00001
00002 #ifndef INTERACTIVE_PERCEPTION_MSGS_MESSAGE_OBJECTSEGMENTATIONGUIGOAL_H
00003 #define INTERACTIVE_PERCEPTION_MSGS_MESSAGE_OBJECTSEGMENTATIONGUIGOAL_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012
00013 #include "ros/macros.h"
00014
00015 #include "ros/assert.h"
00016
00017 #include "sensor_msgs/Image.h"
00018 #include "sensor_msgs/CameraInfo.h"
00019 #include "sensor_msgs/Image.h"
00020 #include "sensor_msgs/CameraInfo.h"
00021 #include "sensor_msgs/PointCloud2.h"
00022 #include "stereo_msgs/DisparityImage.h"
00023
00024 namespace interactive_perception_msgs
00025 {
00026 template <class ContainerAllocator>
00027 struct ObjectSegmentationGuiGoal_ {
00028 typedef ObjectSegmentationGuiGoal_<ContainerAllocator> Type;
00029
00030 ObjectSegmentationGuiGoal_()
00031 : image()
00032 , camera_info()
00033 , wide_field()
00034 , wide_camera_info()
00035 , point_cloud()
00036 , disparity_image()
00037 {
00038 }
00039
00040 ObjectSegmentationGuiGoal_(const ContainerAllocator& _alloc)
00041 : image(_alloc)
00042 , camera_info(_alloc)
00043 , wide_field(_alloc)
00044 , wide_camera_info(_alloc)
00045 , point_cloud(_alloc)
00046 , disparity_image(_alloc)
00047 {
00048 }
00049
00050 typedef ::sensor_msgs::Image_<ContainerAllocator> _image_type;
00051 ::sensor_msgs::Image_<ContainerAllocator> image;
00052
00053 typedef ::sensor_msgs::CameraInfo_<ContainerAllocator> _camera_info_type;
00054 ::sensor_msgs::CameraInfo_<ContainerAllocator> camera_info;
00055
00056 typedef ::sensor_msgs::Image_<ContainerAllocator> _wide_field_type;
00057 ::sensor_msgs::Image_<ContainerAllocator> wide_field;
00058
00059 typedef ::sensor_msgs::CameraInfo_<ContainerAllocator> _wide_camera_info_type;
00060 ::sensor_msgs::CameraInfo_<ContainerAllocator> wide_camera_info;
00061
00062 typedef ::sensor_msgs::PointCloud2_<ContainerAllocator> _point_cloud_type;
00063 ::sensor_msgs::PointCloud2_<ContainerAllocator> point_cloud;
00064
00065 typedef ::stereo_msgs::DisparityImage_<ContainerAllocator> _disparity_image_type;
00066 ::stereo_msgs::DisparityImage_<ContainerAllocator> disparity_image;
00067
00068
00069 typedef boost::shared_ptr< ::interactive_perception_msgs::ObjectSegmentationGuiGoal_<ContainerAllocator> > Ptr;
00070 typedef boost::shared_ptr< ::interactive_perception_msgs::ObjectSegmentationGuiGoal_<ContainerAllocator> const> ConstPtr;
00071 boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00072 };
00073 typedef ::interactive_perception_msgs::ObjectSegmentationGuiGoal_<std::allocator<void> > ObjectSegmentationGuiGoal;
00074
00075 typedef boost::shared_ptr< ::interactive_perception_msgs::ObjectSegmentationGuiGoal> ObjectSegmentationGuiGoalPtr;
00076 typedef boost::shared_ptr< ::interactive_perception_msgs::ObjectSegmentationGuiGoal const> ObjectSegmentationGuiGoalConstPtr;
00077
00078
00079 template<typename ContainerAllocator>
00080 std::ostream& operator<<(std::ostream& s, const ::interactive_perception_msgs::ObjectSegmentationGuiGoal_<ContainerAllocator> & v)
00081 {
00082 ros::message_operations::Printer< ::interactive_perception_msgs::ObjectSegmentationGuiGoal_<ContainerAllocator> >::stream(s, "", v);
00083 return s;}
00084
00085 }
00086
00087 namespace ros
00088 {
00089 namespace message_traits
00090 {
00091 template<class ContainerAllocator> struct IsMessage< ::interactive_perception_msgs::ObjectSegmentationGuiGoal_<ContainerAllocator> > : public TrueType {};
00092 template<class ContainerAllocator> struct IsMessage< ::interactive_perception_msgs::ObjectSegmentationGuiGoal_<ContainerAllocator> const> : public TrueType {};
00093 template<class ContainerAllocator>
00094 struct MD5Sum< ::interactive_perception_msgs::ObjectSegmentationGuiGoal_<ContainerAllocator> > {
00095 static const char* value()
00096 {
00097 return "e1d5b6113ada0dd63b3fd30b2ac9f913";
00098 }
00099
00100 static const char* value(const ::interactive_perception_msgs::ObjectSegmentationGuiGoal_<ContainerAllocator> &) { return value(); }
00101 static const uint64_t static_value1 = 0xe1d5b6113ada0dd6ULL;
00102 static const uint64_t static_value2 = 0x3b3fd30b2ac9f913ULL;
00103 };
00104
00105 template<class ContainerAllocator>
00106 struct DataType< ::interactive_perception_msgs::ObjectSegmentationGuiGoal_<ContainerAllocator> > {
00107 static const char* value()
00108 {
00109 return "interactive_perception_msgs/ObjectSegmentationGuiGoal";
00110 }
00111
00112 static const char* value(const ::interactive_perception_msgs::ObjectSegmentationGuiGoal_<ContainerAllocator> &) { return value(); }
00113 };
00114
00115 template<class ContainerAllocator>
00116 struct Definition< ::interactive_perception_msgs::ObjectSegmentationGuiGoal_<ContainerAllocator> > {
00117 static const char* value()
00118 {
00119 return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00120 sensor_msgs/Image image\n\
00121 sensor_msgs/CameraInfo camera_info\n\
00122 sensor_msgs/Image wide_field\n\
00123 sensor_msgs/CameraInfo wide_camera_info\n\
00124 \n\
00125 sensor_msgs/PointCloud2 point_cloud\n\
00126 stereo_msgs/DisparityImage disparity_image\n\
00127 \n\
00128 \n\
00129 ================================================================================\n\
00130 MSG: sensor_msgs/Image\n\
00131 # This message contains an uncompressed image\n\
00132 # (0, 0) is at top-left corner of image\n\
00133 #\n\
00134 \n\
00135 Header header # Header timestamp should be acquisition time of image\n\
00136 # Header frame_id should be optical frame of camera\n\
00137 # origin of frame should be optical center of cameara\n\
00138 # +x should point to the right in the image\n\
00139 # +y should point down in the image\n\
00140 # +z should point into to plane of the image\n\
00141 # If the frame_id here and the frame_id of the CameraInfo\n\
00142 # message associated with the image conflict\n\
00143 # the behavior is undefined\n\
00144 \n\
00145 uint32 height # image height, that is, number of rows\n\
00146 uint32 width # image width, that is, number of columns\n\
00147 \n\
00148 # The legal values for encoding are in file src/image_encodings.cpp\n\
00149 # If you want to standardize a new string format, join\n\
00150 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00151 \n\
00152 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00153 # taken from the list of strings in include/sensor_msgs/image_encodings.h\n\
00154 \n\
00155 uint8 is_bigendian # is this data bigendian?\n\
00156 uint32 step # Full row length in bytes\n\
00157 uint8[] data # actual matrix data, size is (step * rows)\n\
00158 \n\
00159 ================================================================================\n\
00160 MSG: std_msgs/Header\n\
00161 # Standard metadata for higher-level stamped data types.\n\
00162 # This is generally used to communicate timestamped data \n\
00163 # in a particular coordinate frame.\n\
00164 # \n\
00165 # sequence ID: consecutively increasing ID \n\
00166 uint32 seq\n\
00167 #Two-integer timestamp that is expressed as:\n\
00168 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00169 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00170 # time-handling sugar is provided by the client library\n\
00171 time stamp\n\
00172 #Frame this data is associated with\n\
00173 # 0: no frame\n\
00174 # 1: global frame\n\
00175 string frame_id\n\
00176 \n\
00177 ================================================================================\n\
00178 MSG: sensor_msgs/CameraInfo\n\
00179 # This message defines meta information for a camera. It should be in a\n\
00180 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00181 # image topics named:\n\
00182 #\n\
00183 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00184 # image - monochrome, distorted\n\
00185 # image_color - color, distorted\n\
00186 # image_rect - monochrome, rectified\n\
00187 # image_rect_color - color, rectified\n\
00188 #\n\
00189 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00190 # for producing the four processed image topics from image_raw and\n\
00191 # camera_info. The meaning of the camera parameters are described in\n\
00192 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00193 #\n\
00194 # The image_geometry package provides a user-friendly interface to\n\
00195 # common operations using this meta information. If you want to, e.g.,\n\
00196 # project a 3d point into image coordinates, we strongly recommend\n\
00197 # using image_geometry.\n\
00198 #\n\
00199 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00200 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00201 # indicates an uncalibrated camera.\n\
00202 \n\
00203 #######################################################################\n\
00204 # Image acquisition info #\n\
00205 #######################################################################\n\
00206 \n\
00207 # Time of image acquisition, camera coordinate frame ID\n\
00208 Header header # Header timestamp should be acquisition time of image\n\
00209 # Header frame_id should be optical frame of camera\n\
00210 # origin of frame should be optical center of camera\n\
00211 # +x should point to the right in the image\n\
00212 # +y should point down in the image\n\
00213 # +z should point into the plane of the image\n\
00214 \n\
00215 \n\
00216 #######################################################################\n\
00217 # Calibration Parameters #\n\
00218 #######################################################################\n\
00219 # These are fixed during camera calibration. Their values will be the #\n\
00220 # same in all messages until the camera is recalibrated. Note that #\n\
00221 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00222 # #\n\
00223 # The internal parameters can be used to warp a raw (distorted) image #\n\
00224 # to: #\n\
00225 # 1. An undistorted image (requires D and K) #\n\
00226 # 2. A rectified image (requires D, K, R) #\n\
00227 # The projection matrix P projects 3D points into the rectified image.#\n\
00228 #######################################################################\n\
00229 \n\
00230 # The image dimensions with which the camera was calibrated. Normally\n\
00231 # this will be the full camera resolution in pixels.\n\
00232 uint32 height\n\
00233 uint32 width\n\
00234 \n\
00235 # The distortion model used. Supported models are listed in\n\
00236 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00237 # simple model of radial and tangential distortion - is sufficent.\n\
00238 string distortion_model\n\
00239 \n\
00240 # The distortion parameters, size depending on the distortion model.\n\
00241 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00242 float64[] D\n\
00243 \n\
00244 # Intrinsic camera matrix for the raw (distorted) images.\n\
00245 # [fx 0 cx]\n\
00246 # K = [ 0 fy cy]\n\
00247 # [ 0 0 1]\n\
00248 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00249 # coordinates using the focal lengths (fx, fy) and principal point\n\
00250 # (cx, cy).\n\
00251 float64[9] K # 3x3 row-major matrix\n\
00252 \n\
00253 # Rectification matrix (stereo cameras only)\n\
00254 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00255 # stereo image plane so that epipolar lines in both stereo images are\n\
00256 # parallel.\n\
00257 float64[9] R # 3x3 row-major matrix\n\
00258 \n\
00259 # Projection/camera matrix\n\
00260 # [fx' 0 cx' Tx]\n\
00261 # P = [ 0 fy' cy' Ty]\n\
00262 # [ 0 0 1 0]\n\
00263 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00264 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00265 # is the normal camera intrinsic matrix for the rectified image.\n\
00266 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00267 # coordinates using the focal lengths (fx', fy') and principal point\n\
00268 # (cx', cy') - these may differ from the values in K.\n\
00269 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00270 # also have R = the identity and P[1:3,1:3] = K.\n\
00271 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00272 # position of the optical center of the second camera in the first\n\
00273 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00274 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00275 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00276 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00277 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00278 # the rectified image is given by:\n\
00279 # [u v w]' = P * [X Y Z 1]'\n\
00280 # x = u / w\n\
00281 # y = v / w\n\
00282 # This holds for both images of a stereo pair.\n\
00283 float64[12] P # 3x4 row-major matrix\n\
00284 \n\
00285 \n\
00286 #######################################################################\n\
00287 # Operational Parameters #\n\
00288 #######################################################################\n\
00289 # These define the image region actually captured by the camera #\n\
00290 # driver. Although they affect the geometry of the output image, they #\n\
00291 # may be changed freely without recalibrating the camera. #\n\
00292 #######################################################################\n\
00293 \n\
00294 # Binning refers here to any camera setting which combines rectangular\n\
00295 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00296 # resolution of the output image to\n\
00297 # (width / binning_x) x (height / binning_y).\n\
00298 # The default values binning_x = binning_y = 0 is considered the same\n\
00299 # as binning_x = binning_y = 1 (no subsampling).\n\
00300 uint32 binning_x\n\
00301 uint32 binning_y\n\
00302 \n\
00303 # Region of interest (subwindow of full camera resolution), given in\n\
00304 # full resolution (unbinned) image coordinates. A particular ROI\n\
00305 # always denotes the same window of pixels on the camera sensor,\n\
00306 # regardless of binning settings.\n\
00307 # The default setting of roi (all values 0) is considered the same as\n\
00308 # full resolution (roi.width = width, roi.height = height).\n\
00309 RegionOfInterest roi\n\
00310 \n\
00311 ================================================================================\n\
00312 MSG: sensor_msgs/RegionOfInterest\n\
00313 # This message is used to specify a region of interest within an image.\n\
00314 #\n\
00315 # When used to specify the ROI setting of the camera when the image was\n\
00316 # taken, the height and width fields should either match the height and\n\
00317 # width fields for the associated image; or height = width = 0\n\
00318 # indicates that the full resolution image was captured.\n\
00319 \n\
00320 uint32 x_offset # Leftmost pixel of the ROI\n\
00321 # (0 if the ROI includes the left edge of the image)\n\
00322 uint32 y_offset # Topmost pixel of the ROI\n\
00323 # (0 if the ROI includes the top edge of the image)\n\
00324 uint32 height # Height of ROI\n\
00325 uint32 width # Width of ROI\n\
00326 \n\
00327 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00328 # ROI in this message. Typically this should be False if the full image\n\
00329 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00330 # used).\n\
00331 bool do_rectify\n\
00332 \n\
00333 ================================================================================\n\
00334 MSG: sensor_msgs/PointCloud2\n\
00335 # This message holds a collection of N-dimensional points, which may\n\
00336 # contain additional information such as normals, intensity, etc. The\n\
00337 # point data is stored as a binary blob, its layout described by the\n\
00338 # contents of the \"fields\" array.\n\
00339 \n\
00340 # The point cloud data may be organized 2d (image-like) or 1d\n\
00341 # (unordered). Point clouds organized as 2d images may be produced by\n\
00342 # camera depth sensors such as stereo or time-of-flight.\n\
00343 \n\
00344 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00345 # points).\n\
00346 Header header\n\
00347 \n\
00348 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00349 # 1 and width is the length of the point cloud.\n\
00350 uint32 height\n\
00351 uint32 width\n\
00352 \n\
00353 # Describes the channels and their layout in the binary data blob.\n\
00354 PointField[] fields\n\
00355 \n\
00356 bool is_bigendian # Is this data bigendian?\n\
00357 uint32 point_step # Length of a point in bytes\n\
00358 uint32 row_step # Length of a row in bytes\n\
00359 uint8[] data # Actual point data, size is (row_step*height)\n\
00360 \n\
00361 bool is_dense # True if there are no invalid points\n\
00362 \n\
00363 ================================================================================\n\
00364 MSG: sensor_msgs/PointField\n\
00365 # This message holds the description of one point entry in the\n\
00366 # PointCloud2 message format.\n\
00367 uint8 INT8 = 1\n\
00368 uint8 UINT8 = 2\n\
00369 uint8 INT16 = 3\n\
00370 uint8 UINT16 = 4\n\
00371 uint8 INT32 = 5\n\
00372 uint8 UINT32 = 6\n\
00373 uint8 FLOAT32 = 7\n\
00374 uint8 FLOAT64 = 8\n\
00375 \n\
00376 string name # Name of field\n\
00377 uint32 offset # Offset from start of point struct\n\
00378 uint8 datatype # Datatype enumeration, see above\n\
00379 uint32 count # How many elements in the field\n\
00380 \n\
00381 ================================================================================\n\
00382 MSG: stereo_msgs/DisparityImage\n\
00383 # Separate header for compatibility with current TimeSynchronizer.\n\
00384 # Likely to be removed in a later release, use image.header instead.\n\
00385 Header header\n\
00386 \n\
00387 # Floating point disparity image. The disparities are pre-adjusted for any\n\
00388 # x-offset between the principal points of the two cameras (in the case\n\
00389 # that they are verged). That is: d = x_l - x_r - (cx_l - cx_r)\n\
00390 sensor_msgs/Image image\n\
00391 \n\
00392 # Stereo geometry. For disparity d, the depth from the camera is Z = fT/d.\n\
00393 float32 f # Focal length, pixels\n\
00394 float32 T # Baseline, world units\n\
00395 \n\
00396 # Subwindow of (potentially) valid disparity values.\n\
00397 sensor_msgs/RegionOfInterest valid_window\n\
00398 \n\
00399 # The range of disparities searched.\n\
00400 # In the disparity image, any disparity less than min_disparity is invalid.\n\
00401 # The disparity search range defines the horopter, or 3D volume that the\n\
00402 # stereo algorithm can \"see\". Points with Z outside of:\n\
00403 # Z_min = fT / max_disparity\n\
00404 # Z_max = fT / min_disparity\n\
00405 # could not be found.\n\
00406 float32 min_disparity\n\
00407 float32 max_disparity\n\
00408 \n\
00409 # Smallest allowed disparity increment. The smallest achievable depth range\n\
00410 # resolution is delta_Z = (Z^2/fT)*delta_d.\n\
00411 float32 delta_d\n\
00412 \n\
00413 ";
00414 }
00415
00416 static const char* value(const ::interactive_perception_msgs::ObjectSegmentationGuiGoal_<ContainerAllocator> &) { return value(); }
00417 };
00418
00419 }
00420 }
00421
00422 namespace ros
00423 {
00424 namespace serialization
00425 {
00426
00427 template<class ContainerAllocator> struct Serializer< ::interactive_perception_msgs::ObjectSegmentationGuiGoal_<ContainerAllocator> >
00428 {
00429 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00430 {
00431 stream.next(m.image);
00432 stream.next(m.camera_info);
00433 stream.next(m.wide_field);
00434 stream.next(m.wide_camera_info);
00435 stream.next(m.point_cloud);
00436 stream.next(m.disparity_image);
00437 }
00438
00439 ROS_DECLARE_ALLINONE_SERIALIZER;
00440 };
00441 }
00442 }
00443
00444 namespace ros
00445 {
00446 namespace message_operations
00447 {
00448
00449 template<class ContainerAllocator>
00450 struct Printer< ::interactive_perception_msgs::ObjectSegmentationGuiGoal_<ContainerAllocator> >
00451 {
00452 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::interactive_perception_msgs::ObjectSegmentationGuiGoal_<ContainerAllocator> & v)
00453 {
00454 s << indent << "image: ";
00455 s << std::endl;
00456 Printer< ::sensor_msgs::Image_<ContainerAllocator> >::stream(s, indent + " ", v.image);
00457 s << indent << "camera_info: ";
00458 s << std::endl;
00459 Printer< ::sensor_msgs::CameraInfo_<ContainerAllocator> >::stream(s, indent + " ", v.camera_info);
00460 s << indent << "wide_field: ";
00461 s << std::endl;
00462 Printer< ::sensor_msgs::Image_<ContainerAllocator> >::stream(s, indent + " ", v.wide_field);
00463 s << indent << "wide_camera_info: ";
00464 s << std::endl;
00465 Printer< ::sensor_msgs::CameraInfo_<ContainerAllocator> >::stream(s, indent + " ", v.wide_camera_info);
00466 s << indent << "point_cloud: ";
00467 s << std::endl;
00468 Printer< ::sensor_msgs::PointCloud2_<ContainerAllocator> >::stream(s, indent + " ", v.point_cloud);
00469 s << indent << "disparity_image: ";
00470 s << std::endl;
00471 Printer< ::stereo_msgs::DisparityImage_<ContainerAllocator> >::stream(s, indent + " ", v.disparity_image);
00472 }
00473 };
00474
00475
00476 }
00477 }
00478
00479 #endif // INTERACTIVE_PERCEPTION_MSGS_MESSAGE_OBJECTSEGMENTATIONGUIGOAL_H
00480