EIGEN_ALIGN
00266   result = std::realloc(ptr,new_size);
00267 #elif EIGEN_MALLOC_ALREADY_ALIGNED
00268   result = std::realloc(ptr,new_size);
00269 #elif EIGEN_HAS_POSIX_MEMALIGN
00270   result = generic_aligned_realloc(ptr,new_size,old_size);
00271 #elif EIGEN_HAS_MM_MALLOC
00272   // The defined(_mm_free) is just here to verify that this MSVC version
00273   // implements _mm_malloc/_mm_free based on the corresponding _aligned_
00274   // functions. This may not always be the case and we just try to be safe.
00275   #if defined(_MSC_VER) && defined(_mm_free)
00276     result = _aligned_realloc(ptr,new_size,16);
00277   #else
00278     result = generic_aligned_realloc(ptr,new_size,old_size);
00279   #endif
00280 #elif defined(_MSC_VER)
00281   result = _aligned_realloc(ptr,new_size,16);
00282 #else
00283   result = handmade_aligned_realloc(ptr,new_size,old_size);
00284 #endif
00285 
00286   if (!result && new_size)
00287     throw_std_bad_alloc();
00288 
00289   return result;
00290 }
00291 
00292 /*****************************************************************************
00293 *** Implementation of conditionally aligned functions                      ***
00294 *****************************************************************************/
00295 
00299 template<bool Align> inline void* conditional_aligned_malloc(size_t size)
00300 {
00301   return aligned_malloc(size);
00302 }
00303 
00304 template<> inline void* conditional_aligned_malloc<false>(size_t size)
00305 {
00306   check_that_malloc_is_allowed();
00307 
00308   void *result = std::malloc(size);
00309   if(!result && size)
00310     throw_std_bad_alloc();
00311   return result;
00312 }
00313 
00315 template<bool Align> inline void conditional_aligned_free(void *ptr)
00316 {
00317   aligned_free(ptr);
00318 }
00319 
00320 template<> inline void conditional_aligned_free<false>(void *ptr)
00321 {
00322   std::free(ptr);
00323 }
00324 
00325 template<bool Align> inline void* conditional_aligned_realloc(void* ptr, size_t new_size, size_t old_size)
00326 {
00327   return aligned_realloc(ptr, new_size, old_size);
00328 }
00329 
00330 template<> inline void* conditional_aligned_realloc<false>(void* ptr, size_t new_size, size_t)
00331 {
00332   return std::realloc(ptr, new_size);
00333 }
00334 
00335 /*****************************************************************************
00336 *** Construction/destruction of array elements                             ***
00337 *****************************************************************************/
00338 
00342 template<typename T> inline T* construct_elements_of_array(T *ptr, size_t size)
00343 {
00344   for (size_t i=0; i < size; ++i) ::new (ptr + i) T;
00345   return ptr;
00346 }
00347 
00351 template<typename T> inline void destruct_elements_of_array(T *ptr, size_t size)
00352 {
00353   // always destruct an array starting from the end.
00354   if(ptr)
00355     while(size) ptr[--size].~T();
00356 }
00357 
00358 /*****************************************************************************
00359 *** Implementation of aligned new/delete-like functions                    ***
00360 *****************************************************************************/
00361 
00362 template<typename T>
00363 EIGEN_ALWAYS_INLINE void check_size_for_overflow(size_t size)
00364 {
00365   if(size > size_t(-1) / sizeof(T))
00366     throw_std_bad_alloc();
00367 }
00368 
00373 template<typename T> inline T* aligned_new(size_t size)
00374 {
00375   check_size_for_overflow<T>(size);
00376   T *result = reinterpret_cast<T*>(aligned_malloc(sizeof(T)*size));
00377   return construct_elements_of_array(result, size);
00378 }
00379 
00380 template<typename T, bool Align> inline T* conditional_aligned_new(size_t size)
00381 {
00382   check_size_for_overflow<T>(size);
00383   T *result = reinterpret_cast<T*>(conditional_aligned_malloc<Align>(sizeof(T)*size));
00384   return construct_elements_of_array(result, size);
00385 }
00386 
00390 template<typename T> inline void aligned_delete(T *ptr, size_t size)
00391 {
00392   destruct_elements_of_array<T>(ptr, size);
00393   aligned_free(ptr);
00394 }
00395 
00399 template<typename T, bool Align> inline void conditional_aligned_delete(T *ptr, size_t size)
00400 {
00401   destruct_elements_of_array<T>(ptr, size);
00402   conditional_aligned_free<Align>(ptr);
00403 }
00404 
00405 template<typename T, bool Align> inline T* conditional_aligned_realloc_new(T* pts, size_t new_size, size_t old_size)
00406 {
00407   check_size_for_overflow<T>(new_size);
00408   check_size_for_overflow<T>(old_size);
00409   if(new_size < old_size)
00410     destruct_elements_of_array(pts+new_size, old_size-new_size);
00411   T *result = reinterpret_cast<T*>(conditional_aligned_realloc<Align>(reinterpret_cast<void*>(pts), sizeof(T)*new_size, sizeof(T)*old_size));
00412   if(new_size > old_size)
00413     construct_elements_of_array(result+old_size, new_size-old_size);
00414   return result;
00415 }
00416 
00417 
00418 template<typename T, bool Align> inline T* conditional_aligned_new_auto(size_t size)
00419 {
00420   check_size_for_overflow<T>(size);
00421   T *result = reinterpret_cast<T*>(conditional_aligned_malloc<Align>(sizeof(T)*size));
00422   if(NumTraits<T>::RequireInitialization)
00423     construct_elements_of_array(result, size);
00424   return result;
00425 }
00426 
00427 template<typename T, bool Align> inline T* conditional_aligned_realloc_new_auto(T* pts, size_t new_size, size_t old_size)
00428 {
00429   check_size_for_overflow<T>(new_size);
00430   check_size_for_overflow<T>(old_size);
00431   if(NumTraits<T>::RequireInitialization && (new_size < old_size))
00432     destruct_elements_of_array(pts+new_size, old_size-new_size);
00433   T *result = reinterpret_cast<T*>(conditional_aligned_realloc<Align>(reinterpret_cast<void*>(pts), sizeof(T)*new_size, sizeof(T)*old_size));
00434   if(NumTraits<T>::RequireInitialization && (new_size > old_size))
00435     construct_elements_of_array(result+old_size, new_size-old_size);
00436   return result;
00437 }
00438 
00439 template<typename T, bool Align> inline void conditional_aligned_delete_auto(T *ptr, size_t size)
00440 {
00441   if(NumTraits<T>::RequireInitialization)
00442     destruct_elements_of_array<T>(ptr, size);
00443   conditional_aligned_free<Align>(ptr);
00444 }
00445 
00446 /****************************************************************************/
00447 
00464 template<typename Scalar, typename Index>
00465 static inline Index first_aligned(const Scalar* array, Index size)
00466 {
00467   enum { PacketSize = packet_traits<Scalar>::size,
00468          PacketAlignedMask = PacketSize-1
00469   };
00470 
00471   if(PacketSize==1)
00472   {
00473     // Either there is no vectorization, or a packet consists of exactly 1 scalar so that all elements
00474     // of the array have the same alignment.
00475     return 0;
00476   }
00477   else if(size_t(array) & (sizeof(Scalar)-1))
00478   {
00479     // There is vectorization for this scalar type, but the array is not aligned to the size of a single scalar.
00480     // Consequently, no element of the array is well aligned.
00481     return size;
00482   }
00483   else
00484   {
00485     return std::min<Index>( (PacketSize - (Index((size_t(array)/sizeof(Scalar))) & PacketAlignedMask))
00486                            & PacketAlignedMask, size);
00487   }
00488 }
00489 
00492 template<typename Index> 
00493 inline static Index first_multiple(Index size, Index base)
00494 {
00495   return ((size+base-1)/base)*base;
00496 }
00497 
00498 // std::copy is much slower than memcpy, so let's introduce a smart_copy which
00499 // use memcpy on trivial types, i.e., on types that does not require an initialization ctor.
00500 template<typename T, bool UseMemcpy> struct smart_copy_helper;
00501 
00502 template<typename T> void smart_copy(const T* start, const T* end, T* target)
00503 {
00504   smart_copy_helper<T,!NumTraits<T>::RequireInitialization>::run(start, end, target);
00505 }
00506 
00507 template<typename T> struct smart_copy_helper<T,true> {
00508   static inline void run(const T* start, const T* end, T* target)
00509   { memcpy(target, start, std::ptrdiff_t(end)-std::ptrdiff_t(start)); }
00510 };
00511 
00512 template<typename T> struct smart_copy_helper<T,false> {
00513   static inline void run(const T* start, const T* end, T* target)
00514   { std::copy(start, end, target); }
00515 };
00516 
00517 
00518 /*****************************************************************************
00519 *** Implementation of runtime stack allocation (falling back to malloc)    ***
00520 *****************************************************************************/
00521 
00522 // you can overwrite Eigen's default behavior regarding alloca by defining EIGEN_ALLOCA
00523 // to the appropriate stack allocation function
00524 #ifndef EIGEN_ALLOCA
00525   #if (defined __linux__)
00526     #define EIGEN_ALLOCA alloca
00527   #elif defined(_MSC_VER)
00528     #define EIGEN_ALLOCA _alloca
00529   #endif
00530 #endif
00531 
00532 // This helper class construct the allocated memory, and takes care of destructing and freeing the handled data
00533 // at destruction time. In practice this helper class is mainly useful to avoid memory leak in case of exceptions.
00534 template<typename T> class aligned_stack_memory_handler
00535 {
00536   public:
00537     /* Creates a stack_memory_handler responsible for the buffer \a ptr of size \a size.
00538      * Note that \a ptr can be 0 regardless of the other parameters.
00539      * This constructor takes care of constructing/initializing the elements of the buffer if required by the scalar type T (see NumTraits<T>::RequireInitialization).
00540      * In this case, the buffer elements will also be destructed when this handler will be destructed.
00541      * Finally, if \a dealloc is true, then the pointer \a ptr is freed.
00542      **/
00543     aligned_stack_memory_handler(T* ptr, size_t size, bool dealloc)
00544       : m_ptr(ptr), m_size(size), m_deallocate(dealloc)
00545     {
00546       if(NumTraits<T>::RequireInitialization && m_ptr)
00547         Eigen::internal::construct_elements_of_array(m_ptr, size);
00548     }
00549     ~aligned_stack_memory_handler()
00550     {
00551       if(NumTraits<T>::RequireInitialization && m_ptr)
00552         Eigen::internal::destruct_elements_of_array<T>(m_ptr, m_size);
00553       if(m_deallocate)
00554         Eigen::internal::aligned_free(m_ptr);
00555     }
00556   protected:
00557     T* m_ptr;
00558     size_t m_size;
00559     bool m_deallocate;
00560 };
00561 
00562 } // end namespace internal
00563 
00579 #ifdef EIGEN_ALLOCA
00580 
00581   #ifdef __arm__
00582     #define EIGEN_ALIGNED_ALLOCA(SIZE) reinterpret_cast<void*>((reinterpret_cast<size_t>(EIGEN_ALLOCA(SIZE+16)) & ~(size_t(15))) + 16)
00583   #else
00584     #define EIGEN_ALIGNED_ALLOCA EIGEN_ALLOCA
00585   #endif
00586 
00587   #define ei_declare_aligned_stack_constructed_variable(TYPE,NAME,SIZE,BUFFER) \
00588     Eigen::internal::check_size_for_overflow<TYPE>(SIZE); \
00589     TYPE* NAME = (BUFFER)!=0 ? (BUFFER) \
00590                : reinterpret_cast<TYPE*>( \
00591                       (sizeof(TYPE)*SIZE<=EIGEN_STACK_ALLOCATION_LIMIT) ? EIGEN_ALIGNED_ALLOCA(sizeof(TYPE)*SIZE) \
00592                     : Eigen::internal::aligned_malloc(sizeof(TYPE)*SIZE) );  \
00593     Eigen::internal::aligned_stack_memory_handler<TYPE> EIGEN_CAT(NAME,_stack_memory_destructor)((BUFFER)==0 ? NAME : 0,SIZE,sizeof(TYPE)*SIZE>EIGEN_STACK_ALLOCATION_LIMIT)
00594 
00595 #else
00596 
00597   #define ei_declare_aligned_stack_constructed_variable(TYPE,NAME,SIZE,BUFFER) \
00598     Eigen::internal::check_size_for_overflow<TYPE>(SIZE); \
00599     TYPE* NAME = (BUFFER)!=0 ? BUFFER : reinterpret_cast<TYPE*>(Eigen::internal::aligned_malloc(sizeof(TYPE)*SIZE));    \
00600     Eigen::internal::aligned_stack_memory_handler<TYPE> EIGEN_CAT(NAME,_stack_memory_destructor)((BUFFER)==0 ? NAME : 0,SIZE,true)
00601     
00602 #endif
00603 
00604 
00605 /*****************************************************************************
00606 *** Implementation of EIGEN_MAKE_ALIGNED_OPERATOR_NEW [_IF]                ***
00607 *****************************************************************************/
00608 
00609 #if EIGEN_ALIGN
00610   #ifdef EIGEN_EXCEPTIONS
00611     #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
00612       void* operator new(size_t size, const std::nothrow_t&) throw() { \
00613         try { return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); } \
00614         catch (...) { return 0; } \
00615         return 0; \
00616       }
00617   #else
00618     #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
00619       void* operator new(size_t size, const std::nothrow_t&) throw() { \
00620         return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \
00621       }
00622   #endif
00623 
00624   #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign) \
00625       void *operator new(size_t size) { \
00626         return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \
00627       } \
00628       void *operator new[](size_t size) { \
00629         return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \
00630       } \
00631       void operator delete(void * ptr) throw() { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
00632       void operator delete[](void * ptr) throw() { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
00633       /* in-place new and delete. since (at least afaik) there is no actual   */ \
00634       /* memory allocated we can safely let the default implementation handle */ \
00635       /* this particular case. */ \
00636       static void *operator new(size_t size, void *ptr) { return ::operator new(size,ptr); } \
00637       void operator delete(void * memory, void *ptr) throw() { return ::operator delete(memory,ptr); } \
00638       /* nothrow-new (returns zero instead of std::bad_alloc) */ \
00639       EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
00640       void operator delete(void *ptr, const std::nothrow_t&) throw() { \
00641         Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); \
00642       } \
00643       typedef void eigen_aligned_operator_new_marker_type;
00644 #else
00645   #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign)
00646 #endif
00647 
00648 #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(true)
00649 #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(Scalar,Size) \
00650   EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(bool(((Size)!=Eigen::Dynamic) && ((sizeof(Scalar)*(Size))%16==0)))
00651 
00652 /****************************************************************************/
00653 
00670 template<class T>
00671 class aligned_allocator
00672 {
00673 public:
00674     typedef size_t    size_type;
00675     typedef std::ptrdiff_t difference_type;
00676     typedef T*        pointer;
00677     typedef const T*  const_pointer;
00678     typedef T&        reference;
00679     typedef const T&  const_reference;
00680     typedef T         value_type;
00681 
00682     template<class U>
00683     struct rebind
00684     {
00685         typedef aligned_allocator<U> other;
00686     };
00687 
00688     pointer address( reference value ) const
00689     {
00690         return &value;
00691     }
00692 
00693     const_pointer address( const_reference value ) const
00694     {
00695         return &value;
00696     }
00697 
00698     aligned_allocator()
00699     {
00700     }
00701 
00702     aligned_allocator( const aligned_allocator& )
00703     {
00704     }
00705 
00706     template<class U>
00707     aligned_allocator( const aligned_allocator<U>& )
00708     {
00709     }
00710 
00711     ~aligned_allocator()
00712     {
00713     }
00714 
00715     size_type max_size() const
00716     {
00717         return (std::numeric_limits<size_type>::max)();
00718     }
00719 
00720     pointer allocate( size_type num, const void* hint = 0 )
00721     {
00722         EIGEN_UNUSED_VARIABLE(hint);
00723         internal::check_size_for_overflow<T>(num);
00724         return static_cast<pointer>( internal::aligned_malloc( num * sizeof(T) ) );
00725     }
00726 
00727     void construct( pointer p, const T& value )
00728     {
00729         ::new( p ) T( value );
00730     }
00731 
00732     // Support for c++11
00733 #if (__cplusplus >= 201103L)
00734     template<typename... Args>
00735     void  construct(pointer p, Args&&... args)
00736     {
00737       ::new(p) T(std::forward<Args>(args)...);
00738     }
00739 #endif
00740 
00741     void destroy( pointer p )
00742     {
00743         p->~T();
00744     }
00745 
00746     void deallocate( pointer p, size_type /*num*/ )
00747     {
00748         internal::aligned_free( p );
00749     }
00750 
00751     bool operator!=(const aligned_allocator<T>& ) const
00752     { return false; }
00753 
00754     bool operator==(const aligned_allocator<T>& ) const
00755     { return true; }
00756 };
00757 
00758 //---------- Cache sizes ----------
00759 
00760 #if !defined(EIGEN_NO_CPUID)
00761 #  if defined(__GNUC__) && ( defined(__i386__) || defined(__x86_64__) )
00762 #    if defined(__PIC__) && defined(__i386__)
00763        // Case for x86 with PIC
00764 #      define EIGEN_CPUID(abcd,func,id) \
00765          __asm__ __volatile__ ("xchgl %%ebx, %k1;cpuid; xchgl %%ebx,%k1": "=a" (abcd[0]), "=&r" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "a" (func), "c" (id));
00766 #    elif defined(__PIC__) && defined(__x86_64__)
00767        // Case for x64 with PIC. In theory this is only a problem with recent gcc and with medium or large code model, not with the default small code model.
00768        // However, we cannot detect which code model is used, and the xchg overhead is negligible anyway.
00769 #      define EIGEN_CPUID(abcd,func,id) \
00770         __asm__ __volatile__ ("xchg{q}\t{%%}rbx, %q1; cpuid; xchg{q}\t{%%}rbx, %q1": "=a" (abcd[0]), "=&r" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "0" (func), "2" (id));
00771 #    else
00772        // Case for x86_64 or x86 w/o PIC
00773 #      define EIGEN_CPUID(abcd,func,id) \
00774          __asm__ __volatile__ ("cpuid": "=a" (abcd[0]), "=b" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "0" (func), "2" (id) );
00775 #    endif
00776 #  elif defined(_MSC_VER)
00777 #    if (_MSC_VER > 1500) && ( defined(_M_IX86) || defined(_M_X64) )
00778 #      define EIGEN_CPUID(abcd,func,id) __cpuidex((int*)abcd,func,id)
00779 #    endif
00780 #  endif
00781 #endif
00782 
00783 namespace internal {
00784 
00785 #ifdef EIGEN_CPUID
00786 
00787 inline bool cpuid_is_vendor(int abcd[4], const char* vendor)
00788 {
00789   return abcd[1]==(reinterpret_cast<const int*>(vendor))[0] && abcd[3]==(reinterpret_cast<const int*>(vendor))[1] && abcd[2]==(reinterpret_cast<const int*>(vendor))[2];
00790 }
00791 
00792 inline void queryCacheSizes_intel_direct(int& l1, int& l2, int& l3)
00793 {
00794   int abcd[4];
00795   l1 = l2 = l3 = 0;
00796   int cache_id = 0;
00797   int cache_type = 0;
00798   do {
00799     abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
00800     EIGEN_CPUID(abcd,0x4,cache_id);
00801     cache_type  = (abcd[0] & 0x0F) >> 0;
00802     if(cache_type==1||cache_type==3) // data or unified cache
00803     {
00804       int cache_level = (abcd[0] & 0xE0) >> 5;  // A[7:5]
00805       int ways        = (abcd[1] & 0xFFC00000) >> 22; // B[31:22]
00806       int partitions  = (abcd[1] & 0x003FF000) >> 12; // B[21:12]
00807       int line_size   = (abcd[1] & 0x00000FFF) >>  0; // B[11:0]
00808       int sets        = (abcd[2]);                    // C[31:0]
00809 
00810       int cache_size = (ways+1) * (partitions+1) * (line_size+1) * (sets+1);
00811 
00812       switch(cache_level)
00813       {
00814         case 1: l1 = cache_size; break;
00815         case 2: l2 = cache_size; break;
00816         case 3: l3 = cache_size; break;
00817         default: break;
00818       }
00819     }
00820     cache_id++;
00821   } while(cache_type>0 && cache_id<16);
00822 }
00823 
00824 inline void queryCacheSizes_intel_codes(int& l1, int& l2, int& l3)
00825 {
00826   int abcd[4];
00827   abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
00828   l1 = l2 = l3 = 0;
00829   EIGEN_CPUID(abcd,0x00000002,0);
00830   unsigned char * bytes = reinterpret_cast<unsigned char *>(abcd)+2;
00831   bool check_for_p2_core2 = false;
00832   for(int i=0; i<14; ++i)
00833   {
00834     switch(bytes[i])
00835     {
00836       case 0x0A: l1 = 8; break;   // 0Ah   data L1 cache, 8 KB, 2 ways, 32 byte lines
00837       case 0x0C: l1 = 16; break;  // 0Ch   data L1 cache, 16 KB, 4 ways, 32 byte lines
00838       case 0x0E: l1 = 24; break;  // 0Eh   data L1 cache, 24 KB, 6 ways, 64 byte lines
00839       case 0x10: l1 = 16; break;  // 10h   data L1 cache, 16 KB, 4 ways, 32 byte lines (IA-64)
00840       case 0x15: l1 = 16; break;  // 15h   code L1 cache, 16 KB, 4 ways, 32 byte lines (IA-64)
00841       case 0x2C: l1 = 32; break;  // 2Ch   data L1 cache, 32 KB, 8 ways, 64 byte lines
00842       case 0x30: l1 = 32; break;  // 30h   code L1 cache, 32 KB, 8 ways, 64 byte lines
00843       case 0x60: l1 = 16; break;  // 60h   data L1 cache, 16 KB, 8 ways, 64 byte lines, sectored
00844       case 0x66: l1 = 8; break;   // 66h   data L1 cache, 8 KB, 4 ways, 64 byte lines, sectored
00845       case 0x67: l1 = 16; break;  // 67h   data L1 cache, 16 KB, 4 ways, 64 byte lines, sectored
00846       case 0x68: l1 = 32; break;  // 68h   data L1 cache, 32 KB, 4 ways, 64 byte lines, sectored
00847       case 0x1A: l2 = 96; break;   // code and data L2 cache, 96 KB, 6 ways, 64 byte lines (IA-64)
00848       case 0x22: l3 = 512; break;   // code and data L3 cache, 512 KB, 4 ways (!), 64 byte lines, dual-sectored
00849       case 0x23: l3 = 1024; break;   // code and data L3 cache, 1024 KB, 8 ways, 64 byte lines, dual-sectored
00850       case 0x25: l3 = 2048; break;   // code and data L3 cache, 2048 KB, 8 ways, 64 byte lines, dual-sectored
00851       case 0x29: l3 = 4096; break;   // code and data L3 cache, 4096 KB, 8 ways, 64 byte lines, dual-sectored
00852       case 0x39: l2 = 128; break;   // code and data L2 cache, 128 KB, 4 ways, 64 byte lines, sectored
00853       case 0x3A: l2 = 192; break;   // code and data L2 cache, 192 KB, 6 ways, 64 byte lines, sectored
00854       case 0x3B: l2 = 128; break;   // code and data L2 cache, 128 KB, 2 ways, 64 byte lines, sectored
00855       case 0x3C: l2 = 256; break;   // code and data L2 cache, 256 KB, 4 ways, 64 byte lines, sectored
00856       case 0x3D: l2 = 384; break;   // code and data L2 cache, 384 KB, 6 ways, 64 byte lines, sectored
00857       case 0x3E: l2 = 512; break;   // code and data L2 cache, 512 KB, 4 ways, 64 byte lines, sectored
00858       case 0x40: l2 = 0; break;   // no integrated L2 cache (P6 core) or L3 cache (P4 core)
00859       case 0x41: l2 = 128; break;   // code and data L2 cache, 128 KB, 4 ways, 32 byte lines
00860       case 0x42: l2 = 256; break;   // code and data L2 cache, 256 KB, 4 ways, 32 byte lines
00861       case 0x43: l2 = 512; break;   // code and data L2 cache, 512 KB, 4 ways, 32 byte lines
00862       case 0x44: l2 = 1024; break;   // code and data L2 cache, 1024 KB, 4 ways, 32 byte lines
00863       case 0x45: l2 = 2048; break;   // code and data L2 cache, 2048 KB, 4 ways, 32 byte lines
00864       case 0x46: l3 = 4096; break;   // code and data L3 cache, 4096 KB, 4 ways, 64 byte lines
00865       case 0x47: l3 = 8192; break;   // code and data L3 cache, 8192 KB, 8 ways, 64 byte lines
00866       case 0x48: l2 = 3072; break;   // code and data L2 cache, 3072 KB, 12 ways, 64 byte lines
00867       case 0x49: if(l2!=0) l3 = 4096; else {check_for_p2_core2=true; l3 = l2 = 4096;} break;// code and data L3 cache, 4096 KB, 16 ways, 64 byte lines (P4) or L2 for core2
00868       case 0x4A: l3 = 6144; break;   // code and data L3 cache, 6144 KB, 12 ways, 64 byte lines
00869       case 0x4B: l3 = 8192; break;   // code and data L3 cache, 8192 KB, 16 ways, 64 byte lines
00870       case 0x4C: l3 = 12288; break;   // code and data L3 cache, 12288 KB, 12 ways, 64 byte lines
00871       case 0x4D: l3 = 16384; break;   // code and data L3 cache, 16384 KB, 16 ways, 64 byte lines
00872       case 0x4E: l2 = 6144; break;   // code and data L2 cache, 6144 KB, 24 ways, 64 byte lines
00873       case 0x78: l2 = 1024; break;   // code and data L2 cache, 1024 KB, 4 ways, 64 byte lines
00874       case 0x79: l2 = 128; break;   // code and data L2 cache, 128 KB, 8 ways, 64 byte lines, dual-sectored
00875       case 0x7A: l2 = 256; break;   // code and data L2 cache, 256 KB, 8 ways, 64 byte lines, dual-sectored
00876       case 0x7B: l2 = 512; break;   // code and data L2 cache, 512 KB, 8 ways, 64 byte lines, dual-sectored
00877       case 0x7C: l2 = 1024; break;   // code and data L2 cache, 1024 KB, 8 ways, 64 byte lines, dual-sectored
00878       case 0x7D: l2 = 2048; break;   // code and data L2 cache, 2048 KB, 8 ways, 64 byte lines
00879       case 0x7E: l2 = 256; break;   // code and data L2 cache, 256 KB, 8 ways, 128 byte lines, sect. (IA-64)
00880       case 0x7F: l2 = 512; break;   // code and data L2 cache, 512 KB, 2 ways, 64 byte lines
00881       case 0x80: l2 = 512; break;   // code and data L2 cache, 512 KB, 8 ways, 64 byte lines
00882       case 0x81: l2 = 128; break;   // code and data L2 cache, 128 KB, 8 ways, 32 byte lines
00883       case 0x82: l2 = 256; break;   // code and data L2 cache, 256 KB, 8 ways, 32 byte lines
00884       case 0x83: l2 = 512; break;   // code and data L2 cache, 512 KB, 8 ways, 32 byte lines
00885       case 0x84: l2 = 1024; break;   // code and data L2 cache, 1024 KB, 8 ways, 32 byte lines
00886       case 0x85: l2 = 2048; break;   // code and data L2 cache, 2048 KB, 8 ways, 32 byte lines
00887       case 0x86: l2 = 512; break;   // code and data L2 cache, 512 KB, 4 ways, 64 byte lines
00888       case 0x87: l2 = 1024; break;   // code and data L2 cache, 1024 KB, 8 ways, 64 byte lines
00889       case 0x88: l3 = 2048; break;   // code and data L3 cache, 2048 KB, 4 ways, 64 byte lines (IA-64)
00890       case 0x89: l3 = 4096; break;   // code and data L3 cache, 4096 KB, 4 ways, 64 byte lines (IA-64)
00891       case 0x8A: l3 = 8192; break;   // code and data L3 cache, 8192 KB, 4 ways, 64 byte lines (IA-64)
00892       case 0x8D: l3 = 3072; break;   // code and data L3 cache, 3072 KB, 12 ways, 128 byte lines (IA-64)
00893 
00894       default: break;
00895     }
00896   }
00897   if(check_for_p2_core2 && l2 == l3)
00898     l3 = 0;
00899   l1 *= 1024;
00900   l2 *= 1024;
00901   l3 *= 1024;
00902 }
00903 
00904 inline void queryCacheSizes_intel(int& l1, int& l2, int& l3, int max_std_funcs)
00905 {
00906   if(max_std_funcs>=4)
00907     queryCacheSizes_intel_direct(l1,l2,l3);
00908   else
00909     queryCacheSizes_intel_codes(l1,l2,l3);
00910 }
00911 
00912 inline void queryCacheSizes_amd(int& l1, int& l2, int& l3)
00913 {
00914   int abcd[4];
00915   abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
00916   EIGEN_CPUID(abcd,0x80000005,0);
00917   l1 = (abcd[2] >> 24) * 1024; // C[31:24] = L1 size in KB
00918   abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
00919   EIGEN_CPUID(abcd,0x80000006,0);
00920   l2 = (abcd[2] >> 16) * 1024; // C[31;16] = l2 cache size in KB
00921   l3 = ((abcd[3] & 0xFFFC000) >> 18) * 512 * 1024; // D[31;18] = l3 cache size in 512KB
00922 }
00923 #endif
00924 
00927 inline void queryCacheSizes(int& l1, int& l2, int& l3)
00928 {
00929   #ifdef EIGEN_CPUID
00930   int abcd[4];
00931 
00932   // identify the CPU vendor
00933   EIGEN_CPUID(abcd,0x0,0);
00934   int max_std_funcs = abcd[1];
00935   if(cpuid_is_vendor(abcd,"GenuineIntel"))
00936     queryCacheSizes_intel(l1,l2,l3,max_std_funcs);
00937   else if(cpuid_is_vendor(abcd,"AuthenticAMD") || cpuid_is_vendor(abcd,"AMDisbetter!"))
00938     queryCacheSizes_amd(l1,l2,l3);
00939   else
00940     // by default let's use Intel's API
00941     queryCacheSizes_intel(l1,l2,l3,max_std_funcs);
00942 
00943   // here is the list of other vendors:
00944 //   ||cpuid_is_vendor(abcd,"VIA VIA VIA ")
00945 //   ||cpuid_is_vendor(abcd,"CyrixInstead")
00946 //   ||cpuid_is_vendor(abcd,"CentaurHauls")
00947 //   ||cpuid_is_vendor(abcd,"GenuineTMx86")
00948 //   ||cpuid_is_vendor(abcd,"TransmetaCPU")
00949 //   ||cpuid_is_vendor(abcd,"RiseRiseRise")
00950 //   ||cpuid_is_vendor(abcd,"Geode by NSC")
00951 //   ||cpuid_is_vendor(abcd,"SiS SiS SiS ")
00952 //   ||cpuid_is_vendor(abcd,"UMC UMC UMC ")
00953 //   ||cpuid_is_vendor(abcd,"NexGenDriven")
00954   #else
00955   l1 = l2 = l3 = -1;
00956   #endif
00957 }
00958 
00961 inline int queryL1CacheSize()
00962 {
00963   int l1(-1), l2, l3;
00964   queryCacheSizes(l1,l2,l3);
00965   return l1;
00966 }
00967 
00970 inline int queryTopLevelCacheSize()
00971 {
00972   int l1, l2(-1), l3(-1);
00973   queryCacheSizes(l1,l2,l3);
00974   return (std::max)(l2,l3);
00975 }
00976 
00977 } // end namespace internal
00978 
00979 } // end namespace Eigen
00980 
00981 #endif // EIGEN_MEMORY_H


acado
Author(s): Milan Vukov, Rien Quirynen
autogenerated on Thu Aug 27 2015 11:59:20