ObjectSegmentationGuiGoal.h
Go to the documentation of this file.
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-groovy-pr2_object_manipulation/doc_stacks/2014-10-06_11-30-38.833395/pr2_object_manipulation/perception/interactive_perception_msgs/msg/ObjectSegmentationGuiGoal.msg */
00002 #ifndef INTERACTIVE_PERCEPTION_MSGS_MESSAGE_OBJECTSEGMENTATIONGUIGOAL_H
00003 #define INTERACTIVE_PERCEPTION_MSGS_MESSAGE_OBJECTSEGMENTATIONGUIGOAL_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012 
00013 #include "ros/macros.h"
00014 
00015 #include "ros/assert.h"
00016 
00017 #include "sensor_msgs/Image.h"
00018 #include "sensor_msgs/CameraInfo.h"
00019 #include "sensor_msgs/Image.h"
00020 #include "sensor_msgs/CameraInfo.h"
00021 #include "sensor_msgs/PointCloud2.h"
00022 #include "stereo_msgs/DisparityImage.h"
00023 
00024 namespace interactive_perception_msgs
00025 {
00026 template <class ContainerAllocator>
00027 struct ObjectSegmentationGuiGoal_ {
00028   typedef ObjectSegmentationGuiGoal_<ContainerAllocator> Type;
00029 
00030   ObjectSegmentationGuiGoal_()
00031   : image()
00032   , camera_info()
00033   , wide_field()
00034   , wide_camera_info()
00035   , point_cloud()
00036   , disparity_image()
00037   {
00038   }
00039 
00040   ObjectSegmentationGuiGoal_(const ContainerAllocator& _alloc)
00041   : image(_alloc)
00042   , camera_info(_alloc)
00043   , wide_field(_alloc)
00044   , wide_camera_info(_alloc)
00045   , point_cloud(_alloc)
00046   , disparity_image(_alloc)
00047   {
00048   }
00049 
00050   typedef  ::sensor_msgs::Image_<ContainerAllocator>  _image_type;
00051    ::sensor_msgs::Image_<ContainerAllocator>  image;
00052 
00053   typedef  ::sensor_msgs::CameraInfo_<ContainerAllocator>  _camera_info_type;
00054    ::sensor_msgs::CameraInfo_<ContainerAllocator>  camera_info;
00055 
00056   typedef  ::sensor_msgs::Image_<ContainerAllocator>  _wide_field_type;
00057    ::sensor_msgs::Image_<ContainerAllocator>  wide_field;
00058 
00059   typedef  ::sensor_msgs::CameraInfo_<ContainerAllocator>  _wide_camera_info_type;
00060    ::sensor_msgs::CameraInfo_<ContainerAllocator>  wide_camera_info;
00061 
00062   typedef  ::sensor_msgs::PointCloud2_<ContainerAllocator>  _point_cloud_type;
00063    ::sensor_msgs::PointCloud2_<ContainerAllocator>  point_cloud;
00064 
00065   typedef  ::stereo_msgs::DisparityImage_<ContainerAllocator>  _disparity_image_type;
00066    ::stereo_msgs::DisparityImage_<ContainerAllocator>  disparity_image;
00067 
00068 
00069   typedef boost::shared_ptr< ::interactive_perception_msgs::ObjectSegmentationGuiGoal_<ContainerAllocator> > Ptr;
00070   typedef boost::shared_ptr< ::interactive_perception_msgs::ObjectSegmentationGuiGoal_<ContainerAllocator>  const> ConstPtr;
00071   boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00072 }; // struct ObjectSegmentationGuiGoal
00073 typedef  ::interactive_perception_msgs::ObjectSegmentationGuiGoal_<std::allocator<void> > ObjectSegmentationGuiGoal;
00074 
00075 typedef boost::shared_ptr< ::interactive_perception_msgs::ObjectSegmentationGuiGoal> ObjectSegmentationGuiGoalPtr;
00076 typedef boost::shared_ptr< ::interactive_perception_msgs::ObjectSegmentationGuiGoal const> ObjectSegmentationGuiGoalConstPtr;
00077 
00078 
00079 template<typename ContainerAllocator>
00080 std::ostream& operator<<(std::ostream& s, const  ::interactive_perception_msgs::ObjectSegmentationGuiGoal_<ContainerAllocator> & v)
00081 {
00082   ros::message_operations::Printer< ::interactive_perception_msgs::ObjectSegmentationGuiGoal_<ContainerAllocator> >::stream(s, "", v);
00083   return s;}
00084 
00085 } // namespace interactive_perception_msgs
00086 
00087 namespace ros
00088 {
00089 namespace message_traits
00090 {
00091 template<class ContainerAllocator> struct IsMessage< ::interactive_perception_msgs::ObjectSegmentationGuiGoal_<ContainerAllocator> > : public TrueType {};
00092 template<class ContainerAllocator> struct IsMessage< ::interactive_perception_msgs::ObjectSegmentationGuiGoal_<ContainerAllocator>  const> : public TrueType {};
00093 template<class ContainerAllocator>
00094 struct MD5Sum< ::interactive_perception_msgs::ObjectSegmentationGuiGoal_<ContainerAllocator> > {
00095   static const char* value() 
00096   {
00097     return "e1d5b6113ada0dd63b3fd30b2ac9f913";
00098   }
00099 
00100   static const char* value(const  ::interactive_perception_msgs::ObjectSegmentationGuiGoal_<ContainerAllocator> &) { return value(); } 
00101   static const uint64_t static_value1 = 0xe1d5b6113ada0dd6ULL;
00102   static const uint64_t static_value2 = 0x3b3fd30b2ac9f913ULL;
00103 };
00104 
00105 template<class ContainerAllocator>
00106 struct DataType< ::interactive_perception_msgs::ObjectSegmentationGuiGoal_<ContainerAllocator> > {
00107   static const char* value() 
00108   {
00109     return "interactive_perception_msgs/ObjectSegmentationGuiGoal";
00110   }
00111 
00112   static const char* value(const  ::interactive_perception_msgs::ObjectSegmentationGuiGoal_<ContainerAllocator> &) { return value(); } 
00113 };
00114 
00115 template<class ContainerAllocator>
00116 struct Definition< ::interactive_perception_msgs::ObjectSegmentationGuiGoal_<ContainerAllocator> > {
00117   static const char* value() 
00118   {
00119     return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00120 sensor_msgs/Image image\n\
00121 sensor_msgs/CameraInfo camera_info\n\
00122 sensor_msgs/Image wide_field\n\
00123 sensor_msgs/CameraInfo wide_camera_info\n\
00124 \n\
00125 sensor_msgs/PointCloud2 point_cloud\n\
00126 stereo_msgs/DisparityImage disparity_image\n\
00127 \n\
00128 \n\
00129 ================================================================================\n\
00130 MSG: sensor_msgs/Image\n\
00131 # This message contains an uncompressed image\n\
00132 # (0, 0) is at top-left corner of image\n\
00133 #\n\
00134 \n\
00135 Header header        # Header timestamp should be acquisition time of image\n\
00136                      # Header frame_id should be optical frame of camera\n\
00137                      # origin of frame should be optical center of cameara\n\
00138                      # +x should point to the right in the image\n\
00139                      # +y should point down in the image\n\
00140                      # +z should point into to plane of the image\n\
00141                      # If the frame_id here and the frame_id of the CameraInfo\n\
00142                      # message associated with the image conflict\n\
00143                      # the behavior is undefined\n\
00144 \n\
00145 uint32 height         # image height, that is, number of rows\n\
00146 uint32 width          # image width, that is, number of columns\n\
00147 \n\
00148 # The legal values for encoding are in file src/image_encodings.cpp\n\
00149 # If you want to standardize a new string format, join\n\
00150 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00151 \n\
00152 string encoding       # Encoding of pixels -- channel meaning, ordering, size\n\
00153                       # taken from the list of strings in include/sensor_msgs/image_encodings.h\n\
00154 \n\
00155 uint8 is_bigendian    # is this data bigendian?\n\
00156 uint32 step           # Full row length in bytes\n\
00157 uint8[] data          # actual matrix data, size is (step * rows)\n\
00158 \n\
00159 ================================================================================\n\
00160 MSG: std_msgs/Header\n\
00161 # Standard metadata for higher-level stamped data types.\n\
00162 # This is generally used to communicate timestamped data \n\
00163 # in a particular coordinate frame.\n\
00164 # \n\
00165 # sequence ID: consecutively increasing ID \n\
00166 uint32 seq\n\
00167 #Two-integer timestamp that is expressed as:\n\
00168 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00169 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00170 # time-handling sugar is provided by the client library\n\
00171 time stamp\n\
00172 #Frame this data is associated with\n\
00173 # 0: no frame\n\
00174 # 1: global frame\n\
00175 string frame_id\n\
00176 \n\
00177 ================================================================================\n\
00178 MSG: sensor_msgs/CameraInfo\n\
00179 # This message defines meta information for a camera. It should be in a\n\
00180 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00181 # image topics named:\n\
00182 #\n\
00183 #   image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00184 #   image            - monochrome, distorted\n\
00185 #   image_color      - color, distorted\n\
00186 #   image_rect       - monochrome, rectified\n\
00187 #   image_rect_color - color, rectified\n\
00188 #\n\
00189 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00190 # for producing the four processed image topics from image_raw and\n\
00191 # camera_info. The meaning of the camera parameters are described in\n\
00192 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00193 #\n\
00194 # The image_geometry package provides a user-friendly interface to\n\
00195 # common operations using this meta information. If you want to, e.g.,\n\
00196 # project a 3d point into image coordinates, we strongly recommend\n\
00197 # using image_geometry.\n\
00198 #\n\
00199 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00200 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00201 # indicates an uncalibrated camera.\n\
00202 \n\
00203 #######################################################################\n\
00204 #                     Image acquisition info                          #\n\
00205 #######################################################################\n\
00206 \n\
00207 # Time of image acquisition, camera coordinate frame ID\n\
00208 Header header    # Header timestamp should be acquisition time of image\n\
00209                  # Header frame_id should be optical frame of camera\n\
00210                  # origin of frame should be optical center of camera\n\
00211                  # +x should point to the right in the image\n\
00212                  # +y should point down in the image\n\
00213                  # +z should point into the plane of the image\n\
00214 \n\
00215 \n\
00216 #######################################################################\n\
00217 #                      Calibration Parameters                         #\n\
00218 #######################################################################\n\
00219 # These are fixed during camera calibration. Their values will be the #\n\
00220 # same in all messages until the camera is recalibrated. Note that    #\n\
00221 # self-calibrating systems may \"recalibrate\" frequently.              #\n\
00222 #                                                                     #\n\
00223 # The internal parameters can be used to warp a raw (distorted) image #\n\
00224 # to:                                                                 #\n\
00225 #   1. An undistorted image (requires D and K)                        #\n\
00226 #   2. A rectified image (requires D, K, R)                           #\n\
00227 # The projection matrix P projects 3D points into the rectified image.#\n\
00228 #######################################################################\n\
00229 \n\
00230 # The image dimensions with which the camera was calibrated. Normally\n\
00231 # this will be the full camera resolution in pixels.\n\
00232 uint32 height\n\
00233 uint32 width\n\
00234 \n\
00235 # The distortion model used. Supported models are listed in\n\
00236 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00237 # simple model of radial and tangential distortion - is sufficent.\n\
00238 string distortion_model\n\
00239 \n\
00240 # The distortion parameters, size depending on the distortion model.\n\
00241 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00242 float64[] D\n\
00243 \n\
00244 # Intrinsic camera matrix for the raw (distorted) images.\n\
00245 #     [fx  0 cx]\n\
00246 # K = [ 0 fy cy]\n\
00247 #     [ 0  0  1]\n\
00248 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00249 # coordinates using the focal lengths (fx, fy) and principal point\n\
00250 # (cx, cy).\n\
00251 float64[9]  K # 3x3 row-major matrix\n\
00252 \n\
00253 # Rectification matrix (stereo cameras only)\n\
00254 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00255 # stereo image plane so that epipolar lines in both stereo images are\n\
00256 # parallel.\n\
00257 float64[9]  R # 3x3 row-major matrix\n\
00258 \n\
00259 # Projection/camera matrix\n\
00260 #     [fx'  0  cx' Tx]\n\
00261 # P = [ 0  fy' cy' Ty]\n\
00262 #     [ 0   0   1   0]\n\
00263 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00264 #  of the processed (rectified) image. That is, the left 3x3 portion\n\
00265 #  is the normal camera intrinsic matrix for the rectified image.\n\
00266 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00267 #  coordinates using the focal lengths (fx', fy') and principal point\n\
00268 #  (cx', cy') - these may differ from the values in K.\n\
00269 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00270 #  also have R = the identity and P[1:3,1:3] = K.\n\
00271 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00272 #  position of the optical center of the second camera in the first\n\
00273 #  camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00274 #  stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00275 #  the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00276 #  Tx = -fx' * B, where B is the baseline between the cameras.\n\
00277 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00278 #  the rectified image is given by:\n\
00279 #  [u v w]' = P * [X Y Z 1]'\n\
00280 #         x = u / w\n\
00281 #         y = v / w\n\
00282 #  This holds for both images of a stereo pair.\n\
00283 float64[12] P # 3x4 row-major matrix\n\
00284 \n\
00285 \n\
00286 #######################################################################\n\
00287 #                      Operational Parameters                         #\n\
00288 #######################################################################\n\
00289 # These define the image region actually captured by the camera       #\n\
00290 # driver. Although they affect the geometry of the output image, they #\n\
00291 # may be changed freely without recalibrating the camera.             #\n\
00292 #######################################################################\n\
00293 \n\
00294 # Binning refers here to any camera setting which combines rectangular\n\
00295 #  neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00296 #  resolution of the output image to\n\
00297 #  (width / binning_x) x (height / binning_y).\n\
00298 # The default values binning_x = binning_y = 0 is considered the same\n\
00299 #  as binning_x = binning_y = 1 (no subsampling).\n\
00300 uint32 binning_x\n\
00301 uint32 binning_y\n\
00302 \n\
00303 # Region of interest (subwindow of full camera resolution), given in\n\
00304 #  full resolution (unbinned) image coordinates. A particular ROI\n\
00305 #  always denotes the same window of pixels on the camera sensor,\n\
00306 #  regardless of binning settings.\n\
00307 # The default setting of roi (all values 0) is considered the same as\n\
00308 #  full resolution (roi.width = width, roi.height = height).\n\
00309 RegionOfInterest roi\n\
00310 \n\
00311 ================================================================================\n\
00312 MSG: sensor_msgs/RegionOfInterest\n\
00313 # This message is used to specify a region of interest within an image.\n\
00314 #\n\
00315 # When used to specify the ROI setting of the camera when the image was\n\
00316 # taken, the height and width fields should either match the height and\n\
00317 # width fields for the associated image; or height = width = 0\n\
00318 # indicates that the full resolution image was captured.\n\
00319 \n\
00320 uint32 x_offset  # Leftmost pixel of the ROI\n\
00321                  # (0 if the ROI includes the left edge of the image)\n\
00322 uint32 y_offset  # Topmost pixel of the ROI\n\
00323                  # (0 if the ROI includes the top edge of the image)\n\
00324 uint32 height    # Height of ROI\n\
00325 uint32 width     # Width of ROI\n\
00326 \n\
00327 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00328 # ROI in this message. Typically this should be False if the full image\n\
00329 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00330 # used).\n\
00331 bool do_rectify\n\
00332 \n\
00333 ================================================================================\n\
00334 MSG: sensor_msgs/PointCloud2\n\
00335 # This message holds a collection of N-dimensional points, which may\n\
00336 # contain additional information such as normals, intensity, etc. The\n\
00337 # point data is stored as a binary blob, its layout described by the\n\
00338 # contents of the \"fields\" array.\n\
00339 \n\
00340 # The point cloud data may be organized 2d (image-like) or 1d\n\
00341 # (unordered). Point clouds organized as 2d images may be produced by\n\
00342 # camera depth sensors such as stereo or time-of-flight.\n\
00343 \n\
00344 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00345 # points).\n\
00346 Header header\n\
00347 \n\
00348 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00349 # 1 and width is the length of the point cloud.\n\
00350 uint32 height\n\
00351 uint32 width\n\
00352 \n\
00353 # Describes the channels and their layout in the binary data blob.\n\
00354 PointField[] fields\n\
00355 \n\
00356 bool    is_bigendian # Is this data bigendian?\n\
00357 uint32  point_step   # Length of a point in bytes\n\
00358 uint32  row_step     # Length of a row in bytes\n\
00359 uint8[] data         # Actual point data, size is (row_step*height)\n\
00360 \n\
00361 bool is_dense        # True if there are no invalid points\n\
00362 \n\
00363 ================================================================================\n\
00364 MSG: sensor_msgs/PointField\n\
00365 # This message holds the description of one point entry in the\n\
00366 # PointCloud2 message format.\n\
00367 uint8 INT8    = 1\n\
00368 uint8 UINT8   = 2\n\
00369 uint8 INT16   = 3\n\
00370 uint8 UINT16  = 4\n\
00371 uint8 INT32   = 5\n\
00372 uint8 UINT32  = 6\n\
00373 uint8 FLOAT32 = 7\n\
00374 uint8 FLOAT64 = 8\n\
00375 \n\
00376 string name      # Name of field\n\
00377 uint32 offset    # Offset from start of point struct\n\
00378 uint8  datatype  # Datatype enumeration, see above\n\
00379 uint32 count     # How many elements in the field\n\
00380 \n\
00381 ================================================================================\n\
00382 MSG: stereo_msgs/DisparityImage\n\
00383 # Separate header for compatibility with current TimeSynchronizer.\n\
00384 # Likely to be removed in a later release, use image.header instead.\n\
00385 Header header\n\
00386 \n\
00387 # Floating point disparity image. The disparities are pre-adjusted for any\n\
00388 # x-offset between the principal points of the two cameras (in the case\n\
00389 # that they are verged). That is: d = x_l - x_r - (cx_l - cx_r)\n\
00390 sensor_msgs/Image image\n\
00391 \n\
00392 # Stereo geometry. For disparity d, the depth from the camera is Z = fT/d.\n\
00393 float32 f # Focal length, pixels\n\
00394 float32 T # Baseline, world units\n\
00395 \n\
00396 # Subwindow of (potentially) valid disparity values.\n\
00397 sensor_msgs/RegionOfInterest valid_window\n\
00398 \n\
00399 # The range of disparities searched.\n\
00400 # In the disparity image, any disparity less than min_disparity is invalid.\n\
00401 # The disparity search range defines the horopter, or 3D volume that the\n\
00402 # stereo algorithm can \"see\". Points with Z outside of:\n\
00403 #     Z_min = fT / max_disparity\n\
00404 #     Z_max = fT / min_disparity\n\
00405 # could not be found.\n\
00406 float32 min_disparity\n\
00407 float32 max_disparity\n\
00408 \n\
00409 # Smallest allowed disparity increment. The smallest achievable depth range\n\
00410 # resolution is delta_Z = (Z^2/fT)*delta_d.\n\
00411 float32 delta_d\n\
00412 \n\
00413 ";
00414   }
00415 
00416   static const char* value(const  ::interactive_perception_msgs::ObjectSegmentationGuiGoal_<ContainerAllocator> &) { return value(); } 
00417 };
00418 
00419 } // namespace message_traits
00420 } // namespace ros
00421 
00422 namespace ros
00423 {
00424 namespace serialization
00425 {
00426 
00427 template<class ContainerAllocator> struct Serializer< ::interactive_perception_msgs::ObjectSegmentationGuiGoal_<ContainerAllocator> >
00428 {
00429   template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00430   {
00431     stream.next(m.image);
00432     stream.next(m.camera_info);
00433     stream.next(m.wide_field);
00434     stream.next(m.wide_camera_info);
00435     stream.next(m.point_cloud);
00436     stream.next(m.disparity_image);
00437   }
00438 
00439   ROS_DECLARE_ALLINONE_SERIALIZER;
00440 }; // struct ObjectSegmentationGuiGoal_
00441 } // namespace serialization
00442 } // namespace ros
00443 
00444 namespace ros
00445 {
00446 namespace message_operations
00447 {
00448 
00449 template<class ContainerAllocator>
00450 struct Printer< ::interactive_perception_msgs::ObjectSegmentationGuiGoal_<ContainerAllocator> >
00451 {
00452   template<typename Stream> static void stream(Stream& s, const std::string& indent, const  ::interactive_perception_msgs::ObjectSegmentationGuiGoal_<ContainerAllocator> & v) 
00453   {
00454     s << indent << "image: ";
00455 s << std::endl;
00456     Printer< ::sensor_msgs::Image_<ContainerAllocator> >::stream(s, indent + "  ", v.image);
00457     s << indent << "camera_info: ";
00458 s << std::endl;
00459     Printer< ::sensor_msgs::CameraInfo_<ContainerAllocator> >::stream(s, indent + "  ", v.camera_info);
00460     s << indent << "wide_field: ";
00461 s << std::endl;
00462     Printer< ::sensor_msgs::Image_<ContainerAllocator> >::stream(s, indent + "  ", v.wide_field);
00463     s << indent << "wide_camera_info: ";
00464 s << std::endl;
00465     Printer< ::sensor_msgs::CameraInfo_<ContainerAllocator> >::stream(s, indent + "  ", v.wide_camera_info);
00466     s << indent << "point_cloud: ";
00467 s << std::endl;
00468     Printer< ::sensor_msgs::PointCloud2_<ContainerAllocator> >::stream(s, indent + "  ", v.point_cloud);
00469     s << indent << "disparity_image: ";
00470 s << std::endl;
00471     Printer< ::stereo_msgs::DisparityImage_<ContainerAllocator> >::stream(s, indent + "  ", v.disparity_image);
00472   }
00473 };
00474 
00475 
00476 } // namespace message_operations
00477 } // namespace ros
00478 
00479 #endif // INTERACTIVE_PERCEPTION_MSGS_MESSAGE_OBJECTSEGMENTATIONGUIGOAL_H
00480 


interactive_perception_msgs
Author(s): jbinney
autogenerated on Mon Oct 6 2014 11:51:21