Program Listing for File LDLT.hpp
↰ Return to documentation for file (include/eigenpy/decompositions/LDLT.hpp
)
/*
* Copyright 2020-2024 INRIA
*/
#ifndef __eigenpy_decompositions_ldlt_hpp__
#define __eigenpy_decompositions_ldlt_hpp__
#include <Eigen/Cholesky>
#include <Eigen/Core>
#include "eigenpy/eigenpy.hpp"
#include "eigenpy/utils/scalar-name.hpp"
#include "eigenpy/eigen/EigenBase.hpp"
namespace eigenpy {
template <typename _MatrixType>
struct LDLTSolverVisitor
: public boost::python::def_visitor<LDLTSolverVisitor<_MatrixType> > {
typedef _MatrixType MatrixType;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef Eigen::Matrix<Scalar, Eigen::Dynamic, 1, MatrixType::Options>
VectorXs;
typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic,
MatrixType::Options>
MatrixXs;
typedef Eigen::LDLT<MatrixType> Solver;
template <class PyClass>
void visit(PyClass &cl) const {
cl.def(bp::init<>(bp::arg("self"), "Default constructor"))
.def(bp::init<Eigen::DenseIndex>(
bp::args("self", "size"),
"Default constructor with memory preallocation"))
.def(bp::init<MatrixType>(
bp::args("self", "matrix"),
"Constructs a LDLT factorization from a given matrix."))
.def(EigenBaseVisitor<Solver>())
.def("isNegative", &Solver::isNegative, bp::arg("self"),
"Returns true if the matrix is negative (semidefinite).")
.def("isPositive", &Solver::isPositive, bp::arg("self"),
"Returns true if the matrix is positive (semidefinite).")
.def("matrixL", &matrixL, bp::arg("self"),
"Returns the lower triangular matrix L.")
.def("matrixU", &matrixU, bp::arg("self"),
"Returns the upper triangular matrix U.")
.def("vectorD", &vectorD, bp::arg("self"),
"Returns the coefficients of the diagonal matrix D.")
.def("transpositionsP", &transpositionsP, bp::arg("self"),
"Returns the permutation matrix P.")
.def("matrixLDLT", &Solver::matrixLDLT, bp::arg("self"),
"Returns the LDLT decomposition matrix.",
bp::return_internal_reference<>())
.def("rankUpdate",
(Solver & (Solver::*)(const Eigen::MatrixBase<VectorXs> &,
const RealScalar &)) &
Solver::template rankUpdate<VectorXs>,
bp::args("self", "vector", "sigma"), bp::return_self<>())
#if EIGEN_VERSION_AT_LEAST(3, 3, 0)
.def("adjoint", &Solver::adjoint, bp::arg("self"),
"Returns the adjoint, that is, a reference to the decomposition "
"itself as if the underlying matrix is self-adjoint.",
bp::return_self<>())
#endif
.def(
"compute",
(Solver & (Solver::*)(const Eigen::EigenBase<MatrixType> &matrix)) &
Solver::compute,
bp::args("self", "matrix"), "Computes the LDLT of given matrix.",
bp::return_self<>())
.def("info", &Solver::info, bp::arg("self"),
"NumericalIssue if the input contains INF or NaN values or "
"overflow occured. Returns Success otherwise.")
#if EIGEN_VERSION_AT_LEAST(3, 3, 0)
.def("rcond", &Solver::rcond, bp::arg("self"),
"Returns an estimate of the reciprocal condition number of the "
"matrix.")
#endif
.def("reconstructedMatrix", &Solver::reconstructedMatrix,
bp::arg("self"),
"Returns the matrix represented by the decomposition, i.e., it "
"returns the product: L L^*. This function is provided for debug "
"purpose.")
.def("solve", &solve<VectorXs>, bp::args("self", "b"),
"Returns the solution x of A x = b using the current "
"decomposition of A.")
.def("solve", &solve<MatrixXs>, bp::args("self", "B"),
"Returns the solution X of A X = B using the current "
"decomposition of A where B is a right hand side matrix.")
.def("setZero", &Solver::setZero, bp::arg("self"),
"Clear any existing decomposition.");
}
static void expose() {
static const std::string classname =
"LDLT" + scalar_name<Scalar>::shortname();
expose(classname);
}
static void expose(const std::string &name) {
bp::class_<Solver>(
name.c_str(),
"Robust Cholesky decomposition of a matrix with pivoting.\n\n"
"Perform a robust Cholesky decomposition of a positive semidefinite or "
"negative semidefinite matrix $ A $ such that $ A = P^TLDL^*P $, where "
"P is a permutation matrix, L is lower triangular with a unit diagonal "
"and D is a diagonal matrix.\n\n"
"The decomposition uses pivoting to ensure stability, so that L will "
"have zeros in the bottom right rank(A) - n submatrix. Avoiding the "
"square root on D also stabilizes the computation.",
bp::no_init)
.def(IdVisitor<Solver>())
.def(LDLTSolverVisitor());
}
private:
static MatrixType matrixL(const Solver &self) { return self.matrixL(); }
static MatrixType matrixU(const Solver &self) { return self.matrixU(); }
static VectorXs vectorD(const Solver &self) { return self.vectorD(); }
static MatrixType transpositionsP(const Solver &self) {
return self.transpositionsP() *
MatrixType::Identity(self.matrixL().rows(), self.matrixL().rows());
}
template <typename MatrixOrVector>
static MatrixOrVector solve(const Solver &self, const MatrixOrVector &vec) {
return self.solve(vec);
}
};
} // namespace eigenpy
#endif // ifndef __eigenpy_decompositions_ldlt_hpp__