Functions
pcl::distances Namespace Reference

Functions

double computeMedian (double *fvec, int m)
 Compute the median value from a set of doubles.
double gedikli (double val, double clipping, double slope=4)
 Use a Gedikli kernel to estimate the distance between two vectors (for more information, see.
double huber (const Eigen::Vector4f &p_src, const Eigen::Vector4f &p_tgt, double sigma)
 Use a Huber kernel to estimate the distance between two vectors.
double huber (double diff, double sigma)
 Use a Huber kernel to estimate the distance between two vectors.
double l1 (const Eigen::Vector4f &p_src, const Eigen::Vector4f &p_tgt)
 Compute the Manhattan distance between two eigen vectors.
double l2 (const Eigen::Vector4f &p_src, const Eigen::Vector4f &p_tgt)
 Compute the Euclidean distance between two eigen vectors.
double l2Sqr (const Eigen::Vector4f &p_src, const Eigen::Vector4f &p_tgt)
 Compute the squared Euclidean distance between two eigen vectors.

Function Documentation

double pcl::distances::computeMedian ( double *  fvec,
int  m 
) [inline]

Compute the median value from a set of doubles.

Parameters:
[in]fvecthe set of doubles
[in]mthe number of doubles in the set

Definition at line 55 of file registration/include/pcl/registration/distances.h.

double pcl::distances::gedikli ( double  val,
double  clipping,
double  slope = 4 
) [inline]

Use a Gedikli kernel to estimate the distance between two vectors (for more information, see.

Parameters:
[in]valthe norm difference between two vectors
[in]clippingthe clipping value
[in]slopethe slope. Default: 4

Definition at line 107 of file registration/include/pcl/registration/distances.h.

double pcl::distances::huber ( const Eigen::Vector4f &  p_src,
const Eigen::Vector4f &  p_tgt,
double  sigma 
) [inline]

Use a Huber kernel to estimate the distance between two vectors.

Parameters:
[in]p_srcthe first eigen vector
[in]p_tgtthe second eigen vector
[in]sigmathe sigma value

Definition at line 71 of file registration/include/pcl/registration/distances.h.

double pcl::distances::huber ( double  diff,
double  sigma 
) [inline]

Use a Huber kernel to estimate the distance between two vectors.

Parameters:
[in]diffthe norm difference between two vectors
[in]sigmathe sigma value

Definition at line 90 of file registration/include/pcl/registration/distances.h.

double pcl::distances::l1 ( const Eigen::Vector4f &  p_src,
const Eigen::Vector4f &  p_tgt 
) [inline]

Compute the Manhattan distance between two eigen vectors.

Parameters:
[in]p_srcthe first eigen vector
[in]p_tgtthe second eigen vector

Definition at line 117 of file registration/include/pcl/registration/distances.h.

double pcl::distances::l2 ( const Eigen::Vector4f &  p_src,
const Eigen::Vector4f &  p_tgt 
) [inline]

Compute the Euclidean distance between two eigen vectors.

Parameters:
[in]p_srcthe first eigen vector
[in]p_tgtthe second eigen vector

Definition at line 127 of file registration/include/pcl/registration/distances.h.

double pcl::distances::l2Sqr ( const Eigen::Vector4f &  p_src,
const Eigen::Vector4f &  p_tgt 
) [inline]

Compute the squared Euclidean distance between two eigen vectors.

Parameters:
[in]p_srcthe first eigen vector
[in]p_tgtthe second eigen vector

Definition at line 137 of file registration/include/pcl/registration/distances.h.



pcl
Author(s): Open Perception
autogenerated on Mon Oct 6 2014 03:20:18