ObjectSegmentationGuiResult.h
Go to the documentation of this file.
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-groovy-pr2_object_manipulation/doc_stacks/2014-10-06_11-30-38.833395/pr2_object_manipulation/perception/interactive_perception_msgs/msg/ObjectSegmentationGuiResult.msg */
00002 #ifndef INTERACTIVE_PERCEPTION_MSGS_MESSAGE_OBJECTSEGMENTATIONGUIRESULT_H
00003 #define INTERACTIVE_PERCEPTION_MSGS_MESSAGE_OBJECTSEGMENTATIONGUIRESULT_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012 
00013 #include "ros/macros.h"
00014 
00015 #include "ros/assert.h"
00016 
00017 #include "tabletop_object_detector/Table.h"
00018 #include "sensor_msgs/PointCloud.h"
00019 
00020 namespace interactive_perception_msgs
00021 {
00022 template <class ContainerAllocator>
00023 struct ObjectSegmentationGuiResult_ {
00024   typedef ObjectSegmentationGuiResult_<ContainerAllocator> Type;
00025 
00026   ObjectSegmentationGuiResult_()
00027   : table()
00028   , clusters()
00029   , result(0)
00030   {
00031   }
00032 
00033   ObjectSegmentationGuiResult_(const ContainerAllocator& _alloc)
00034   : table(_alloc)
00035   , clusters(_alloc)
00036   , result(0)
00037   {
00038   }
00039 
00040   typedef  ::tabletop_object_detector::Table_<ContainerAllocator>  _table_type;
00041    ::tabletop_object_detector::Table_<ContainerAllocator>  table;
00042 
00043   typedef std::vector< ::sensor_msgs::PointCloud_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::sensor_msgs::PointCloud_<ContainerAllocator> >::other >  _clusters_type;
00044   std::vector< ::sensor_msgs::PointCloud_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::sensor_msgs::PointCloud_<ContainerAllocator> >::other >  clusters;
00045 
00046   typedef int32_t _result_type;
00047   int32_t result;
00048 
00049   enum { NO_CLOUD_RECEIVED = 1 };
00050   enum { NO_TABLE = 2 };
00051   enum { OTHER_ERROR = 3 };
00052   enum { SUCCESS = 4 };
00053 
00054   typedef boost::shared_ptr< ::interactive_perception_msgs::ObjectSegmentationGuiResult_<ContainerAllocator> > Ptr;
00055   typedef boost::shared_ptr< ::interactive_perception_msgs::ObjectSegmentationGuiResult_<ContainerAllocator>  const> ConstPtr;
00056   boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00057 }; // struct ObjectSegmentationGuiResult
00058 typedef  ::interactive_perception_msgs::ObjectSegmentationGuiResult_<std::allocator<void> > ObjectSegmentationGuiResult;
00059 
00060 typedef boost::shared_ptr< ::interactive_perception_msgs::ObjectSegmentationGuiResult> ObjectSegmentationGuiResultPtr;
00061 typedef boost::shared_ptr< ::interactive_perception_msgs::ObjectSegmentationGuiResult const> ObjectSegmentationGuiResultConstPtr;
00062 
00063 
00064 template<typename ContainerAllocator>
00065 std::ostream& operator<<(std::ostream& s, const  ::interactive_perception_msgs::ObjectSegmentationGuiResult_<ContainerAllocator> & v)
00066 {
00067   ros::message_operations::Printer< ::interactive_perception_msgs::ObjectSegmentationGuiResult_<ContainerAllocator> >::stream(s, "", v);
00068   return s;}
00069 
00070 } // namespace interactive_perception_msgs
00071 
00072 namespace ros
00073 {
00074 namespace message_traits
00075 {
00076 template<class ContainerAllocator> struct IsMessage< ::interactive_perception_msgs::ObjectSegmentationGuiResult_<ContainerAllocator> > : public TrueType {};
00077 template<class ContainerAllocator> struct IsMessage< ::interactive_perception_msgs::ObjectSegmentationGuiResult_<ContainerAllocator>  const> : public TrueType {};
00078 template<class ContainerAllocator>
00079 struct MD5Sum< ::interactive_perception_msgs::ObjectSegmentationGuiResult_<ContainerAllocator> > {
00080   static const char* value() 
00081   {
00082     return "ca5ac826b9d0b968e01c52dfce13fecf";
00083   }
00084 
00085   static const char* value(const  ::interactive_perception_msgs::ObjectSegmentationGuiResult_<ContainerAllocator> &) { return value(); } 
00086   static const uint64_t static_value1 = 0xca5ac826b9d0b968ULL;
00087   static const uint64_t static_value2 = 0xe01c52dfce13fecfULL;
00088 };
00089 
00090 template<class ContainerAllocator>
00091 struct DataType< ::interactive_perception_msgs::ObjectSegmentationGuiResult_<ContainerAllocator> > {
00092   static const char* value() 
00093   {
00094     return "interactive_perception_msgs/ObjectSegmentationGuiResult";
00095   }
00096 
00097   static const char* value(const  ::interactive_perception_msgs::ObjectSegmentationGuiResult_<ContainerAllocator> &) { return value(); } 
00098 };
00099 
00100 template<class ContainerAllocator>
00101 struct Definition< ::interactive_perception_msgs::ObjectSegmentationGuiResult_<ContainerAllocator> > {
00102   static const char* value() 
00103   {
00104     return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00105 # The information for the plane that has been detected\n\
00106 tabletop_object_detector/Table table\n\
00107 \n\
00108 # The raw clusters detected in the scan \n\
00109 sensor_msgs/PointCloud[] clusters\n\
00110 \n\
00111 # Whether the detection has succeeded or failed\n\
00112 int32 NO_CLOUD_RECEIVED = 1\n\
00113 int32 NO_TABLE = 2\n\
00114 int32 OTHER_ERROR = 3\n\
00115 int32 SUCCESS = 4\n\
00116 int32 result\n\
00117 \n\
00118 \n\
00119 ================================================================================\n\
00120 MSG: tabletop_object_detector/Table\n\
00121 # Informs that a planar table has been detected at a given location\n\
00122 \n\
00123 # The pose gives you the transform that take you to the coordinate system\n\
00124 # of the table, with the origin somewhere in the table plane and the \n\
00125 # z axis normal to the plane\n\
00126 geometry_msgs/PoseStamped pose\n\
00127 \n\
00128 # These values give you the observed extents of the table, along x and y,\n\
00129 # in the table's own coordinate system (above)\n\
00130 # there is no guarantee that the origin of the table coordinate system is\n\
00131 # inside the boundary defined by these values. \n\
00132 float32 x_min\n\
00133 float32 x_max\n\
00134 float32 y_min\n\
00135 float32 y_max\n\
00136 \n\
00137 # There is no guarantee that the table does NOT extend further than these \n\
00138 # values; this is just as far as we've observed it.\n\
00139 \n\
00140 \n\
00141 # Newer table definition as triangle mesh of convex hull (relative to pose)\n\
00142 shape_msgs/Mesh convex_hull\n\
00143 \n\
00144 ================================================================================\n\
00145 MSG: geometry_msgs/PoseStamped\n\
00146 # A Pose with reference coordinate frame and timestamp\n\
00147 Header header\n\
00148 Pose pose\n\
00149 \n\
00150 ================================================================================\n\
00151 MSG: std_msgs/Header\n\
00152 # Standard metadata for higher-level stamped data types.\n\
00153 # This is generally used to communicate timestamped data \n\
00154 # in a particular coordinate frame.\n\
00155 # \n\
00156 # sequence ID: consecutively increasing ID \n\
00157 uint32 seq\n\
00158 #Two-integer timestamp that is expressed as:\n\
00159 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00160 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00161 # time-handling sugar is provided by the client library\n\
00162 time stamp\n\
00163 #Frame this data is associated with\n\
00164 # 0: no frame\n\
00165 # 1: global frame\n\
00166 string frame_id\n\
00167 \n\
00168 ================================================================================\n\
00169 MSG: geometry_msgs/Pose\n\
00170 # A representation of pose in free space, composed of postion and orientation. \n\
00171 Point position\n\
00172 Quaternion orientation\n\
00173 \n\
00174 ================================================================================\n\
00175 MSG: geometry_msgs/Point\n\
00176 # This contains the position of a point in free space\n\
00177 float64 x\n\
00178 float64 y\n\
00179 float64 z\n\
00180 \n\
00181 ================================================================================\n\
00182 MSG: geometry_msgs/Quaternion\n\
00183 # This represents an orientation in free space in quaternion form.\n\
00184 \n\
00185 float64 x\n\
00186 float64 y\n\
00187 float64 z\n\
00188 float64 w\n\
00189 \n\
00190 ================================================================================\n\
00191 MSG: shape_msgs/Mesh\n\
00192 # Definition of a mesh\n\
00193 \n\
00194 # list of triangles; the index values refer to positions in vertices[]\n\
00195 MeshTriangle[] triangles\n\
00196 \n\
00197 # the actual vertices that make up the mesh\n\
00198 geometry_msgs/Point[] vertices\n\
00199 \n\
00200 ================================================================================\n\
00201 MSG: shape_msgs/MeshTriangle\n\
00202 # Definition of a triangle's vertices\n\
00203 uint32[3] vertex_indices\n\
00204 \n\
00205 ================================================================================\n\
00206 MSG: sensor_msgs/PointCloud\n\
00207 # This message holds a collection of 3d points, plus optional additional\n\
00208 # information about each point.\n\
00209 \n\
00210 # Time of sensor data acquisition, coordinate frame ID.\n\
00211 Header header\n\
00212 \n\
00213 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00214 # in the frame given in the header.\n\
00215 geometry_msgs/Point32[] points\n\
00216 \n\
00217 # Each channel should have the same number of elements as points array,\n\
00218 # and the data in each channel should correspond 1:1 with each point.\n\
00219 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00220 ChannelFloat32[] channels\n\
00221 \n\
00222 ================================================================================\n\
00223 MSG: geometry_msgs/Point32\n\
00224 # This contains the position of a point in free space(with 32 bits of precision).\n\
00225 # It is recommeded to use Point wherever possible instead of Point32.  \n\
00226 # \n\
00227 # This recommendation is to promote interoperability.  \n\
00228 #\n\
00229 # This message is designed to take up less space when sending\n\
00230 # lots of points at once, as in the case of a PointCloud.  \n\
00231 \n\
00232 float32 x\n\
00233 float32 y\n\
00234 float32 z\n\
00235 ================================================================================\n\
00236 MSG: sensor_msgs/ChannelFloat32\n\
00237 # This message is used by the PointCloud message to hold optional data\n\
00238 # associated with each point in the cloud. The length of the values\n\
00239 # array should be the same as the length of the points array in the\n\
00240 # PointCloud, and each value should be associated with the corresponding\n\
00241 # point.\n\
00242 \n\
00243 # Channel names in existing practice include:\n\
00244 #   \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00245 #              This is opposite to usual conventions but remains for\n\
00246 #              historical reasons. The newer PointCloud2 message has no\n\
00247 #              such problem.\n\
00248 #   \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00249 #           (R,G,B) values packed into the least significant 24 bits,\n\
00250 #           in order.\n\
00251 #   \"intensity\" - laser or pixel intensity.\n\
00252 #   \"distance\"\n\
00253 \n\
00254 # The channel name should give semantics of the channel (e.g.\n\
00255 # \"intensity\" instead of \"value\").\n\
00256 string name\n\
00257 \n\
00258 # The values array should be 1-1 with the elements of the associated\n\
00259 # PointCloud.\n\
00260 float32[] values\n\
00261 \n\
00262 ";
00263   }
00264 
00265   static const char* value(const  ::interactive_perception_msgs::ObjectSegmentationGuiResult_<ContainerAllocator> &) { return value(); } 
00266 };
00267 
00268 } // namespace message_traits
00269 } // namespace ros
00270 
00271 namespace ros
00272 {
00273 namespace serialization
00274 {
00275 
00276 template<class ContainerAllocator> struct Serializer< ::interactive_perception_msgs::ObjectSegmentationGuiResult_<ContainerAllocator> >
00277 {
00278   template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00279   {
00280     stream.next(m.table);
00281     stream.next(m.clusters);
00282     stream.next(m.result);
00283   }
00284 
00285   ROS_DECLARE_ALLINONE_SERIALIZER;
00286 }; // struct ObjectSegmentationGuiResult_
00287 } // namespace serialization
00288 } // namespace ros
00289 
00290 namespace ros
00291 {
00292 namespace message_operations
00293 {
00294 
00295 template<class ContainerAllocator>
00296 struct Printer< ::interactive_perception_msgs::ObjectSegmentationGuiResult_<ContainerAllocator> >
00297 {
00298   template<typename Stream> static void stream(Stream& s, const std::string& indent, const  ::interactive_perception_msgs::ObjectSegmentationGuiResult_<ContainerAllocator> & v) 
00299   {
00300     s << indent << "table: ";
00301 s << std::endl;
00302     Printer< ::tabletop_object_detector::Table_<ContainerAllocator> >::stream(s, indent + "  ", v.table);
00303     s << indent << "clusters[]" << std::endl;
00304     for (size_t i = 0; i < v.clusters.size(); ++i)
00305     {
00306       s << indent << "  clusters[" << i << "]: ";
00307       s << std::endl;
00308       s << indent;
00309       Printer< ::sensor_msgs::PointCloud_<ContainerAllocator> >::stream(s, indent + "    ", v.clusters[i]);
00310     }
00311     s << indent << "result: ";
00312     Printer<int32_t>::stream(s, indent + "  ", v.result);
00313   }
00314 };
00315 
00316 
00317 } // namespace message_operations
00318 } // namespace ros
00319 
00320 #endif // INTERACTIVE_PERCEPTION_MSGS_MESSAGE_OBJECTSEGMENTATIONGUIRESULT_H
00321 


interactive_perception_msgs
Author(s): jbinney
autogenerated on Mon Oct 6 2014 11:51:21