PickupAction.h
Go to the documentation of this file.
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-groovy-object_manipulation/doc_stacks/2014-10-06_02-51-20.607186/object_manipulation/object_manipulation_msgs/msg/PickupAction.msg */
00002 #ifndef OBJECT_MANIPULATION_MSGS_MESSAGE_PICKUPACTION_H
00003 #define OBJECT_MANIPULATION_MSGS_MESSAGE_PICKUPACTION_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012 
00013 #include "ros/macros.h"
00014 
00015 #include "ros/assert.h"
00016 
00017 #include "object_manipulation_msgs/PickupActionGoal.h"
00018 #include "object_manipulation_msgs/PickupActionResult.h"
00019 #include "object_manipulation_msgs/PickupActionFeedback.h"
00020 
00021 namespace object_manipulation_msgs
00022 {
00023 template <class ContainerAllocator>
00024 struct PickupAction_ {
00025   typedef PickupAction_<ContainerAllocator> Type;
00026 
00027   PickupAction_()
00028   : action_goal()
00029   , action_result()
00030   , action_feedback()
00031   {
00032   }
00033 
00034   PickupAction_(const ContainerAllocator& _alloc)
00035   : action_goal(_alloc)
00036   , action_result(_alloc)
00037   , action_feedback(_alloc)
00038   {
00039   }
00040 
00041   typedef  ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator>  _action_goal_type;
00042    ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator>  action_goal;
00043 
00044   typedef  ::object_manipulation_msgs::PickupActionResult_<ContainerAllocator>  _action_result_type;
00045    ::object_manipulation_msgs::PickupActionResult_<ContainerAllocator>  action_result;
00046 
00047   typedef  ::object_manipulation_msgs::PickupActionFeedback_<ContainerAllocator>  _action_feedback_type;
00048    ::object_manipulation_msgs::PickupActionFeedback_<ContainerAllocator>  action_feedback;
00049 
00050 
00051   typedef boost::shared_ptr< ::object_manipulation_msgs::PickupAction_<ContainerAllocator> > Ptr;
00052   typedef boost::shared_ptr< ::object_manipulation_msgs::PickupAction_<ContainerAllocator>  const> ConstPtr;
00053   boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00054 }; // struct PickupAction
00055 typedef  ::object_manipulation_msgs::PickupAction_<std::allocator<void> > PickupAction;
00056 
00057 typedef boost::shared_ptr< ::object_manipulation_msgs::PickupAction> PickupActionPtr;
00058 typedef boost::shared_ptr< ::object_manipulation_msgs::PickupAction const> PickupActionConstPtr;
00059 
00060 
00061 template<typename ContainerAllocator>
00062 std::ostream& operator<<(std::ostream& s, const  ::object_manipulation_msgs::PickupAction_<ContainerAllocator> & v)
00063 {
00064   ros::message_operations::Printer< ::object_manipulation_msgs::PickupAction_<ContainerAllocator> >::stream(s, "", v);
00065   return s;}
00066 
00067 } // namespace object_manipulation_msgs
00068 
00069 namespace ros
00070 {
00071 namespace message_traits
00072 {
00073 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::PickupAction_<ContainerAllocator> > : public TrueType {};
00074 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::PickupAction_<ContainerAllocator>  const> : public TrueType {};
00075 template<class ContainerAllocator>
00076 struct MD5Sum< ::object_manipulation_msgs::PickupAction_<ContainerAllocator> > {
00077   static const char* value() 
00078   {
00079     return "0776b761eb0232f3e1208a2b89c18079";
00080   }
00081 
00082   static const char* value(const  ::object_manipulation_msgs::PickupAction_<ContainerAllocator> &) { return value(); } 
00083   static const uint64_t static_value1 = 0x0776b761eb0232f3ULL;
00084   static const uint64_t static_value2 = 0xe1208a2b89c18079ULL;
00085 };
00086 
00087 template<class ContainerAllocator>
00088 struct DataType< ::object_manipulation_msgs::PickupAction_<ContainerAllocator> > {
00089   static const char* value() 
00090   {
00091     return "object_manipulation_msgs/PickupAction";
00092   }
00093 
00094   static const char* value(const  ::object_manipulation_msgs::PickupAction_<ContainerAllocator> &) { return value(); } 
00095 };
00096 
00097 template<class ContainerAllocator>
00098 struct Definition< ::object_manipulation_msgs::PickupAction_<ContainerAllocator> > {
00099   static const char* value() 
00100   {
00101     return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00102 \n\
00103 PickupActionGoal action_goal\n\
00104 PickupActionResult action_result\n\
00105 PickupActionFeedback action_feedback\n\
00106 \n\
00107 ================================================================================\n\
00108 MSG: object_manipulation_msgs/PickupActionGoal\n\
00109 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00110 \n\
00111 Header header\n\
00112 actionlib_msgs/GoalID goal_id\n\
00113 PickupGoal goal\n\
00114 \n\
00115 ================================================================================\n\
00116 MSG: std_msgs/Header\n\
00117 # Standard metadata for higher-level stamped data types.\n\
00118 # This is generally used to communicate timestamped data \n\
00119 # in a particular coordinate frame.\n\
00120 # \n\
00121 # sequence ID: consecutively increasing ID \n\
00122 uint32 seq\n\
00123 #Two-integer timestamp that is expressed as:\n\
00124 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00125 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00126 # time-handling sugar is provided by the client library\n\
00127 time stamp\n\
00128 #Frame this data is associated with\n\
00129 # 0: no frame\n\
00130 # 1: global frame\n\
00131 string frame_id\n\
00132 \n\
00133 ================================================================================\n\
00134 MSG: actionlib_msgs/GoalID\n\
00135 # The stamp should store the time at which this goal was requested.\n\
00136 # It is used by an action server when it tries to preempt all\n\
00137 # goals that were requested before a certain time\n\
00138 time stamp\n\
00139 \n\
00140 # The id provides a way to associate feedback and\n\
00141 # result message with specific goal requests. The id\n\
00142 # specified must be unique.\n\
00143 string id\n\
00144 \n\
00145 \n\
00146 ================================================================================\n\
00147 MSG: object_manipulation_msgs/PickupGoal\n\
00148 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00149 # An action for picking up an object\n\
00150 \n\
00151 # which arm to be used for grasping\n\
00152 string arm_name\n\
00153 \n\
00154 # the object to be grasped\n\
00155 manipulation_msgs/GraspableObject target\n\
00156 \n\
00157 # a list of grasps to be used\n\
00158 # if empty, the grasp executive will call one of its own planners\n\
00159 manipulation_msgs/Grasp[] desired_grasps\n\
00160 \n\
00161 # how the object should be lifted after the grasp\n\
00162 # the frame_id that this lift is specified in MUST be either the robot_frame \n\
00163 # or the gripper_frame specified in your hand description file\n\
00164 GripperTranslation lift\n\
00165 \n\
00166 # the name that the target object has in the collision map\n\
00167 # can be left empty if no name is available\n\
00168 string collision_object_name\n\
00169 \n\
00170 # the name that the support surface (e.g. table) has in the collision map\n\
00171 # can be left empty if no name is available\n\
00172 string collision_support_surface_name\n\
00173 \n\
00174 # whether collisions between the gripper and the support surface should be acceptable\n\
00175 # during move from pre-grasp to grasp and during lift. Collisions when moving to the\n\
00176 # pre-grasp location are still not allowed even if this is set to true.\n\
00177 bool allow_gripper_support_collision\n\
00178 \n\
00179 # whether reactive grasp execution using tactile sensors should be used\n\
00180 bool use_reactive_execution\n\
00181 \n\
00182 # whether reactive object lifting based on tactile sensors should be used\n\
00183 bool use_reactive_lift\n\
00184 \n\
00185 # set this to true if you only want to query the manipulation pipeline as to what \n\
00186 # grasps it thinks are feasible, without actually executing them. If this is set to \n\
00187 # true, the atempted_grasp_results field of the result will be populated, but no arm \n\
00188 # movement will be attempted\n\
00189 bool only_perform_feasibility_test\n\
00190 \n\
00191 # set this to true if you want to ignore all collisions throughout the pickup \n\
00192 # and also move directly to the pre-grasp using Cartesian controllers\n\
00193 bool ignore_collisions\n\
00194 \n\
00195 # OPTIONAL (These will not have to be filled out most of the time)\n\
00196 # constraints to be imposed on every point in the motion of the arm\n\
00197 arm_navigation_msgs/Constraints path_constraints\n\
00198 \n\
00199 # OPTIONAL (These will not have to be filled out most of the time)\n\
00200 # additional collision operations to be used for every arm movement performed\n\
00201 # during grasping. Note that these will be added on top of (and thus overide) other \n\
00202 # collision operations that the grasping pipeline deems necessary. Should be used\n\
00203 # with care and only if special behaviors are desired\n\
00204 arm_navigation_msgs/OrderedCollisionOperations additional_collision_operations\n\
00205 \n\
00206 # OPTIONAL (These will not have to be filled out most of the time)\n\
00207 # additional link paddings to be used for every arm movement performed\n\
00208 # during grasping. Note that these will be added on top of (and thus overide) other \n\
00209 # link paddings that the grasping pipeline deems necessary. Should be used\n\
00210 # with care and only if special behaviors are desired\n\
00211 arm_navigation_msgs/LinkPadding[] additional_link_padding\n\
00212 \n\
00213 # an optional list of obstacles that we have semantic information about\n\
00214 # and that can be moved in the course of grasping\n\
00215 manipulation_msgs/GraspableObject[] movable_obstacles\n\
00216 \n\
00217 # the maximum contact force to use while grasping (<=0 to disable)\n\
00218 float32 max_contact_force\n\
00219 \n\
00220 \n\
00221 ================================================================================\n\
00222 MSG: manipulation_msgs/GraspableObject\n\
00223 # an object that the object_manipulator can work on\n\
00224 \n\
00225 # a graspable object can be represented in multiple ways. This message\n\
00226 # can contain all of them. Which one is actually used is up to the receiver\n\
00227 # of this message. When adding new representations, one must be careful that\n\
00228 # they have reasonable lightweight defaults indicating that that particular\n\
00229 # representation is not available.\n\
00230 \n\
00231 # the tf frame to be used as a reference frame when combining information from\n\
00232 # the different representations below\n\
00233 string reference_frame_id\n\
00234 \n\
00235 # potential recognition results from a database of models\n\
00236 # all poses are relative to the object reference pose\n\
00237 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00238 \n\
00239 # the point cloud itself\n\
00240 sensor_msgs/PointCloud cluster\n\
00241 \n\
00242 # a region of a PointCloud2 of interest\n\
00243 SceneRegion region\n\
00244 \n\
00245 # the name that this object has in the collision environment\n\
00246 string collision_name\n\
00247 ================================================================================\n\
00248 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00249 # Informs that a specific model from the Model Database has been \n\
00250 # identified at a certain location\n\
00251 \n\
00252 # the database id of the model\n\
00253 int32 model_id\n\
00254 \n\
00255 # if the object was recognized by the ORK pipeline, its type will be in here\n\
00256 # if this is not empty, then the string in here will be converted to a household_objects_database id\n\
00257 # leave this empty if providing an id in the model_id field\n\
00258 object_recognition_msgs/ObjectType type\n\
00259 \n\
00260 # the pose that it can be found in\n\
00261 geometry_msgs/PoseStamped pose\n\
00262 \n\
00263 # a measure of the confidence level in this detection result\n\
00264 float32 confidence\n\
00265 \n\
00266 # the name of the object detector that generated this detection result\n\
00267 string detector_name\n\
00268 \n\
00269 ================================================================================\n\
00270 MSG: object_recognition_msgs/ObjectType\n\
00271 ################################################## OBJECT ID #########################################################\n\
00272 \n\
00273 # Contains information about the type of a found object. Those two sets of parameters together uniquely define an\n\
00274 # object\n\
00275 \n\
00276 # The key of the found object: the unique identifier in the given db\n\
00277 string key\n\
00278 \n\
00279 # The db parameters stored as a JSON/compressed YAML string. An object id does not make sense without the corresponding\n\
00280 # database. E.g., in object_recognition, it can look like: \"{'type':'CouchDB', 'root':'http://localhost'}\"\n\
00281 # There is no conventional format for those parameters and it's nice to keep that flexibility.\n\
00282 # The object_recognition_core as a generic DB type that can read those fields\n\
00283 # Current examples:\n\
00284 # For CouchDB:\n\
00285 #   type: 'CouchDB'\n\
00286 #   root: 'http://localhost:5984'\n\
00287 #   collection: 'object_recognition'\n\
00288 # For SQL household database:\n\
00289 #   type: 'SqlHousehold'\n\
00290 #   host: 'wgs36'\n\
00291 #   port: 5432\n\
00292 #   user: 'willow'\n\
00293 #   password: 'willow'\n\
00294 #   name: 'household_objects'\n\
00295 #   module: 'tabletop'\n\
00296 string db\n\
00297 \n\
00298 ================================================================================\n\
00299 MSG: geometry_msgs/PoseStamped\n\
00300 # A Pose with reference coordinate frame and timestamp\n\
00301 Header header\n\
00302 Pose pose\n\
00303 \n\
00304 ================================================================================\n\
00305 MSG: geometry_msgs/Pose\n\
00306 # A representation of pose in free space, composed of postion and orientation. \n\
00307 Point position\n\
00308 Quaternion orientation\n\
00309 \n\
00310 ================================================================================\n\
00311 MSG: geometry_msgs/Point\n\
00312 # This contains the position of a point in free space\n\
00313 float64 x\n\
00314 float64 y\n\
00315 float64 z\n\
00316 \n\
00317 ================================================================================\n\
00318 MSG: geometry_msgs/Quaternion\n\
00319 # This represents an orientation in free space in quaternion form.\n\
00320 \n\
00321 float64 x\n\
00322 float64 y\n\
00323 float64 z\n\
00324 float64 w\n\
00325 \n\
00326 ================================================================================\n\
00327 MSG: sensor_msgs/PointCloud\n\
00328 # This message holds a collection of 3d points, plus optional additional\n\
00329 # information about each point.\n\
00330 \n\
00331 # Time of sensor data acquisition, coordinate frame ID.\n\
00332 Header header\n\
00333 \n\
00334 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00335 # in the frame given in the header.\n\
00336 geometry_msgs/Point32[] points\n\
00337 \n\
00338 # Each channel should have the same number of elements as points array,\n\
00339 # and the data in each channel should correspond 1:1 with each point.\n\
00340 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00341 ChannelFloat32[] channels\n\
00342 \n\
00343 ================================================================================\n\
00344 MSG: geometry_msgs/Point32\n\
00345 # This contains the position of a point in free space(with 32 bits of precision).\n\
00346 # It is recommeded to use Point wherever possible instead of Point32.  \n\
00347 # \n\
00348 # This recommendation is to promote interoperability.  \n\
00349 #\n\
00350 # This message is designed to take up less space when sending\n\
00351 # lots of points at once, as in the case of a PointCloud.  \n\
00352 \n\
00353 float32 x\n\
00354 float32 y\n\
00355 float32 z\n\
00356 ================================================================================\n\
00357 MSG: sensor_msgs/ChannelFloat32\n\
00358 # This message is used by the PointCloud message to hold optional data\n\
00359 # associated with each point in the cloud. The length of the values\n\
00360 # array should be the same as the length of the points array in the\n\
00361 # PointCloud, and each value should be associated with the corresponding\n\
00362 # point.\n\
00363 \n\
00364 # Channel names in existing practice include:\n\
00365 #   \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00366 #              This is opposite to usual conventions but remains for\n\
00367 #              historical reasons. The newer PointCloud2 message has no\n\
00368 #              such problem.\n\
00369 #   \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00370 #           (R,G,B) values packed into the least significant 24 bits,\n\
00371 #           in order.\n\
00372 #   \"intensity\" - laser or pixel intensity.\n\
00373 #   \"distance\"\n\
00374 \n\
00375 # The channel name should give semantics of the channel (e.g.\n\
00376 # \"intensity\" instead of \"value\").\n\
00377 string name\n\
00378 \n\
00379 # The values array should be 1-1 with the elements of the associated\n\
00380 # PointCloud.\n\
00381 float32[] values\n\
00382 \n\
00383 ================================================================================\n\
00384 MSG: manipulation_msgs/SceneRegion\n\
00385 # Point cloud\n\
00386 sensor_msgs/PointCloud2 cloud\n\
00387 \n\
00388 # Indices for the region of interest\n\
00389 int32[] mask\n\
00390 \n\
00391 # One of the corresponding 2D images, if applicable\n\
00392 sensor_msgs/Image image\n\
00393 \n\
00394 # The disparity image, if applicable\n\
00395 sensor_msgs/Image disparity_image\n\
00396 \n\
00397 # Camera info for the camera that took the image\n\
00398 sensor_msgs/CameraInfo cam_info\n\
00399 \n\
00400 # a 3D region of interest for grasp planning\n\
00401 geometry_msgs/PoseStamped  roi_box_pose\n\
00402 geometry_msgs/Vector3      roi_box_dims\n\
00403 \n\
00404 ================================================================================\n\
00405 MSG: sensor_msgs/PointCloud2\n\
00406 # This message holds a collection of N-dimensional points, which may\n\
00407 # contain additional information such as normals, intensity, etc. The\n\
00408 # point data is stored as a binary blob, its layout described by the\n\
00409 # contents of the \"fields\" array.\n\
00410 \n\
00411 # The point cloud data may be organized 2d (image-like) or 1d\n\
00412 # (unordered). Point clouds organized as 2d images may be produced by\n\
00413 # camera depth sensors such as stereo or time-of-flight.\n\
00414 \n\
00415 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00416 # points).\n\
00417 Header header\n\
00418 \n\
00419 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00420 # 1 and width is the length of the point cloud.\n\
00421 uint32 height\n\
00422 uint32 width\n\
00423 \n\
00424 # Describes the channels and their layout in the binary data blob.\n\
00425 PointField[] fields\n\
00426 \n\
00427 bool    is_bigendian # Is this data bigendian?\n\
00428 uint32  point_step   # Length of a point in bytes\n\
00429 uint32  row_step     # Length of a row in bytes\n\
00430 uint8[] data         # Actual point data, size is (row_step*height)\n\
00431 \n\
00432 bool is_dense        # True if there are no invalid points\n\
00433 \n\
00434 ================================================================================\n\
00435 MSG: sensor_msgs/PointField\n\
00436 # This message holds the description of one point entry in the\n\
00437 # PointCloud2 message format.\n\
00438 uint8 INT8    = 1\n\
00439 uint8 UINT8   = 2\n\
00440 uint8 INT16   = 3\n\
00441 uint8 UINT16  = 4\n\
00442 uint8 INT32   = 5\n\
00443 uint8 UINT32  = 6\n\
00444 uint8 FLOAT32 = 7\n\
00445 uint8 FLOAT64 = 8\n\
00446 \n\
00447 string name      # Name of field\n\
00448 uint32 offset    # Offset from start of point struct\n\
00449 uint8  datatype  # Datatype enumeration, see above\n\
00450 uint32 count     # How many elements in the field\n\
00451 \n\
00452 ================================================================================\n\
00453 MSG: sensor_msgs/Image\n\
00454 # This message contains an uncompressed image\n\
00455 # (0, 0) is at top-left corner of image\n\
00456 #\n\
00457 \n\
00458 Header header        # Header timestamp should be acquisition time of image\n\
00459                      # Header frame_id should be optical frame of camera\n\
00460                      # origin of frame should be optical center of cameara\n\
00461                      # +x should point to the right in the image\n\
00462                      # +y should point down in the image\n\
00463                      # +z should point into to plane of the image\n\
00464                      # If the frame_id here and the frame_id of the CameraInfo\n\
00465                      # message associated with the image conflict\n\
00466                      # the behavior is undefined\n\
00467 \n\
00468 uint32 height         # image height, that is, number of rows\n\
00469 uint32 width          # image width, that is, number of columns\n\
00470 \n\
00471 # The legal values for encoding are in file src/image_encodings.cpp\n\
00472 # If you want to standardize a new string format, join\n\
00473 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00474 \n\
00475 string encoding       # Encoding of pixels -- channel meaning, ordering, size\n\
00476                       # taken from the list of strings in include/sensor_msgs/image_encodings.h\n\
00477 \n\
00478 uint8 is_bigendian    # is this data bigendian?\n\
00479 uint32 step           # Full row length in bytes\n\
00480 uint8[] data          # actual matrix data, size is (step * rows)\n\
00481 \n\
00482 ================================================================================\n\
00483 MSG: sensor_msgs/CameraInfo\n\
00484 # This message defines meta information for a camera. It should be in a\n\
00485 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00486 # image topics named:\n\
00487 #\n\
00488 #   image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00489 #   image            - monochrome, distorted\n\
00490 #   image_color      - color, distorted\n\
00491 #   image_rect       - monochrome, rectified\n\
00492 #   image_rect_color - color, rectified\n\
00493 #\n\
00494 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00495 # for producing the four processed image topics from image_raw and\n\
00496 # camera_info. The meaning of the camera parameters are described in\n\
00497 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00498 #\n\
00499 # The image_geometry package provides a user-friendly interface to\n\
00500 # common operations using this meta information. If you want to, e.g.,\n\
00501 # project a 3d point into image coordinates, we strongly recommend\n\
00502 # using image_geometry.\n\
00503 #\n\
00504 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00505 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00506 # indicates an uncalibrated camera.\n\
00507 \n\
00508 #######################################################################\n\
00509 #                     Image acquisition info                          #\n\
00510 #######################################################################\n\
00511 \n\
00512 # Time of image acquisition, camera coordinate frame ID\n\
00513 Header header    # Header timestamp should be acquisition time of image\n\
00514                  # Header frame_id should be optical frame of camera\n\
00515                  # origin of frame should be optical center of camera\n\
00516                  # +x should point to the right in the image\n\
00517                  # +y should point down in the image\n\
00518                  # +z should point into the plane of the image\n\
00519 \n\
00520 \n\
00521 #######################################################################\n\
00522 #                      Calibration Parameters                         #\n\
00523 #######################################################################\n\
00524 # These are fixed during camera calibration. Their values will be the #\n\
00525 # same in all messages until the camera is recalibrated. Note that    #\n\
00526 # self-calibrating systems may \"recalibrate\" frequently.              #\n\
00527 #                                                                     #\n\
00528 # The internal parameters can be used to warp a raw (distorted) image #\n\
00529 # to:                                                                 #\n\
00530 #   1. An undistorted image (requires D and K)                        #\n\
00531 #   2. A rectified image (requires D, K, R)                           #\n\
00532 # The projection matrix P projects 3D points into the rectified image.#\n\
00533 #######################################################################\n\
00534 \n\
00535 # The image dimensions with which the camera was calibrated. Normally\n\
00536 # this will be the full camera resolution in pixels.\n\
00537 uint32 height\n\
00538 uint32 width\n\
00539 \n\
00540 # The distortion model used. Supported models are listed in\n\
00541 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00542 # simple model of radial and tangential distortion - is sufficent.\n\
00543 string distortion_model\n\
00544 \n\
00545 # The distortion parameters, size depending on the distortion model.\n\
00546 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00547 float64[] D\n\
00548 \n\
00549 # Intrinsic camera matrix for the raw (distorted) images.\n\
00550 #     [fx  0 cx]\n\
00551 # K = [ 0 fy cy]\n\
00552 #     [ 0  0  1]\n\
00553 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00554 # coordinates using the focal lengths (fx, fy) and principal point\n\
00555 # (cx, cy).\n\
00556 float64[9]  K # 3x3 row-major matrix\n\
00557 \n\
00558 # Rectification matrix (stereo cameras only)\n\
00559 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00560 # stereo image plane so that epipolar lines in both stereo images are\n\
00561 # parallel.\n\
00562 float64[9]  R # 3x3 row-major matrix\n\
00563 \n\
00564 # Projection/camera matrix\n\
00565 #     [fx'  0  cx' Tx]\n\
00566 # P = [ 0  fy' cy' Ty]\n\
00567 #     [ 0   0   1   0]\n\
00568 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00569 #  of the processed (rectified) image. That is, the left 3x3 portion\n\
00570 #  is the normal camera intrinsic matrix for the rectified image.\n\
00571 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00572 #  coordinates using the focal lengths (fx', fy') and principal point\n\
00573 #  (cx', cy') - these may differ from the values in K.\n\
00574 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00575 #  also have R = the identity and P[1:3,1:3] = K.\n\
00576 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00577 #  position of the optical center of the second camera in the first\n\
00578 #  camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00579 #  stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00580 #  the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00581 #  Tx = -fx' * B, where B is the baseline between the cameras.\n\
00582 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00583 #  the rectified image is given by:\n\
00584 #  [u v w]' = P * [X Y Z 1]'\n\
00585 #         x = u / w\n\
00586 #         y = v / w\n\
00587 #  This holds for both images of a stereo pair.\n\
00588 float64[12] P # 3x4 row-major matrix\n\
00589 \n\
00590 \n\
00591 #######################################################################\n\
00592 #                      Operational Parameters                         #\n\
00593 #######################################################################\n\
00594 # These define the image region actually captured by the camera       #\n\
00595 # driver. Although they affect the geometry of the output image, they #\n\
00596 # may be changed freely without recalibrating the camera.             #\n\
00597 #######################################################################\n\
00598 \n\
00599 # Binning refers here to any camera setting which combines rectangular\n\
00600 #  neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00601 #  resolution of the output image to\n\
00602 #  (width / binning_x) x (height / binning_y).\n\
00603 # The default values binning_x = binning_y = 0 is considered the same\n\
00604 #  as binning_x = binning_y = 1 (no subsampling).\n\
00605 uint32 binning_x\n\
00606 uint32 binning_y\n\
00607 \n\
00608 # Region of interest (subwindow of full camera resolution), given in\n\
00609 #  full resolution (unbinned) image coordinates. A particular ROI\n\
00610 #  always denotes the same window of pixels on the camera sensor,\n\
00611 #  regardless of binning settings.\n\
00612 # The default setting of roi (all values 0) is considered the same as\n\
00613 #  full resolution (roi.width = width, roi.height = height).\n\
00614 RegionOfInterest roi\n\
00615 \n\
00616 ================================================================================\n\
00617 MSG: sensor_msgs/RegionOfInterest\n\
00618 # This message is used to specify a region of interest within an image.\n\
00619 #\n\
00620 # When used to specify the ROI setting of the camera when the image was\n\
00621 # taken, the height and width fields should either match the height and\n\
00622 # width fields for the associated image; or height = width = 0\n\
00623 # indicates that the full resolution image was captured.\n\
00624 \n\
00625 uint32 x_offset  # Leftmost pixel of the ROI\n\
00626                  # (0 if the ROI includes the left edge of the image)\n\
00627 uint32 y_offset  # Topmost pixel of the ROI\n\
00628                  # (0 if the ROI includes the top edge of the image)\n\
00629 uint32 height    # Height of ROI\n\
00630 uint32 width     # Width of ROI\n\
00631 \n\
00632 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00633 # ROI in this message. Typically this should be False if the full image\n\
00634 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00635 # used).\n\
00636 bool do_rectify\n\
00637 \n\
00638 ================================================================================\n\
00639 MSG: geometry_msgs/Vector3\n\
00640 # This represents a vector in free space. \n\
00641 \n\
00642 float64 x\n\
00643 float64 y\n\
00644 float64 z\n\
00645 ================================================================================\n\
00646 MSG: manipulation_msgs/Grasp\n\
00647 # A name for this grasp\n\
00648 string id\n\
00649 \n\
00650 # The internal posture of the hand for the pre-grasp\n\
00651 # only positions are used\n\
00652 sensor_msgs/JointState pre_grasp_posture\n\
00653 \n\
00654 # The internal posture of the hand for the grasp\n\
00655 # positions and efforts are used\n\
00656 sensor_msgs/JointState grasp_posture\n\
00657 \n\
00658 # The position of the end-effector for the grasp relative to a reference frame \n\
00659 # (that is always specified elsewhere, not in this message)\n\
00660 geometry_msgs/PoseStamped grasp_pose\n\
00661 \n\
00662 # The estimated probability of success for this grasp, or some other\n\
00663 # measure of how \"good\" it is.\n\
00664 float64 grasp_quality\n\
00665 \n\
00666 # The approach motion\n\
00667 GripperTranslation approach\n\
00668 \n\
00669 # The retreat motion\n\
00670 GripperTranslation retreat\n\
00671 \n\
00672 # the maximum contact force to use while grasping (<=0 to disable)\n\
00673 float32 max_contact_force\n\
00674 \n\
00675 # an optional list of obstacles that we have semantic information about\n\
00676 # and that can be touched/pushed/moved in the course of grasping\n\
00677 string[] allowed_touch_objects\n\
00678 \n\
00679 ================================================================================\n\
00680 MSG: sensor_msgs/JointState\n\
00681 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
00682 #\n\
00683 # The state of each joint (revolute or prismatic) is defined by:\n\
00684 #  * the position of the joint (rad or m),\n\
00685 #  * the velocity of the joint (rad/s or m/s) and \n\
00686 #  * the effort that is applied in the joint (Nm or N).\n\
00687 #\n\
00688 # Each joint is uniquely identified by its name\n\
00689 # The header specifies the time at which the joint states were recorded. All the joint states\n\
00690 # in one message have to be recorded at the same time.\n\
00691 #\n\
00692 # This message consists of a multiple arrays, one for each part of the joint state. \n\
00693 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
00694 # effort associated with them, you can leave the effort array empty. \n\
00695 #\n\
00696 # All arrays in this message should have the same size, or be empty.\n\
00697 # This is the only way to uniquely associate the joint name with the correct\n\
00698 # states.\n\
00699 \n\
00700 \n\
00701 Header header\n\
00702 \n\
00703 string[] name\n\
00704 float64[] position\n\
00705 float64[] velocity\n\
00706 float64[] effort\n\
00707 \n\
00708 ================================================================================\n\
00709 MSG: manipulation_msgs/GripperTranslation\n\
00710 # defines a translation for the gripper, used in pickup or place tasks\n\
00711 # for example for lifting an object off a table or approaching the table for placing\n\
00712 \n\
00713 # the direction of the translation\n\
00714 geometry_msgs/Vector3Stamped direction\n\
00715 \n\
00716 # the desired translation distance\n\
00717 float32 desired_distance\n\
00718 \n\
00719 # the min distance that must be considered feasible before the\n\
00720 # grasp is even attempted\n\
00721 float32 min_distance\n\
00722 \n\
00723 ================================================================================\n\
00724 MSG: geometry_msgs/Vector3Stamped\n\
00725 # This represents a Vector3 with reference coordinate frame and timestamp\n\
00726 Header header\n\
00727 Vector3 vector\n\
00728 \n\
00729 ================================================================================\n\
00730 MSG: object_manipulation_msgs/GripperTranslation\n\
00731 # defines a translation for the gripper, used in pickup or place tasks\n\
00732 # for example for lifting an object off a table or approaching the table for placing\n\
00733 \n\
00734 # the direction of the translation\n\
00735 geometry_msgs/Vector3Stamped direction\n\
00736 \n\
00737 # the desired translation distance\n\
00738 float32 desired_distance\n\
00739 \n\
00740 # the min distance that must be considered feasible before the\n\
00741 # grasp is even attempted\n\
00742 float32 min_distance\n\
00743 ================================================================================\n\
00744 MSG: arm_navigation_msgs/Constraints\n\
00745 # This message contains a list of motion planning constraints.\n\
00746 \n\
00747 arm_navigation_msgs/JointConstraint[] joint_constraints\n\
00748 arm_navigation_msgs/PositionConstraint[] position_constraints\n\
00749 arm_navigation_msgs/OrientationConstraint[] orientation_constraints\n\
00750 arm_navigation_msgs/VisibilityConstraint[] visibility_constraints\n\
00751 \n\
00752 ================================================================================\n\
00753 MSG: arm_navigation_msgs/JointConstraint\n\
00754 # Constrain the position of a joint to be within a certain bound\n\
00755 string joint_name\n\
00756 \n\
00757 # the bound to be achieved is [position - tolerance_below, position + tolerance_above]\n\
00758 float64 position\n\
00759 float64 tolerance_above\n\
00760 float64 tolerance_below\n\
00761 \n\
00762 # A weighting factor for this constraint\n\
00763 float64 weight\n\
00764 ================================================================================\n\
00765 MSG: arm_navigation_msgs/PositionConstraint\n\
00766 # This message contains the definition of a position constraint.\n\
00767 Header header\n\
00768 \n\
00769 # The robot link this constraint refers to\n\
00770 string link_name\n\
00771 \n\
00772 # The offset (in the link frame) for the target point on the link we are planning for\n\
00773 geometry_msgs/Point target_point_offset\n\
00774 \n\
00775 # The nominal/target position for the point we are planning for\n\
00776 geometry_msgs/Point position\n\
00777 \n\
00778 # The shape of the bounded region that constrains the position of the end-effector\n\
00779 # This region is always centered at the position defined above\n\
00780 arm_navigation_msgs/Shape constraint_region_shape\n\
00781 \n\
00782 # The orientation of the bounded region that constrains the position of the end-effector. \n\
00783 # This allows the specification of non-axis aligned constraints\n\
00784 geometry_msgs/Quaternion constraint_region_orientation\n\
00785 \n\
00786 # Constraint weighting factor - a weight for this constraint\n\
00787 float64 weight\n\
00788 \n\
00789 ================================================================================\n\
00790 MSG: arm_navigation_msgs/Shape\n\
00791 byte SPHERE=0\n\
00792 byte BOX=1\n\
00793 byte CYLINDER=2\n\
00794 byte MESH=3\n\
00795 \n\
00796 byte type\n\
00797 \n\
00798 \n\
00799 #### define sphere, box, cylinder ####\n\
00800 # the origin of each shape is considered at the shape's center\n\
00801 \n\
00802 # for sphere\n\
00803 # radius := dimensions[0]\n\
00804 \n\
00805 # for cylinder\n\
00806 # radius := dimensions[0]\n\
00807 # length := dimensions[1]\n\
00808 # the length is along the Z axis\n\
00809 \n\
00810 # for box\n\
00811 # size_x := dimensions[0]\n\
00812 # size_y := dimensions[1]\n\
00813 # size_z := dimensions[2]\n\
00814 float64[] dimensions\n\
00815 \n\
00816 \n\
00817 #### define mesh ####\n\
00818 \n\
00819 # list of triangles; triangle k is defined by tre vertices located\n\
00820 # at indices triangles[3k], triangles[3k+1], triangles[3k+2]\n\
00821 int32[] triangles\n\
00822 geometry_msgs/Point[] vertices\n\
00823 \n\
00824 ================================================================================\n\
00825 MSG: arm_navigation_msgs/OrientationConstraint\n\
00826 # This message contains the definition of an orientation constraint.\n\
00827 Header header\n\
00828 \n\
00829 # The robot link this constraint refers to\n\
00830 string link_name\n\
00831 \n\
00832 # The type of the constraint\n\
00833 int32 type\n\
00834 int32 LINK_FRAME=0\n\
00835 int32 HEADER_FRAME=1\n\
00836 \n\
00837 # The desired orientation of the robot link specified as a quaternion\n\
00838 geometry_msgs/Quaternion orientation\n\
00839 \n\
00840 # optional RPY error tolerances specified if \n\
00841 float64 absolute_roll_tolerance\n\
00842 float64 absolute_pitch_tolerance\n\
00843 float64 absolute_yaw_tolerance\n\
00844 \n\
00845 # Constraint weighting factor - a weight for this constraint\n\
00846 float64 weight\n\
00847 \n\
00848 ================================================================================\n\
00849 MSG: arm_navigation_msgs/VisibilityConstraint\n\
00850 # This message contains the definition of a visibility constraint.\n\
00851 Header header\n\
00852 \n\
00853 # The point stamped target that needs to be kept within view of the sensor\n\
00854 geometry_msgs/PointStamped target\n\
00855 \n\
00856 # The local pose of the frame in which visibility is to be maintained\n\
00857 # The frame id should represent the robot link to which the sensor is attached\n\
00858 # The visual axis of the sensor is assumed to be along the X axis of this frame\n\
00859 geometry_msgs/PoseStamped sensor_pose\n\
00860 \n\
00861 # The deviation (in radians) that will be tolerated\n\
00862 # Constraint error will be measured as the solid angle between the \n\
00863 # X axis of the frame defined above and the vector between the origin \n\
00864 # of the frame defined above and the target location\n\
00865 float64 absolute_tolerance\n\
00866 \n\
00867 \n\
00868 ================================================================================\n\
00869 MSG: geometry_msgs/PointStamped\n\
00870 # This represents a Point with reference coordinate frame and timestamp\n\
00871 Header header\n\
00872 Point point\n\
00873 \n\
00874 ================================================================================\n\
00875 MSG: arm_navigation_msgs/OrderedCollisionOperations\n\
00876 # A set of collision operations that will be performed in the order they are specified\n\
00877 CollisionOperation[] collision_operations\n\
00878 ================================================================================\n\
00879 MSG: arm_navigation_msgs/CollisionOperation\n\
00880 # A definition of a collision operation\n\
00881 # E.g. (\"gripper\",COLLISION_SET_ALL,ENABLE) will enable collisions \n\
00882 # between the gripper and all objects in the collision space\n\
00883 \n\
00884 string object1\n\
00885 string object2\n\
00886 string COLLISION_SET_ALL=\"all\"\n\
00887 string COLLISION_SET_OBJECTS=\"objects\"\n\
00888 string COLLISION_SET_ATTACHED_OBJECTS=\"attached\"\n\
00889 \n\
00890 # The penetration distance to which collisions are allowed. This is 0.0 by default.\n\
00891 float64 penetration_distance\n\
00892 \n\
00893 # Flag that determines whether collisions will be enabled or disabled for the pair of objects specified above\n\
00894 int32 operation\n\
00895 int32 DISABLE=0\n\
00896 int32 ENABLE=1\n\
00897 \n\
00898 ================================================================================\n\
00899 MSG: arm_navigation_msgs/LinkPadding\n\
00900 #name for the link\n\
00901 string link_name\n\
00902 \n\
00903 # padding to apply to the link\n\
00904 float64 padding\n\
00905 \n\
00906 ================================================================================\n\
00907 MSG: object_manipulation_msgs/PickupActionResult\n\
00908 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00909 \n\
00910 Header header\n\
00911 actionlib_msgs/GoalStatus status\n\
00912 PickupResult result\n\
00913 \n\
00914 ================================================================================\n\
00915 MSG: actionlib_msgs/GoalStatus\n\
00916 GoalID goal_id\n\
00917 uint8 status\n\
00918 uint8 PENDING         = 0   # The goal has yet to be processed by the action server\n\
00919 uint8 ACTIVE          = 1   # The goal is currently being processed by the action server\n\
00920 uint8 PREEMPTED       = 2   # The goal received a cancel request after it started executing\n\
00921                             #   and has since completed its execution (Terminal State)\n\
00922 uint8 SUCCEEDED       = 3   # The goal was achieved successfully by the action server (Terminal State)\n\
00923 uint8 ABORTED         = 4   # The goal was aborted during execution by the action server due\n\
00924                             #    to some failure (Terminal State)\n\
00925 uint8 REJECTED        = 5   # The goal was rejected by the action server without being processed,\n\
00926                             #    because the goal was unattainable or invalid (Terminal State)\n\
00927 uint8 PREEMPTING      = 6   # The goal received a cancel request after it started executing\n\
00928                             #    and has not yet completed execution\n\
00929 uint8 RECALLING       = 7   # The goal received a cancel request before it started executing,\n\
00930                             #    but the action server has not yet confirmed that the goal is canceled\n\
00931 uint8 RECALLED        = 8   # The goal received a cancel request before it started executing\n\
00932                             #    and was successfully cancelled (Terminal State)\n\
00933 uint8 LOST            = 9   # An action client can determine that a goal is LOST. This should not be\n\
00934                             #    sent over the wire by an action server\n\
00935 \n\
00936 #Allow for the user to associate a string with GoalStatus for debugging\n\
00937 string text\n\
00938 \n\
00939 \n\
00940 ================================================================================\n\
00941 MSG: object_manipulation_msgs/PickupResult\n\
00942 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00943 \n\
00944 # The overall result of the pickup attempt\n\
00945 ManipulationResult manipulation_result\n\
00946 \n\
00947 # The performed grasp, if attempt was successful\n\
00948 manipulation_msgs/Grasp grasp\n\
00949 \n\
00950 # the complete list of attempted grasp, in the order in which they have been attempted\n\
00951 # the successful one should be the last one in this list\n\
00952 manipulation_msgs/Grasp[] attempted_grasps\n\
00953 \n\
00954 # the outcomes of the attempted grasps, in the same order as attempted_grasps\n\
00955 GraspResult[] attempted_grasp_results\n\
00956 \n\
00957 \n\
00958 ================================================================================\n\
00959 MSG: object_manipulation_msgs/ManipulationResult\n\
00960 # Result codes for manipulation tasks\n\
00961 \n\
00962 # task completed as expected\n\
00963 # generally means you can proceed as planned\n\
00964 int32 SUCCESS = 1\n\
00965 \n\
00966 # task not possible (e.g. out of reach or obstacles in the way)\n\
00967 # generally means that the world was not disturbed, so you can try another task\n\
00968 int32 UNFEASIBLE = -1\n\
00969 \n\
00970 # task was thought possible, but failed due to unexpected events during execution\n\
00971 # it is likely that the world was disturbed, so you are encouraged to refresh\n\
00972 # your sensed world model before proceeding to another task\n\
00973 int32 FAILED = -2\n\
00974 \n\
00975 # a lower level error prevented task completion (e.g. joint controller not responding)\n\
00976 # generally requires human attention\n\
00977 int32 ERROR = -3\n\
00978 \n\
00979 # means that at some point during execution we ended up in a state that the collision-aware\n\
00980 # arm navigation module will not move out of. The world was likely not disturbed, but you \n\
00981 # probably need a new collision map to move the arm out of the stuck position\n\
00982 int32 ARM_MOVEMENT_PREVENTED = -4\n\
00983 \n\
00984 # specific to grasp actions\n\
00985 # the object was grasped successfully, but the lift attempt could not achieve the minimum lift distance requested\n\
00986 # it is likely that the collision environment will see collisions between the hand/object and the support surface\n\
00987 int32 LIFT_FAILED = -5\n\
00988 \n\
00989 # specific to place actions\n\
00990 # the object was placed successfully, but the retreat attempt could not achieve the minimum retreat distance requested\n\
00991 # it is likely that the collision environment will see collisions between the hand and the object\n\
00992 int32 RETREAT_FAILED = -6\n\
00993 \n\
00994 # indicates that somewhere along the line a human said \"wait, stop, this is bad, go back and do something else\"\n\
00995 int32 CANCELLED = -7\n\
00996 \n\
00997 # the actual value of this error code\n\
00998 int32 value\n\
00999 \n\
01000 ================================================================================\n\
01001 MSG: object_manipulation_msgs/GraspResult\n\
01002 int32 SUCCESS = 1\n\
01003 int32 GRASP_OUT_OF_REACH = 2\n\
01004 int32 GRASP_IN_COLLISION = 3\n\
01005 int32 GRASP_UNFEASIBLE = 4\n\
01006 int32 PREGRASP_OUT_OF_REACH = 5\n\
01007 int32 PREGRASP_IN_COLLISION = 6\n\
01008 int32 PREGRASP_UNFEASIBLE = 7\n\
01009 int32 LIFT_OUT_OF_REACH = 8\n\
01010 int32 LIFT_IN_COLLISION = 9\n\
01011 int32 LIFT_UNFEASIBLE = 10\n\
01012 int32 MOVE_ARM_FAILED = 11\n\
01013 int32 GRASP_FAILED = 12\n\
01014 int32 LIFT_FAILED = 13\n\
01015 int32 RETREAT_FAILED = 14\n\
01016 int32 result_code\n\
01017 \n\
01018 # whether the state of the world was disturbed by this attempt. generally, this flag\n\
01019 # shows if another task can be attempted, or a new sensed world model is recommeded\n\
01020 # before proceeding\n\
01021 bool continuation_possible\n\
01022 \n\
01023 ================================================================================\n\
01024 MSG: object_manipulation_msgs/PickupActionFeedback\n\
01025 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
01026 \n\
01027 Header header\n\
01028 actionlib_msgs/GoalStatus status\n\
01029 PickupFeedback feedback\n\
01030 \n\
01031 ================================================================================\n\
01032 MSG: object_manipulation_msgs/PickupFeedback\n\
01033 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
01034 \n\
01035 # The number of the grasp currently being attempted\n\
01036 int32 current_grasp\n\
01037 \n\
01038 # The total number of grasps that will be attempted\n\
01039 int32 total_grasps\n\
01040 \n\
01041 \n\
01042 ";
01043   }
01044 
01045   static const char* value(const  ::object_manipulation_msgs::PickupAction_<ContainerAllocator> &) { return value(); } 
01046 };
01047 
01048 } // namespace message_traits
01049 } // namespace ros
01050 
01051 namespace ros
01052 {
01053 namespace serialization
01054 {
01055 
01056 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::PickupAction_<ContainerAllocator> >
01057 {
01058   template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
01059   {
01060     stream.next(m.action_goal);
01061     stream.next(m.action_result);
01062     stream.next(m.action_feedback);
01063   }
01064 
01065   ROS_DECLARE_ALLINONE_SERIALIZER;
01066 }; // struct PickupAction_
01067 } // namespace serialization
01068 } // namespace ros
01069 
01070 namespace ros
01071 {
01072 namespace message_operations
01073 {
01074 
01075 template<class ContainerAllocator>
01076 struct Printer< ::object_manipulation_msgs::PickupAction_<ContainerAllocator> >
01077 {
01078   template<typename Stream> static void stream(Stream& s, const std::string& indent, const  ::object_manipulation_msgs::PickupAction_<ContainerAllocator> & v) 
01079   {
01080     s << indent << "action_goal: ";
01081 s << std::endl;
01082     Printer< ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator> >::stream(s, indent + "  ", v.action_goal);
01083     s << indent << "action_result: ";
01084 s << std::endl;
01085     Printer< ::object_manipulation_msgs::PickupActionResult_<ContainerAllocator> >::stream(s, indent + "  ", v.action_result);
01086     s << indent << "action_feedback: ";
01087 s << std::endl;
01088     Printer< ::object_manipulation_msgs::PickupActionFeedback_<ContainerAllocator> >::stream(s, indent + "  ", v.action_feedback);
01089   }
01090 };
01091 
01092 
01093 } // namespace message_operations
01094 } // namespace ros
01095 
01096 #endif // OBJECT_MANIPULATION_MSGS_MESSAGE_PICKUPACTION_H
01097 


object_manipulation_msgs
Author(s): Matei Ciocarlie
autogenerated on Mon Oct 6 2014 02:58:11