extract_clusters.hpp
Go to the documentation of this file.
00001 /*
00002  * Software License Agreement (BSD License)
00003  *
00004  *  Copyright (c) 2009, Willow Garage, Inc.
00005  *  All rights reserved.
00006  *
00007  *  Redistribution and use in source and binary forms, with or without
00008  *  modification, are permitted provided that the following conditions
00009  *  are met:
00010  *
00011  *   * Redistributions of source code must retain the above copyright
00012  *     notice, this list of conditions and the following disclaimer.
00013  *   * Redistributions in binary form must reproduce the above
00014  *     copyright notice, this list of conditions and the following
00015  *     disclaimer in the documentation and/or other materials provided
00016  *     with the distribution.
00017  *   * Neither the name of Willow Garage, Inc. nor the names of its
00018  *     contributors may be used to endorse or promote products derived
00019  *     from this software without specific prior written permission.
00020  *
00021  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
00022  *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
00023  *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00024  *  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
00025  *  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
00026  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
00027  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
00028  *  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
00029  *  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
00030  *  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
00031  *  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00032  *  POSSIBILITY OF SUCH DAMAGE.
00033  *
00034  * $Id: extract_clusters.hpp 6155 2012-07-04 23:10:00Z aichim $
00035  *
00036  */
00037 
00038 #ifndef PCL_SEGMENTATION_IMPL_EXTRACT_CLUSTERS_H_
00039 #define PCL_SEGMENTATION_IMPL_EXTRACT_CLUSTERS_H_
00040 
00041 #include <pcl/segmentation/extract_clusters.h>
00042 
00044 template <typename PointT> void
00045 pcl::extractEuclideanClusters (const PointCloud<PointT> &cloud, 
00046                                const boost::shared_ptr<search::Search<PointT> > &tree,
00047                                float tolerance, std::vector<PointIndices> &clusters,
00048                                unsigned int min_pts_per_cluster, 
00049                                unsigned int max_pts_per_cluster)
00050 {
00051   if (tree->getInputCloud ()->points.size () != cloud.points.size ())
00052   {
00053     PCL_ERROR ("[pcl::extractEuclideanClusters] Tree built for a different point cloud dataset (%zu) than the input cloud (%zu)!\n", tree->getInputCloud ()->points.size (), cloud.points.size ());
00054     return;
00055   }
00056   // Create a bool vector of processed point indices, and initialize it to false
00057   std::vector<bool> processed (cloud.points.size (), false);
00058 
00059   std::vector<int> nn_indices;
00060   std::vector<float> nn_distances;
00061   // Process all points in the indices vector
00062   for (int i = 0; i < static_cast<int> (cloud.points.size ()); ++i)
00063   {
00064     if (processed[i])
00065       continue;
00066 
00067     std::vector<int> seed_queue;
00068     int sq_idx = 0;
00069     seed_queue.push_back (i);
00070 
00071     processed[i] = true;
00072 
00073     while (sq_idx < static_cast<int> (seed_queue.size ()))
00074     {
00075       // Search for sq_idx
00076       if (!tree->radiusSearch (seed_queue[sq_idx], tolerance, nn_indices, nn_distances))
00077       {
00078         sq_idx++;
00079         continue;
00080       }
00081 
00082       for (size_t j = 1; j < nn_indices.size (); ++j)             // nn_indices[0] should be sq_idx
00083       {
00084         if (nn_indices[j] == -1 || processed[nn_indices[j]])        // Has this point been processed before ?
00085           continue;
00086 
00087         // Perform a simple Euclidean clustering
00088         seed_queue.push_back (nn_indices[j]);
00089         processed[nn_indices[j]] = true;
00090       }
00091 
00092       sq_idx++;
00093     }
00094 
00095     // If this queue is satisfactory, add to the clusters
00096     if (seed_queue.size () >= min_pts_per_cluster && seed_queue.size () <= max_pts_per_cluster)
00097     {
00098       pcl::PointIndices r;
00099       r.indices.resize (seed_queue.size ());
00100       for (size_t j = 0; j < seed_queue.size (); ++j)
00101         r.indices[j] = seed_queue[j];
00102 
00103       // These two lines should not be needed: (can anyone confirm?) -FF
00104       std::sort (r.indices.begin (), r.indices.end ());
00105       r.indices.erase (std::unique (r.indices.begin (), r.indices.end ()), r.indices.end ());
00106 
00107       r.header = cloud.header;
00108       clusters.push_back (r);   // We could avoid a copy by working directly in the vector
00109     }
00110   }
00111 }
00112 
00114 
00115 template <typename PointT> void
00116 pcl::extractEuclideanClusters (const PointCloud<PointT> &cloud, 
00117                                const std::vector<int> &indices,
00118                                const boost::shared_ptr<search::Search<PointT> > &tree,
00119                                float tolerance, std::vector<PointIndices> &clusters,
00120                                unsigned int min_pts_per_cluster, 
00121                                unsigned int max_pts_per_cluster)
00122 {
00123   // \note If the tree was created over <cloud, indices>, we guarantee a 1-1 mapping between what the tree returns
00124   //and indices[i]
00125   if (tree->getInputCloud ()->points.size () != cloud.points.size ())
00126   {
00127     PCL_ERROR ("[pcl::extractEuclideanClusters] Tree built for a different point cloud dataset (%zu) than the input cloud (%zu)!\n", tree->getInputCloud ()->points.size (), cloud.points.size ());
00128     return;
00129   }
00130   if (tree->getIndices ()->size () != indices.size ())
00131   {
00132     PCL_ERROR ("[pcl::extractEuclideanClusters] Tree built for a different set of indices (%zu) than the input set (%zu)!\n", tree->getIndices ()->size (), indices.size ());
00133     return;
00134   }
00135 
00136   // Create a bool vector of processed point indices, and initialize it to false
00137   std::vector<bool> processed (cloud.points.size (), false);
00138 
00139   std::vector<int> nn_indices;
00140   std::vector<float> nn_distances;
00141   // Process all points in the indices vector
00142   for (int i = 0; i < static_cast<int> (indices.size ()); ++i)
00143   {
00144     if (processed[indices[i]])
00145       continue;
00146 
00147     std::vector<int> seed_queue;
00148     int sq_idx = 0;
00149     seed_queue.push_back (indices[i]);
00150 
00151     processed[indices[i]] = true;
00152 
00153     while (sq_idx < static_cast<int> (seed_queue.size ()))
00154     {
00155       // Search for sq_idx
00156       int ret = tree->radiusSearch (cloud.points[seed_queue[sq_idx]], tolerance, nn_indices, nn_distances);
00157       if( ret == -1)
00158       {
00159         PCL_ERROR("[pcl::extractEuclideanClusters] Received error code -1 from radiusSearch\n");
00160         exit(0);
00161       }
00162       if (!ret)
00163       {
00164         sq_idx++;
00165         continue;
00166       }
00167 
00168       for (size_t j = 1; j < nn_indices.size (); ++j)             // nn_indices[0] should be sq_idx
00169       {
00170         if (nn_indices[j] == -1 || processed[nn_indices[j]])        // Has this point been processed before ?
00171           continue;
00172 
00173         // Perform a simple Euclidean clustering
00174         seed_queue.push_back (nn_indices[j]);
00175         processed[nn_indices[j]] = true;
00176       }
00177 
00178       sq_idx++;
00179     }
00180 
00181     // If this queue is satisfactory, add to the clusters
00182     if (seed_queue.size () >= min_pts_per_cluster && seed_queue.size () <= max_pts_per_cluster)
00183     {
00184       pcl::PointIndices r;
00185       r.indices.resize (seed_queue.size ());
00186       for (size_t j = 0; j < seed_queue.size (); ++j)
00187         // This is the only place where indices come into play
00188         r.indices[j] = seed_queue[j];
00189 
00190       // These two lines should not be needed: (can anyone confirm?) -FF
00191       //r.indices.assign(seed_queue.begin(), seed_queue.end());
00192       std::sort (r.indices.begin (), r.indices.end ());
00193       r.indices.erase (std::unique (r.indices.begin (), r.indices.end ()), r.indices.end ());
00194 
00195       r.header = cloud.header;
00196       clusters.push_back (r);   // We could avoid a copy by working directly in the vector
00197     }
00198   }
00199 }
00200 
00204 
00205 template <typename PointT> void 
00206 pcl::EuclideanClusterExtraction<PointT>::extract (std::vector<PointIndices> &clusters)
00207 {
00208   if (!initCompute () || 
00209       (input_ != 0   && input_->points.empty ()) ||
00210       (indices_ != 0 && indices_->empty ()))
00211   {
00212     clusters.clear ();
00213     return;
00214   }
00215 
00216   // Initialize the spatial locator
00217   if (!tree_)
00218   {
00219     if (input_->isOrganized ())
00220       tree_.reset (new pcl::search::OrganizedNeighbor<PointT> ());
00221     else
00222       tree_.reset (new pcl::search::KdTree<PointT> (false));
00223   }
00224 
00225   // Send the input dataset to the spatial locator
00226   tree_->setInputCloud (input_, indices_);
00227   extractEuclideanClusters (*input_, *indices_, tree_, static_cast<float> (cluster_tolerance_), clusters, min_pts_per_cluster_, max_pts_per_cluster_);
00228 
00229   //tree_->setInputCloud (input_);
00230   //extractEuclideanClusters (*input_, tree_, cluster_tolerance_, clusters, min_pts_per_cluster_, max_pts_per_cluster_);
00231 
00232   // Sort the clusters based on their size (largest one first)
00233   std::sort (clusters.rbegin (), clusters.rend (), comparePointClusters);
00234 
00235   deinitCompute ();
00236 }
00237 
00238 #define PCL_INSTANTIATE_EuclideanClusterExtraction(T) template class PCL_EXPORTS pcl::EuclideanClusterExtraction<T>;
00239 #define PCL_INSTANTIATE_extractEuclideanClusters(T) template void PCL_EXPORTS pcl::extractEuclideanClusters<T>(const pcl::PointCloud<T> &, const boost::shared_ptr<pcl::search::Search<T> > &, float , std::vector<pcl::PointIndices> &, unsigned int, unsigned int);
00240 #define PCL_INSTANTIATE_extractEuclideanClusters_indices(T) template void PCL_EXPORTS pcl::extractEuclideanClusters<T>(const pcl::PointCloud<T> &, const std::vector<int> &, const boost::shared_ptr<pcl::search::Search<T> > &, float , std::vector<pcl::PointIndices> &, unsigned int, unsigned int);
00241 
00242 #endif        // PCL_EXTRACT_CLUSTERS_IMPL_H_


pcl
Author(s): Open Perception
autogenerated on Mon Oct 6 2014 03:14:57