one_way_descriptor_base.cpp
Go to the documentation of this file.
00001 /*
00002  *  one_way_descriptor_base.cpp
00003  *  outlet_detection
00004  *
00005  *  Created by Victor  Eruhimov on 7/9/09.
00006  *  Copyright 2009 Argus Corp. All rights reserved.
00007  *
00008  */
00009 
00010 #include <cstdio>
00011 
00012 #include "outlet_pose_estimation/detail/features.h"
00013 #include "outlet_pose_estimation/detail/pca_features.h"
00014 #include "outlet_pose_estimation/detail/one_way_descriptor_base.h"
00015 
00016 #include <cv.h>
00017 #include <highgui.h>
00018 
00019 using namespace std;
00020 
00021 CvMat* ConvertImageToMatrix(IplImage* patch)
00022 {
00023     CvRect roi = cvGetImageROI(patch);
00024     CvMat* mat = cvCreateMat(1, roi.width*roi.height, CV_32FC1);
00025 
00026     if(patch->depth == 32)
00027     {
00028         for(int y = 0; y < roi.height; y++)
00029         {
00030             for(int x = 0; x < roi.width; x++)
00031             {
00032                 mat->data.fl[y*roi.width + x] = *((float*)(patch->imageData + (y + roi.y)*patch->widthStep) + x + roi.x);
00033             }
00034         }
00035     }
00036     else if(patch->depth == 8)
00037     {
00038         for(int y = 0; y < roi.height; y++)
00039         {
00040             for(int x = 0; x < roi.width; x++)
00041             {
00042                 mat->data.fl[y*roi.width + x] = (float)(unsigned char)patch->imageData[(y + roi.y)*patch->widthStep + x + roi.x];
00043             }
00044         }
00045     }
00046     else
00047     {
00048         printf("Image depth %d is not supported\n", patch->depth);
00049         return 0;
00050     }
00051 
00052     return mat;
00053 }
00054 
00055 CvOneWayDescriptorBase::CvOneWayDescriptorBase(CvSize patch_size, int pose_count, const char* train_path,
00056                                                const char* pca_config, const char* pca_hr_config,
00057                                                const char* pca_desc_config, int pyr_levels,
00058                                                int pca_dim_high, int pca_dim_low) : m_pca_dim_high(pca_dim_high), m_pca_dim_low(pca_dim_low)
00059 {
00060 //      m_pca_descriptors_matrix = 0;
00061     m_patch_size = patch_size;
00062     m_pose_count = pose_count;
00063     m_pyr_levels = pyr_levels;
00064     m_poses = 0;
00065     m_transforms = 0;
00066 
00067     m_pca_avg = 0;
00068     m_pca_eigenvectors = 0;
00069     m_pca_hr_avg = 0;
00070     m_pca_hr_eigenvectors = 0;
00071     m_pca_descriptors = 0;
00072 
00073     m_descriptors = 0;
00074 
00075     if(train_path == 0 || strlen(train_path) == 0)
00076     {
00077         // skip pca loading
00078         return;
00079     }
00080     char pca_config_filename[1024];
00081     sprintf(pca_config_filename, "%s/%s", train_path, pca_config);
00082     readPCAFeatures(pca_config_filename, &m_pca_avg, &m_pca_eigenvectors);
00083     if(pca_hr_config && strlen(pca_hr_config) > 0)
00084     {
00085         char pca_hr_config_filename[1024];
00086         sprintf(pca_hr_config_filename, "%s/%s", train_path, pca_hr_config);
00087         readPCAFeatures(pca_hr_config_filename, &m_pca_hr_avg, &m_pca_hr_eigenvectors);
00088     }
00089 
00090     m_pca_descriptors = new CvOneWayDescriptor[m_pca_dim_high + 1];
00091     if(pca_desc_config && strlen(pca_desc_config) > 0)
00092 //    if(0)
00093     {
00094         //printf("Loading the descriptors...");
00095         char pca_desc_config_filename[1024];
00096         sprintf(pca_desc_config_filename, "%s/%s", train_path, pca_desc_config);
00097         LoadPCADescriptors(pca_desc_config_filename);
00098         //printf("done.\n");
00099     }
00100     else
00101     {
00102         printf("Initializing the descriptors...\n");
00103         InitializePoseTransforms();
00104         CreatePCADescriptors();
00105         SavePCADescriptors("pca_descriptors.yml");
00106     }
00107 //    SavePCADescriptors("./pca_descriptors.yml");
00108 
00109 }
00110 
00111 CvOneWayDescriptorBase::~CvOneWayDescriptorBase()
00112 {
00113     cvReleaseMat(&m_pca_avg);
00114     cvReleaseMat(&m_pca_eigenvectors);
00115 
00116     if(m_pca_hr_eigenvectors)
00117     {
00118         delete[] m_pca_descriptors;
00119         cvReleaseMat(&m_pca_hr_avg);
00120         cvReleaseMat(&m_pca_hr_eigenvectors);
00121     }
00122 
00123 
00124     delete []m_descriptors;
00125     delete []m_poses;
00126 
00127     for(int i = 0; i < m_pose_count; i++)
00128     {
00129         cvReleaseMat(&m_transforms[i]);
00130     }
00131     delete []m_transforms;
00132 
00133 #if defined(_KDTREE)
00134 //      if (m_pca_descriptors_matrix)
00135 //              delete m_pca_descriptors_matrix;
00136         cvReleaseMat(&m_pca_descriptors_matrix);
00137         delete m_pca_descriptors_tree;
00138 #endif
00139 }
00140 
00141 void CvOneWayDescriptorBase::InitializePoses()
00142 {
00143     m_poses = new CvAffinePose[m_pose_count];
00144     for(int i = 0; i < m_pose_count; i++)
00145     {
00146         m_poses[i] = GenRandomAffinePose();
00147     }
00148 }
00149 
00150 void CvOneWayDescriptorBase::InitializeTransformsFromPoses()
00151 {
00152     m_transforms = new CvMat*[m_pose_count];
00153     for(int i = 0; i < m_pose_count; i++)
00154     {
00155         m_transforms[i] = cvCreateMat(2, 3, CV_32FC1);
00156         GenerateAffineTransformFromPose(cvSize(m_patch_size.width*2, m_patch_size.height*2), m_poses[i], m_transforms[i]);
00157     }
00158 }
00159 
00160 void CvOneWayDescriptorBase::InitializePoseTransforms()
00161 {
00162     InitializePoses();
00163     InitializeTransformsFromPoses();
00164 }
00165 
00166 void CvOneWayDescriptorBase::InitializeDescriptor(int desc_idx, IplImage* train_image, const char* feature_label)
00167 {
00168     m_descriptors[desc_idx].SetPCADimHigh(m_pca_dim_high);
00169     m_descriptors[desc_idx].SetPCADimLow(m_pca_dim_low);
00170     m_descriptors[desc_idx].SetTransforms(m_poses, m_transforms);
00171 
00172     if(!m_pca_hr_eigenvectors)
00173     {
00174         m_descriptors[desc_idx].Initialize(m_pose_count, train_image, feature_label);
00175     }
00176     else
00177     {
00178         m_descriptors[desc_idx].InitializeFast(m_pose_count, train_image, feature_label,
00179                                       m_pca_hr_avg, m_pca_hr_eigenvectors, m_pca_descriptors);
00180     }
00181 
00182     if(m_pca_avg)
00183     {
00184         m_descriptors[desc_idx].InitializePCACoeffs(m_pca_avg, m_pca_eigenvectors);
00185     }
00186 }
00187 
00188 void CvOneWayDescriptorBase::FindDescriptor(IplImage* src, cv::Point2f pt, int& desc_idx, int& pose_idx, float& distance) const
00189 {
00190 
00191         CvRect roi = cvRect(pt.x - m_patch_size.width/4, pt.y - m_patch_size.height/4, m_patch_size.width/2, m_patch_size.height/2);
00192         cvSetImageROI(src, roi);
00193 
00194 
00195     FindDescriptor(src, desc_idx, pose_idx, distance);
00196 
00197         cvResetImageROI(src);
00198 
00199 }
00200 
00201 void CvOneWayDescriptorBase::FindDescriptor(IplImage* patch, int& desc_idx, int& pose_idx, float& distance, float* _scale, float* scale_ranges) const
00202 {
00203 #if 0
00204     ::FindOneWayDescriptor(m_train_feature_count, m_descriptors, patch, desc_idx, pose_idx, distance, m_pca_avg, m_pca_eigenvectors);
00205 #else
00206     float scale_min = 0.7f;
00207     float scale_max = 2.0f;
00208     float scale_step = 1.2f;
00209 
00210         if (scale_ranges)
00211         {
00212                 scale_min = scale_ranges[0];
00213                 scale_max = scale_ranges[1];
00214         }
00215 
00216     float scale = 1.0f;
00217 
00218 #if !defined(_KDTREE)
00219         ::FindOneWayDescriptorEx(m_train_feature_count, m_descriptors, patch,
00220                                                                 scale_min, scale_max, scale_step, desc_idx, pose_idx, distance, scale,
00221                                                                 m_pca_avg, m_pca_eigenvectors);
00222 #else
00223         ::FindOneWayDescriptorEx(m_pca_descriptors_tree, m_descriptors[0].GetPatchSize(), m_descriptors[0].GetPCADimLow(), m_pose_count, patch,
00224                                                                 scale_min, scale_max, scale_step, desc_idx, pose_idx, distance, scale,
00225                                                                 m_pca_avg, m_pca_eigenvectors);
00226 #endif
00227 
00228         if (_scale)
00229                 *_scale = scale;
00230 
00231 #endif
00232 }
00233 
00234 void CvOneWayDescriptorBase::FindDescriptor(IplImage* patch, int n, std::vector<int>& desc_idxs, std::vector<int>& pose_idxs,
00235     std::vector<float>& distances, std::vector<float>& _scales, float* scale_ranges) const
00236 {
00237     float scale_min = 0.7f;
00238     float scale_max = 2.5f;
00239     float scale_step = 1.2f;
00240 
00241         if (scale_ranges)
00242         {
00243                 scale_min = scale_ranges[0];
00244                 scale_max = scale_ranges[1];
00245         }
00246 
00247         distances.resize(n);
00248         _scales.resize(n);
00249         desc_idxs.resize(n);
00250         pose_idxs.resize(n);
00251     /*float scales = 1.0f;*/
00252 
00253         ::FindOneWayDescriptorEx(m_train_feature_count, m_descriptors, patch,
00254                                                                 scale_min, scale_max, scale_step ,n, desc_idxs, pose_idxs, distances, _scales,
00255                                                                 m_pca_avg, m_pca_eigenvectors);
00256 
00257 }
00258 
00259 void CvOneWayDescriptorBase::SetPCAHigh(CvMat* avg, CvMat* eigenvectors)
00260 {
00261     m_pca_hr_avg = cvCloneMat(avg);
00262     m_pca_hr_eigenvectors = cvCloneMat(eigenvectors);
00263 }
00264 
00265 void CvOneWayDescriptorBase::SetPCALow(CvMat* avg, CvMat* eigenvectors)
00266 {
00267     m_pca_avg = cvCloneMat(avg);
00268     m_pca_eigenvectors = cvCloneMat(eigenvectors);
00269 }
00270 
00271 void CvOneWayDescriptorBase::AllocatePCADescriptors()
00272 {
00273     m_pca_descriptors = new CvOneWayDescriptor[m_pca_dim_high + 1];
00274     for(int i = 0; i < m_pca_dim_high + 1; i++)
00275     {
00276         m_pca_descriptors[i].SetPCADimHigh(m_pca_dim_high);
00277         m_pca_descriptors[i].SetPCADimLow(m_pca_dim_low);
00278     }
00279 }
00280 
00281 void CvOneWayDescriptorBase::CreatePCADescriptors()
00282 {
00283     if(m_pca_descriptors == 0)
00284     {
00285         AllocatePCADescriptors();
00286     }
00287     IplImage* frontal = cvCreateImage(m_patch_size, IPL_DEPTH_32F, 1);
00288 
00289     eigenvector2image(m_pca_hr_avg, frontal);
00290     m_pca_descriptors[0].SetTransforms(m_poses, m_transforms);
00291     m_pca_descriptors[0].Initialize(m_pose_count, frontal, "", 0);
00292 
00293     for(int j = 0; j < m_pca_dim_high; j++)
00294     {
00295         CvMat eigenvector;
00296         cvGetSubRect(m_pca_hr_eigenvectors, &eigenvector, cvRect(0, j, m_pca_hr_eigenvectors->cols, 1));
00297         eigenvector2image(&eigenvector, frontal);
00298 
00299         m_pca_descriptors[j + 1].SetTransforms(m_poses, m_transforms);
00300         m_pca_descriptors[j + 1].Initialize(m_pose_count, frontal, "", 0);
00301 
00302         printf("Created descriptor for PCA component %d\n", j);
00303     }
00304 
00305     cvReleaseImage(&frontal);
00306 }
00307 
00308 
00309 int CvOneWayDescriptorBase::LoadPCADescriptors(const char* filename)
00310 {
00311     CvMemStorage* storage = cvCreateMemStorage();
00312     CvFileStorage* fs = cvOpenFileStorage(filename, storage, CV_STORAGE_READ);
00313     if(!fs)
00314     {
00315         cvReleaseMemStorage(&storage);
00316         printf("File %f not found...\n", filename);
00317         return 0;
00318     }
00319 
00320     // read affine poses
00321     CvFileNode* node = cvGetFileNodeByName(fs, 0, "affine poses");
00322     if(node != 0)
00323     {
00324         CvMat* poses = (CvMat*)cvRead(fs, node);
00325         //if(poses->rows != m_pose_count)
00326         //{
00327         //    printf("Inconsistency in the number of poses between the class instance and the file! Exiting...\n");
00328         //    cvReleaseMat(&poses);
00329         //    cvReleaseFileStorage(&fs);
00330         //    cvReleaseMemStorage(&storage);
00331         //}
00332 
00333         if(m_poses)
00334         {
00335             delete m_poses;
00336         }
00337         m_poses = new CvAffinePose[m_pose_count];
00338         for(int i = 0; i < m_pose_count; i++)
00339         {
00340             m_poses[i].phi = cvmGet(poses, i, 0);
00341             m_poses[i].theta = cvmGet(poses, i, 1);
00342             m_poses[i].lambda1 = cvmGet(poses, i, 2);
00343             m_poses[i].lambda2 = cvmGet(poses, i, 3);
00344         }
00345         cvReleaseMat(&poses);
00346 
00347         // now initialize pose transforms
00348         InitializeTransformsFromPoses();
00349     }
00350     else
00351     {
00352         printf("Node \"affine poses\" not found...\n");
00353     }
00354 
00355     node = cvGetFileNodeByName(fs, 0, "pca components number");
00356     if(node != 0)
00357     {
00358 
00359         m_pca_dim_high = cvReadInt(node);
00360         if(m_pca_descriptors)
00361         {
00362             delete []m_pca_descriptors;
00363         }
00364         AllocatePCADescriptors();
00365         for(int i = 0; i < m_pca_dim_high + 1; i++)
00366         {
00367             m_pca_descriptors[i].Allocate(m_pose_count, m_patch_size, 1);
00368             m_pca_descriptors[i].SetTransforms(m_poses, m_transforms);
00369             char buf[1024];
00370             sprintf(buf, "descriptor for pca component %d", i);
00371             m_pca_descriptors[i].ReadByName(fs, 0, buf);
00372         }
00373     }
00374     else
00375     {
00376         printf("Node \"pca components number\" not found...\n");
00377     }
00378 
00379     cvReleaseFileStorage(&fs);
00380     cvReleaseMemStorage(&storage);
00381 
00382     printf("Successfully read %d pca components\n", m_pca_dim_high);
00383 
00384     return 1;
00385 }
00386 
00387 void CvOneWayDescriptorBase::SavePCADescriptors(const char* filename)
00388 {
00389     CvMemStorage* storage = cvCreateMemStorage();
00390     CvFileStorage* fs = cvOpenFileStorage(filename, storage, CV_STORAGE_WRITE);
00391 
00392     cvWriteInt(fs, "pca components number", m_pca_dim_high);
00393     cvWriteComment(fs, "The first component is the average Vector, so the total number of components is <pca components number> + 1", 0);
00394     cvWriteInt(fs, "patch width", m_patch_size.width);
00395     cvWriteInt(fs, "patch height", m_patch_size.height);
00396 
00397     // pack the affine transforms into a single CvMat and write them
00398     CvMat* poses = cvCreateMat(m_pose_count, 4, CV_32FC1);
00399     for(int i = 0; i < m_pose_count; i++)
00400     {
00401         cvmSet(poses, i, 0, m_poses[i].phi);
00402         cvmSet(poses, i, 1, m_poses[i].theta);
00403         cvmSet(poses, i, 2, m_poses[i].lambda1);
00404         cvmSet(poses, i, 3, m_poses[i].lambda2);
00405     }
00406     cvWrite(fs, "affine poses", poses);
00407     cvReleaseMat(&poses);
00408 
00409     for(int i = 0; i < m_pca_dim_high + 1; i++)
00410     {
00411         char buf[1024];
00412         sprintf(buf, "descriptor for pca component %d", i);
00413         m_pca_descriptors[i].Write(fs, buf);
00414     }
00415 
00416     cvReleaseMemStorage(&storage);
00417     cvReleaseFileStorage(&fs);
00418 }
00419 
00420 void CvOneWayDescriptorBase::Allocate(int train_feature_count)
00421 {
00422     m_train_feature_count = train_feature_count;
00423     m_descriptors = new CvOneWayDescriptor[m_train_feature_count];
00424     for(int i = 0; i < m_train_feature_count; i++)
00425     {
00426         m_descriptors[i].SetPCADimHigh(m_pca_dim_high);
00427         m_descriptors[i].SetPCADimLow(m_pca_dim_low);
00428     }
00429 }
00430 
00431 void CvOneWayDescriptorBase::InitializeDescriptors(IplImage* train_image, const vector<KeyPointEx>& features,
00432                                                            const char* feature_label, int desc_start_idx)
00433 {
00434     for(int i = 0; i < (int)features.size(); i++)
00435     {
00436         CvPoint center = features[i].pt;
00437 
00438         CvRect roi = cvRect(center.x - m_patch_size.width/2, center.y - m_patch_size.height/2, m_patch_size.width, m_patch_size.height);
00439         cvResetImageROI(train_image);
00440         roi = fit_rect_fixedsize(roi, train_image);
00441         cvSetImageROI(train_image, roi);
00442 //        roi = cvGetImageROI(train_image);
00443         if(roi.width != m_patch_size.width || roi.height != m_patch_size.height)
00444         {
00445             continue;
00446         }
00447 
00448         InitializeDescriptor(desc_start_idx + i, train_image, feature_label);
00449 
00450 //        printf("Completed feature %d\n", i);
00451 
00452     }
00453     cvResetImageROI(train_image);
00454 
00455 }
00456 
00457 void CvOneWayDescriptorBase::CreateDescriptorsFromImage(IplImage* src, const std::vector<KeyPointEx>& features)
00458 {
00459     m_train_feature_count = (int)features.size();
00460 
00461     m_descriptors = new CvOneWayDescriptor[m_train_feature_count];
00462 
00463     InitializeDescriptors(src, features);
00464 
00465 }
00466 
00467 #if defined(_KDTREE)
00468 void CvOneWayDescriptorBase::ConvertDescriptorsArrayToTree()
00469 {
00470         int n = this->GetDescriptorCount();
00471         if (n<1)
00472                 return;
00473         int pca_dim_low = this->GetDescriptor(0)->GetPCADimLow();
00474 
00475         //if (!m_pca_descriptors_matrix)
00476         //      m_pca_descriptors_matrix = new ::flann::Matrix<float>(n*m_pose_count,pca_dim_low);
00477         //else
00478         //{
00479         //      if ((m_pca_descriptors_matrix->cols != pca_dim_low)&&(m_pca_descriptors_matrix->rows != n*m_pose_count))
00480         //      {
00481         //              delete m_pca_descriptors_matrix;
00482         //              m_pca_descriptors_matrix = new ::flann::Matrix<float>(n*m_pose_count,pca_dim_low);
00483         //      }
00484         //}
00485 
00486         m_pca_descriptors_matrix = cvCreateMat(n*m_pose_count,pca_dim_low,CV_32FC1);
00487         for (int i=0;i<n;i++)
00488         {
00489                 CvMat** pca_coeffs = m_descriptors[i].GetPCACoeffs();
00490                 for (int j = 0;j<m_pose_count;j++)
00491                 {
00492                         for (int k=0;k<pca_dim_low;k++)
00493                         {
00494                                 m_pca_descriptors_matrix->data.fl[(i*m_pose_count+j)*m_pca_dim_low + k] = pca_coeffs[j]->data.fl[k];
00495                         }
00496                 }
00497         }
00498         cv::Mat pca_descriptors_mat(m_pca_descriptors_matrix,false);
00499 
00500         //::flann::KDTreeIndexParams params;
00501         //params.trees = 1;
00502         //m_pca_descriptors_tree = new KDTree(pca_descriptors_mat);
00503         m_pca_descriptors_tree = new cv::flann::Index(pca_descriptors_mat,cv::flann::KDTreeIndexParams(1));
00504         //cvReleaseMat(&m_pca_descriptors_matrix);
00505         //m_pca_descriptors_tree->buildIndex();
00506 }
00507 #endif
00508 
00509 void CvOneWayDescriptorObject::Allocate(int train_feature_count, int object_feature_count)
00510 {
00511     CvOneWayDescriptorBase::Allocate(train_feature_count);
00512     m_object_feature_count = object_feature_count;
00513 
00514     m_part_id = new int[m_object_feature_count];
00515 }
00516 
00517 
00518 void CvOneWayDescriptorObject::InitializeObjectDescriptors(IplImage* train_image, const vector<KeyPointEx>& features,
00519                                         const char* feature_label, int desc_start_idx, float scale, int is_background)
00520 {
00521     InitializeDescriptors(train_image, features, feature_label, desc_start_idx);
00522 
00523     for(int i = 0; i < (int)features.size(); i++)
00524     {
00525         CvPoint center = features[i].pt;
00526 
00527         if(!is_background)
00528         {
00529             // remember descriptor part id
00530             CvPoint center_scaled = cvPoint(round(center.x*scale), round(center.y*scale));
00531             m_part_id[i + desc_start_idx] = MatchPointToPart(center_scaled);
00532         }
00533     }
00534     cvResetImageROI(train_image);
00535 }
00536 
00537 int CvOneWayDescriptorObject::IsDescriptorObject(int desc_idx) const
00538 {
00539     return desc_idx < m_object_feature_count ? 1 : 0;
00540 }
00541 
00542 int CvOneWayDescriptorObject::MatchPointToPart(CvPoint pt) const
00543 {
00544     int idx = -1;
00545     const int max_dist = 10;
00546     for(int i = 0; i < (int)m_train_features.size(); i++)
00547     {
00548         if(length(pt - m_train_features[i].pt) < max_dist)
00549         {
00550             idx = i;
00551             break;
00552         }
00553     }
00554 
00555     return idx;
00556 }
00557 
00558 int CvOneWayDescriptorObject::GetDescriptorPart(int desc_idx) const
00559 {
00560     //    return MatchPointToPart(GetDescriptor(desc_idx)->GetCenter());
00561     return desc_idx < m_object_feature_count ? m_part_id[desc_idx] : -1;
00562 }
00563 
00564 CvOneWayDescriptorObject::CvOneWayDescriptorObject(CvSize patch_size, int pose_count, const char* train_path,
00565                                                    const char* pca_config, const char* pca_hr_config, const char* pca_desc_config, int pyr_levels) :
00566 CvOneWayDescriptorBase(patch_size, pose_count, train_path, pca_config, pca_hr_config, pca_desc_config, pyr_levels)
00567 {
00568     m_part_id = 0;
00569 }
00570 
00571 CvOneWayDescriptorObject::~CvOneWayDescriptorObject()
00572 {
00573     delete []m_part_id;
00574 }
00575 
00576 vector<feature_t> CvOneWayDescriptorObject::_GetLabeledFeatures() const
00577 {
00578     vector<feature_t> features;
00579     for(size_t i = 0; i < m_train_features.size(); i++)
00580     {
00581         features.push_back(m_train_features[i]);
00582     }
00583 
00584     return features;
00585 }
00586 
00587 void eigenvector2image(CvMat* eigenvector, IplImage* img)
00588 {
00589     CvRect roi = cvGetImageROI(img);
00590     if(img->depth == 32)
00591     {
00592         for(int y = 0; y < roi.height; y++)
00593         {
00594             for(int x = 0; x < roi.width; x++)
00595             {
00596                 float val = cvmGet(eigenvector, 0, roi.width*y + x);
00597                 *((float*)(img->imageData + (roi.y + y)*img->widthStep) + roi.x + x) = val;
00598             }
00599         }
00600     }
00601     else
00602     {
00603         for(int y = 0; y < roi.height; y++)
00604         {
00605             for(int x = 0; x < roi.width; x++)
00606             {
00607                 float val = cvmGet(eigenvector, 0, roi.width*y + x);
00608                 img->imageData[(roi.y + y)*img->widthStep + roi.x + x] = (unsigned char)val;
00609             }
00610         }
00611     }
00612 }
00613 
00614 void readPCAFeatures(const char* filename, CvMat** avg, CvMat** eigenvectors)
00615 {
00616     CvMemStorage* storage = cvCreateMemStorage();
00617     CvFileStorage* fs = cvOpenFileStorage(filename, storage, CV_STORAGE_READ);
00618     if(!fs)
00619     {
00620         printf("Cannot open file %s! Exiting!", filename);
00621         cvReleaseMemStorage(&storage);
00622     }
00623 
00624     CvFileNode* node = cvGetFileNodeByName(fs, 0, "avg");
00625     CvMat* _avg = (CvMat*)cvRead(fs, node);
00626     node = cvGetFileNodeByName(fs, 0, "eigenvectors");
00627     CvMat* _eigenvectors = (CvMat*)cvRead(fs, node);
00628 
00629     *avg = cvCloneMat(_avg);
00630     *eigenvectors = cvCloneMat(_eigenvectors);
00631 
00632     cvReleaseMat(&_avg);
00633     cvReleaseMat(&_eigenvectors);
00634     cvReleaseFileStorage(&fs);
00635     cvReleaseMemStorage(&storage);
00636 }


outlet_pose_estimation
Author(s): Patrick Mihelich
autogenerated on Mon Dec 2 2013 13:21:49