SceneRegion.h
Go to the documentation of this file.
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-groovy-object_manipulation/doc_stacks/2014-10-06_02-51-20.607186/object_manipulation/object_manipulation_msgs/msg/SceneRegion.msg */
00002 #ifndef OBJECT_MANIPULATION_MSGS_MESSAGE_SCENEREGION_H
00003 #define OBJECT_MANIPULATION_MSGS_MESSAGE_SCENEREGION_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012 
00013 #include "ros/macros.h"
00014 
00015 #include "ros/assert.h"
00016 
00017 #include "sensor_msgs/PointCloud2.h"
00018 #include "sensor_msgs/Image.h"
00019 #include "sensor_msgs/Image.h"
00020 #include "sensor_msgs/CameraInfo.h"
00021 #include "geometry_msgs/PoseStamped.h"
00022 #include "geometry_msgs/Vector3.h"
00023 
00024 namespace object_manipulation_msgs
00025 {
00026 template <class ContainerAllocator>
00027 struct SceneRegion_ {
00028   typedef SceneRegion_<ContainerAllocator> Type;
00029 
00030   SceneRegion_()
00031   : cloud()
00032   , mask()
00033   , image()
00034   , disparity_image()
00035   , cam_info()
00036   , roi_box_pose()
00037   , roi_box_dims()
00038   {
00039   }
00040 
00041   SceneRegion_(const ContainerAllocator& _alloc)
00042   : cloud(_alloc)
00043   , mask(_alloc)
00044   , image(_alloc)
00045   , disparity_image(_alloc)
00046   , cam_info(_alloc)
00047   , roi_box_pose(_alloc)
00048   , roi_box_dims(_alloc)
00049   {
00050   }
00051 
00052   typedef  ::sensor_msgs::PointCloud2_<ContainerAllocator>  _cloud_type;
00053    ::sensor_msgs::PointCloud2_<ContainerAllocator>  cloud;
00054 
00055   typedef std::vector<int32_t, typename ContainerAllocator::template rebind<int32_t>::other >  _mask_type;
00056   std::vector<int32_t, typename ContainerAllocator::template rebind<int32_t>::other >  mask;
00057 
00058   typedef  ::sensor_msgs::Image_<ContainerAllocator>  _image_type;
00059    ::sensor_msgs::Image_<ContainerAllocator>  image;
00060 
00061   typedef  ::sensor_msgs::Image_<ContainerAllocator>  _disparity_image_type;
00062    ::sensor_msgs::Image_<ContainerAllocator>  disparity_image;
00063 
00064   typedef  ::sensor_msgs::CameraInfo_<ContainerAllocator>  _cam_info_type;
00065    ::sensor_msgs::CameraInfo_<ContainerAllocator>  cam_info;
00066 
00067   typedef  ::geometry_msgs::PoseStamped_<ContainerAllocator>  _roi_box_pose_type;
00068    ::geometry_msgs::PoseStamped_<ContainerAllocator>  roi_box_pose;
00069 
00070   typedef  ::geometry_msgs::Vector3_<ContainerAllocator>  _roi_box_dims_type;
00071    ::geometry_msgs::Vector3_<ContainerAllocator>  roi_box_dims;
00072 
00073 
00074   typedef boost::shared_ptr< ::object_manipulation_msgs::SceneRegion_<ContainerAllocator> > Ptr;
00075   typedef boost::shared_ptr< ::object_manipulation_msgs::SceneRegion_<ContainerAllocator>  const> ConstPtr;
00076   boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00077 }; // struct SceneRegion
00078 typedef  ::object_manipulation_msgs::SceneRegion_<std::allocator<void> > SceneRegion;
00079 
00080 typedef boost::shared_ptr< ::object_manipulation_msgs::SceneRegion> SceneRegionPtr;
00081 typedef boost::shared_ptr< ::object_manipulation_msgs::SceneRegion const> SceneRegionConstPtr;
00082 
00083 
00084 template<typename ContainerAllocator>
00085 std::ostream& operator<<(std::ostream& s, const  ::object_manipulation_msgs::SceneRegion_<ContainerAllocator> & v)
00086 {
00087   ros::message_operations::Printer< ::object_manipulation_msgs::SceneRegion_<ContainerAllocator> >::stream(s, "", v);
00088   return s;}
00089 
00090 } // namespace object_manipulation_msgs
00091 
00092 namespace ros
00093 {
00094 namespace message_traits
00095 {
00096 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::SceneRegion_<ContainerAllocator> > : public TrueType {};
00097 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::SceneRegion_<ContainerAllocator>  const> : public TrueType {};
00098 template<class ContainerAllocator>
00099 struct MD5Sum< ::object_manipulation_msgs::SceneRegion_<ContainerAllocator> > {
00100   static const char* value() 
00101   {
00102     return "0a9ab02b19292633619876c9d247690c";
00103   }
00104 
00105   static const char* value(const  ::object_manipulation_msgs::SceneRegion_<ContainerAllocator> &) { return value(); } 
00106   static const uint64_t static_value1 = 0x0a9ab02b19292633ULL;
00107   static const uint64_t static_value2 = 0x619876c9d247690cULL;
00108 };
00109 
00110 template<class ContainerAllocator>
00111 struct DataType< ::object_manipulation_msgs::SceneRegion_<ContainerAllocator> > {
00112   static const char* value() 
00113   {
00114     return "object_manipulation_msgs/SceneRegion";
00115   }
00116 
00117   static const char* value(const  ::object_manipulation_msgs::SceneRegion_<ContainerAllocator> &) { return value(); } 
00118 };
00119 
00120 template<class ContainerAllocator>
00121 struct Definition< ::object_manipulation_msgs::SceneRegion_<ContainerAllocator> > {
00122   static const char* value() 
00123   {
00124     return "# Point cloud\n\
00125 sensor_msgs/PointCloud2 cloud\n\
00126 \n\
00127 # Indices for the region of interest\n\
00128 int32[] mask\n\
00129 \n\
00130 # One of the corresponding 2D images, if applicable\n\
00131 sensor_msgs/Image image\n\
00132 \n\
00133 # The disparity image, if applicable\n\
00134 sensor_msgs/Image disparity_image\n\
00135 \n\
00136 # Camera info for the camera that took the image\n\
00137 sensor_msgs/CameraInfo cam_info\n\
00138 \n\
00139 # a 3D region of interest for grasp planning\n\
00140 geometry_msgs/PoseStamped  roi_box_pose\n\
00141 geometry_msgs/Vector3      roi_box_dims\n\
00142 \n\
00143 ================================================================================\n\
00144 MSG: sensor_msgs/PointCloud2\n\
00145 # This message holds a collection of N-dimensional points, which may\n\
00146 # contain additional information such as normals, intensity, etc. The\n\
00147 # point data is stored as a binary blob, its layout described by the\n\
00148 # contents of the \"fields\" array.\n\
00149 \n\
00150 # The point cloud data may be organized 2d (image-like) or 1d\n\
00151 # (unordered). Point clouds organized as 2d images may be produced by\n\
00152 # camera depth sensors such as stereo or time-of-flight.\n\
00153 \n\
00154 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00155 # points).\n\
00156 Header header\n\
00157 \n\
00158 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00159 # 1 and width is the length of the point cloud.\n\
00160 uint32 height\n\
00161 uint32 width\n\
00162 \n\
00163 # Describes the channels and their layout in the binary data blob.\n\
00164 PointField[] fields\n\
00165 \n\
00166 bool    is_bigendian # Is this data bigendian?\n\
00167 uint32  point_step   # Length of a point in bytes\n\
00168 uint32  row_step     # Length of a row in bytes\n\
00169 uint8[] data         # Actual point data, size is (row_step*height)\n\
00170 \n\
00171 bool is_dense        # True if there are no invalid points\n\
00172 \n\
00173 ================================================================================\n\
00174 MSG: std_msgs/Header\n\
00175 # Standard metadata for higher-level stamped data types.\n\
00176 # This is generally used to communicate timestamped data \n\
00177 # in a particular coordinate frame.\n\
00178 # \n\
00179 # sequence ID: consecutively increasing ID \n\
00180 uint32 seq\n\
00181 #Two-integer timestamp that is expressed as:\n\
00182 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00183 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00184 # time-handling sugar is provided by the client library\n\
00185 time stamp\n\
00186 #Frame this data is associated with\n\
00187 # 0: no frame\n\
00188 # 1: global frame\n\
00189 string frame_id\n\
00190 \n\
00191 ================================================================================\n\
00192 MSG: sensor_msgs/PointField\n\
00193 # This message holds the description of one point entry in the\n\
00194 # PointCloud2 message format.\n\
00195 uint8 INT8    = 1\n\
00196 uint8 UINT8   = 2\n\
00197 uint8 INT16   = 3\n\
00198 uint8 UINT16  = 4\n\
00199 uint8 INT32   = 5\n\
00200 uint8 UINT32  = 6\n\
00201 uint8 FLOAT32 = 7\n\
00202 uint8 FLOAT64 = 8\n\
00203 \n\
00204 string name      # Name of field\n\
00205 uint32 offset    # Offset from start of point struct\n\
00206 uint8  datatype  # Datatype enumeration, see above\n\
00207 uint32 count     # How many elements in the field\n\
00208 \n\
00209 ================================================================================\n\
00210 MSG: sensor_msgs/Image\n\
00211 # This message contains an uncompressed image\n\
00212 # (0, 0) is at top-left corner of image\n\
00213 #\n\
00214 \n\
00215 Header header        # Header timestamp should be acquisition time of image\n\
00216                      # Header frame_id should be optical frame of camera\n\
00217                      # origin of frame should be optical center of cameara\n\
00218                      # +x should point to the right in the image\n\
00219                      # +y should point down in the image\n\
00220                      # +z should point into to plane of the image\n\
00221                      # If the frame_id here and the frame_id of the CameraInfo\n\
00222                      # message associated with the image conflict\n\
00223                      # the behavior is undefined\n\
00224 \n\
00225 uint32 height         # image height, that is, number of rows\n\
00226 uint32 width          # image width, that is, number of columns\n\
00227 \n\
00228 # The legal values for encoding are in file src/image_encodings.cpp\n\
00229 # If you want to standardize a new string format, join\n\
00230 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00231 \n\
00232 string encoding       # Encoding of pixels -- channel meaning, ordering, size\n\
00233                       # taken from the list of strings in include/sensor_msgs/image_encodings.h\n\
00234 \n\
00235 uint8 is_bigendian    # is this data bigendian?\n\
00236 uint32 step           # Full row length in bytes\n\
00237 uint8[] data          # actual matrix data, size is (step * rows)\n\
00238 \n\
00239 ================================================================================\n\
00240 MSG: sensor_msgs/CameraInfo\n\
00241 # This message defines meta information for a camera. It should be in a\n\
00242 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00243 # image topics named:\n\
00244 #\n\
00245 #   image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00246 #   image            - monochrome, distorted\n\
00247 #   image_color      - color, distorted\n\
00248 #   image_rect       - monochrome, rectified\n\
00249 #   image_rect_color - color, rectified\n\
00250 #\n\
00251 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00252 # for producing the four processed image topics from image_raw and\n\
00253 # camera_info. The meaning of the camera parameters are described in\n\
00254 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00255 #\n\
00256 # The image_geometry package provides a user-friendly interface to\n\
00257 # common operations using this meta information. If you want to, e.g.,\n\
00258 # project a 3d point into image coordinates, we strongly recommend\n\
00259 # using image_geometry.\n\
00260 #\n\
00261 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00262 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00263 # indicates an uncalibrated camera.\n\
00264 \n\
00265 #######################################################################\n\
00266 #                     Image acquisition info                          #\n\
00267 #######################################################################\n\
00268 \n\
00269 # Time of image acquisition, camera coordinate frame ID\n\
00270 Header header    # Header timestamp should be acquisition time of image\n\
00271                  # Header frame_id should be optical frame of camera\n\
00272                  # origin of frame should be optical center of camera\n\
00273                  # +x should point to the right in the image\n\
00274                  # +y should point down in the image\n\
00275                  # +z should point into the plane of the image\n\
00276 \n\
00277 \n\
00278 #######################################################################\n\
00279 #                      Calibration Parameters                         #\n\
00280 #######################################################################\n\
00281 # These are fixed during camera calibration. Their values will be the #\n\
00282 # same in all messages until the camera is recalibrated. Note that    #\n\
00283 # self-calibrating systems may \"recalibrate\" frequently.              #\n\
00284 #                                                                     #\n\
00285 # The internal parameters can be used to warp a raw (distorted) image #\n\
00286 # to:                                                                 #\n\
00287 #   1. An undistorted image (requires D and K)                        #\n\
00288 #   2. A rectified image (requires D, K, R)                           #\n\
00289 # The projection matrix P projects 3D points into the rectified image.#\n\
00290 #######################################################################\n\
00291 \n\
00292 # The image dimensions with which the camera was calibrated. Normally\n\
00293 # this will be the full camera resolution in pixels.\n\
00294 uint32 height\n\
00295 uint32 width\n\
00296 \n\
00297 # The distortion model used. Supported models are listed in\n\
00298 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00299 # simple model of radial and tangential distortion - is sufficent.\n\
00300 string distortion_model\n\
00301 \n\
00302 # The distortion parameters, size depending on the distortion model.\n\
00303 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00304 float64[] D\n\
00305 \n\
00306 # Intrinsic camera matrix for the raw (distorted) images.\n\
00307 #     [fx  0 cx]\n\
00308 # K = [ 0 fy cy]\n\
00309 #     [ 0  0  1]\n\
00310 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00311 # coordinates using the focal lengths (fx, fy) and principal point\n\
00312 # (cx, cy).\n\
00313 float64[9]  K # 3x3 row-major matrix\n\
00314 \n\
00315 # Rectification matrix (stereo cameras only)\n\
00316 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00317 # stereo image plane so that epipolar lines in both stereo images are\n\
00318 # parallel.\n\
00319 float64[9]  R # 3x3 row-major matrix\n\
00320 \n\
00321 # Projection/camera matrix\n\
00322 #     [fx'  0  cx' Tx]\n\
00323 # P = [ 0  fy' cy' Ty]\n\
00324 #     [ 0   0   1   0]\n\
00325 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00326 #  of the processed (rectified) image. That is, the left 3x3 portion\n\
00327 #  is the normal camera intrinsic matrix for the rectified image.\n\
00328 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00329 #  coordinates using the focal lengths (fx', fy') and principal point\n\
00330 #  (cx', cy') - these may differ from the values in K.\n\
00331 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00332 #  also have R = the identity and P[1:3,1:3] = K.\n\
00333 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00334 #  position of the optical center of the second camera in the first\n\
00335 #  camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00336 #  stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00337 #  the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00338 #  Tx = -fx' * B, where B is the baseline between the cameras.\n\
00339 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00340 #  the rectified image is given by:\n\
00341 #  [u v w]' = P * [X Y Z 1]'\n\
00342 #         x = u / w\n\
00343 #         y = v / w\n\
00344 #  This holds for both images of a stereo pair.\n\
00345 float64[12] P # 3x4 row-major matrix\n\
00346 \n\
00347 \n\
00348 #######################################################################\n\
00349 #                      Operational Parameters                         #\n\
00350 #######################################################################\n\
00351 # These define the image region actually captured by the camera       #\n\
00352 # driver. Although they affect the geometry of the output image, they #\n\
00353 # may be changed freely without recalibrating the camera.             #\n\
00354 #######################################################################\n\
00355 \n\
00356 # Binning refers here to any camera setting which combines rectangular\n\
00357 #  neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00358 #  resolution of the output image to\n\
00359 #  (width / binning_x) x (height / binning_y).\n\
00360 # The default values binning_x = binning_y = 0 is considered the same\n\
00361 #  as binning_x = binning_y = 1 (no subsampling).\n\
00362 uint32 binning_x\n\
00363 uint32 binning_y\n\
00364 \n\
00365 # Region of interest (subwindow of full camera resolution), given in\n\
00366 #  full resolution (unbinned) image coordinates. A particular ROI\n\
00367 #  always denotes the same window of pixels on the camera sensor,\n\
00368 #  regardless of binning settings.\n\
00369 # The default setting of roi (all values 0) is considered the same as\n\
00370 #  full resolution (roi.width = width, roi.height = height).\n\
00371 RegionOfInterest roi\n\
00372 \n\
00373 ================================================================================\n\
00374 MSG: sensor_msgs/RegionOfInterest\n\
00375 # This message is used to specify a region of interest within an image.\n\
00376 #\n\
00377 # When used to specify the ROI setting of the camera when the image was\n\
00378 # taken, the height and width fields should either match the height and\n\
00379 # width fields for the associated image; or height = width = 0\n\
00380 # indicates that the full resolution image was captured.\n\
00381 \n\
00382 uint32 x_offset  # Leftmost pixel of the ROI\n\
00383                  # (0 if the ROI includes the left edge of the image)\n\
00384 uint32 y_offset  # Topmost pixel of the ROI\n\
00385                  # (0 if the ROI includes the top edge of the image)\n\
00386 uint32 height    # Height of ROI\n\
00387 uint32 width     # Width of ROI\n\
00388 \n\
00389 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00390 # ROI in this message. Typically this should be False if the full image\n\
00391 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00392 # used).\n\
00393 bool do_rectify\n\
00394 \n\
00395 ================================================================================\n\
00396 MSG: geometry_msgs/PoseStamped\n\
00397 # A Pose with reference coordinate frame and timestamp\n\
00398 Header header\n\
00399 Pose pose\n\
00400 \n\
00401 ================================================================================\n\
00402 MSG: geometry_msgs/Pose\n\
00403 # A representation of pose in free space, composed of postion and orientation. \n\
00404 Point position\n\
00405 Quaternion orientation\n\
00406 \n\
00407 ================================================================================\n\
00408 MSG: geometry_msgs/Point\n\
00409 # This contains the position of a point in free space\n\
00410 float64 x\n\
00411 float64 y\n\
00412 float64 z\n\
00413 \n\
00414 ================================================================================\n\
00415 MSG: geometry_msgs/Quaternion\n\
00416 # This represents an orientation in free space in quaternion form.\n\
00417 \n\
00418 float64 x\n\
00419 float64 y\n\
00420 float64 z\n\
00421 float64 w\n\
00422 \n\
00423 ================================================================================\n\
00424 MSG: geometry_msgs/Vector3\n\
00425 # This represents a vector in free space. \n\
00426 \n\
00427 float64 x\n\
00428 float64 y\n\
00429 float64 z\n\
00430 ";
00431   }
00432 
00433   static const char* value(const  ::object_manipulation_msgs::SceneRegion_<ContainerAllocator> &) { return value(); } 
00434 };
00435 
00436 } // namespace message_traits
00437 } // namespace ros
00438 
00439 namespace ros
00440 {
00441 namespace serialization
00442 {
00443 
00444 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::SceneRegion_<ContainerAllocator> >
00445 {
00446   template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00447   {
00448     stream.next(m.cloud);
00449     stream.next(m.mask);
00450     stream.next(m.image);
00451     stream.next(m.disparity_image);
00452     stream.next(m.cam_info);
00453     stream.next(m.roi_box_pose);
00454     stream.next(m.roi_box_dims);
00455   }
00456 
00457   ROS_DECLARE_ALLINONE_SERIALIZER;
00458 }; // struct SceneRegion_
00459 } // namespace serialization
00460 } // namespace ros
00461 
00462 namespace ros
00463 {
00464 namespace message_operations
00465 {
00466 
00467 template<class ContainerAllocator>
00468 struct Printer< ::object_manipulation_msgs::SceneRegion_<ContainerAllocator> >
00469 {
00470   template<typename Stream> static void stream(Stream& s, const std::string& indent, const  ::object_manipulation_msgs::SceneRegion_<ContainerAllocator> & v) 
00471   {
00472     s << indent << "cloud: ";
00473 s << std::endl;
00474     Printer< ::sensor_msgs::PointCloud2_<ContainerAllocator> >::stream(s, indent + "  ", v.cloud);
00475     s << indent << "mask[]" << std::endl;
00476     for (size_t i = 0; i < v.mask.size(); ++i)
00477     {
00478       s << indent << "  mask[" << i << "]: ";
00479       Printer<int32_t>::stream(s, indent + "  ", v.mask[i]);
00480     }
00481     s << indent << "image: ";
00482 s << std::endl;
00483     Printer< ::sensor_msgs::Image_<ContainerAllocator> >::stream(s, indent + "  ", v.image);
00484     s << indent << "disparity_image: ";
00485 s << std::endl;
00486     Printer< ::sensor_msgs::Image_<ContainerAllocator> >::stream(s, indent + "  ", v.disparity_image);
00487     s << indent << "cam_info: ";
00488 s << std::endl;
00489     Printer< ::sensor_msgs::CameraInfo_<ContainerAllocator> >::stream(s, indent + "  ", v.cam_info);
00490     s << indent << "roi_box_pose: ";
00491 s << std::endl;
00492     Printer< ::geometry_msgs::PoseStamped_<ContainerAllocator> >::stream(s, indent + "  ", v.roi_box_pose);
00493     s << indent << "roi_box_dims: ";
00494 s << std::endl;
00495     Printer< ::geometry_msgs::Vector3_<ContainerAllocator> >::stream(s, indent + "  ", v.roi_box_dims);
00496   }
00497 };
00498 
00499 
00500 } // namespace message_operations
00501 } // namespace ros
00502 
00503 #endif // OBJECT_MANIPULATION_MSGS_MESSAGE_SCENEREGION_H
00504 


object_manipulation_msgs
Author(s): Matei Ciocarlie
autogenerated on Mon Oct 6 2014 02:58:12