00001
00002 #ifndef CAMERA_POSE_CALIBRATION_MESSAGE_ROBOTMEASUREMENT_H
00003 #define CAMERA_POSE_CALIBRATION_MESSAGE_ROBOTMEASUREMENT_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012
00013 #include "ros/macros.h"
00014
00015 #include "ros/assert.h"
00016
00017 #include "std_msgs/Header.h"
00018 #include "camera_pose_calibration/CameraMeasurement.h"
00019
00020 namespace camera_pose_calibration
00021 {
00022 template <class ContainerAllocator>
00023 struct RobotMeasurement_ {
00024 typedef RobotMeasurement_<ContainerAllocator> Type;
00025
00026 RobotMeasurement_()
00027 : header()
00028 , M_cam()
00029 {
00030 }
00031
00032 RobotMeasurement_(const ContainerAllocator& _alloc)
00033 : header(_alloc)
00034 , M_cam(_alloc)
00035 {
00036 }
00037
00038 typedef ::std_msgs::Header_<ContainerAllocator> _header_type;
00039 ::std_msgs::Header_<ContainerAllocator> header;
00040
00041 typedef std::vector< ::camera_pose_calibration::CameraMeasurement_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::camera_pose_calibration::CameraMeasurement_<ContainerAllocator> >::other > _M_cam_type;
00042 std::vector< ::camera_pose_calibration::CameraMeasurement_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::camera_pose_calibration::CameraMeasurement_<ContainerAllocator> >::other > M_cam;
00043
00044
00045 typedef boost::shared_ptr< ::camera_pose_calibration::RobotMeasurement_<ContainerAllocator> > Ptr;
00046 typedef boost::shared_ptr< ::camera_pose_calibration::RobotMeasurement_<ContainerAllocator> const> ConstPtr;
00047 boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00048 };
00049 typedef ::camera_pose_calibration::RobotMeasurement_<std::allocator<void> > RobotMeasurement;
00050
00051 typedef boost::shared_ptr< ::camera_pose_calibration::RobotMeasurement> RobotMeasurementPtr;
00052 typedef boost::shared_ptr< ::camera_pose_calibration::RobotMeasurement const> RobotMeasurementConstPtr;
00053
00054
00055 template<typename ContainerAllocator>
00056 std::ostream& operator<<(std::ostream& s, const ::camera_pose_calibration::RobotMeasurement_<ContainerAllocator> & v)
00057 {
00058 ros::message_operations::Printer< ::camera_pose_calibration::RobotMeasurement_<ContainerAllocator> >::stream(s, "", v);
00059 return s;}
00060
00061 }
00062
00063 namespace ros
00064 {
00065 namespace message_traits
00066 {
00067 template<class ContainerAllocator> struct IsMessage< ::camera_pose_calibration::RobotMeasurement_<ContainerAllocator> > : public TrueType {};
00068 template<class ContainerAllocator> struct IsMessage< ::camera_pose_calibration::RobotMeasurement_<ContainerAllocator> const> : public TrueType {};
00069 template<class ContainerAllocator>
00070 struct MD5Sum< ::camera_pose_calibration::RobotMeasurement_<ContainerAllocator> > {
00071 static const char* value()
00072 {
00073 return "b245ac2435925ecb8e4bf5475545f405";
00074 }
00075
00076 static const char* value(const ::camera_pose_calibration::RobotMeasurement_<ContainerAllocator> &) { return value(); }
00077 static const uint64_t static_value1 = 0xb245ac2435925ecbULL;
00078 static const uint64_t static_value2 = 0x8e4bf5475545f405ULL;
00079 };
00080
00081 template<class ContainerAllocator>
00082 struct DataType< ::camera_pose_calibration::RobotMeasurement_<ContainerAllocator> > {
00083 static const char* value()
00084 {
00085 return "camera_pose_calibration/RobotMeasurement";
00086 }
00087
00088 static const char* value(const ::camera_pose_calibration::RobotMeasurement_<ContainerAllocator> &) { return value(); }
00089 };
00090
00091 template<class ContainerAllocator>
00092 struct Definition< ::camera_pose_calibration::RobotMeasurement_<ContainerAllocator> > {
00093 static const char* value()
00094 {
00095 return "Header header\n\
00096 CameraMeasurement[] M_cam\n\
00097 \n\
00098 ================================================================================\n\
00099 MSG: std_msgs/Header\n\
00100 # Standard metadata for higher-level stamped data types.\n\
00101 # This is generally used to communicate timestamped data \n\
00102 # in a particular coordinate frame.\n\
00103 # \n\
00104 # sequence ID: consecutively increasing ID \n\
00105 uint32 seq\n\
00106 #Two-integer timestamp that is expressed as:\n\
00107 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00108 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00109 # time-handling sugar is provided by the client library\n\
00110 time stamp\n\
00111 #Frame this data is associated with\n\
00112 # 0: no frame\n\
00113 # 1: global frame\n\
00114 string frame_id\n\
00115 \n\
00116 ================================================================================\n\
00117 MSG: camera_pose_calibration/CameraMeasurement\n\
00118 Header header\n\
00119 string camera_id\n\
00120 calibration_msgs/CalibrationPattern features\n\
00121 sensor_msgs/CameraInfo cam_info\n\
00122 \n\
00123 ================================================================================\n\
00124 MSG: calibration_msgs/CalibrationPattern\n\
00125 Header header\n\
00126 geometry_msgs/Point[] object_points\n\
00127 geometry_msgs/Point[] image_points\n\
00128 uint8 success\n\
00129 \n\
00130 ================================================================================\n\
00131 MSG: geometry_msgs/Point\n\
00132 # This contains the position of a point in free space\n\
00133 float64 x\n\
00134 float64 y\n\
00135 float64 z\n\
00136 \n\
00137 ================================================================================\n\
00138 MSG: sensor_msgs/CameraInfo\n\
00139 # This message defines meta information for a camera. It should be in a\n\
00140 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00141 # image topics named:\n\
00142 #\n\
00143 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00144 # image - monochrome, distorted\n\
00145 # image_color - color, distorted\n\
00146 # image_rect - monochrome, rectified\n\
00147 # image_rect_color - color, rectified\n\
00148 #\n\
00149 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00150 # for producing the four processed image topics from image_raw and\n\
00151 # camera_info. The meaning of the camera parameters are described in\n\
00152 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00153 #\n\
00154 # The image_geometry package provides a user-friendly interface to\n\
00155 # common operations using this meta information. If you want to, e.g.,\n\
00156 # project a 3d point into image coordinates, we strongly recommend\n\
00157 # using image_geometry.\n\
00158 #\n\
00159 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00160 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00161 # indicates an uncalibrated camera.\n\
00162 \n\
00163 #######################################################################\n\
00164 # Image acquisition info #\n\
00165 #######################################################################\n\
00166 \n\
00167 # Time of image acquisition, camera coordinate frame ID\n\
00168 Header header # Header timestamp should be acquisition time of image\n\
00169 # Header frame_id should be optical frame of camera\n\
00170 # origin of frame should be optical center of camera\n\
00171 # +x should point to the right in the image\n\
00172 # +y should point down in the image\n\
00173 # +z should point into the plane of the image\n\
00174 \n\
00175 \n\
00176 #######################################################################\n\
00177 # Calibration Parameters #\n\
00178 #######################################################################\n\
00179 # These are fixed during camera calibration. Their values will be the #\n\
00180 # same in all messages until the camera is recalibrated. Note that #\n\
00181 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00182 # #\n\
00183 # The internal parameters can be used to warp a raw (distorted) image #\n\
00184 # to: #\n\
00185 # 1. An undistorted image (requires D and K) #\n\
00186 # 2. A rectified image (requires D, K, R) #\n\
00187 # The projection matrix P projects 3D points into the rectified image.#\n\
00188 #######################################################################\n\
00189 \n\
00190 # The image dimensions with which the camera was calibrated. Normally\n\
00191 # this will be the full camera resolution in pixels.\n\
00192 uint32 height\n\
00193 uint32 width\n\
00194 \n\
00195 # The distortion model used. Supported models are listed in\n\
00196 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00197 # simple model of radial and tangential distortion - is sufficent.\n\
00198 string distortion_model\n\
00199 \n\
00200 # The distortion parameters, size depending on the distortion model.\n\
00201 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00202 float64[] D\n\
00203 \n\
00204 # Intrinsic camera matrix for the raw (distorted) images.\n\
00205 # [fx 0 cx]\n\
00206 # K = [ 0 fy cy]\n\
00207 # [ 0 0 1]\n\
00208 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00209 # coordinates using the focal lengths (fx, fy) and principal point\n\
00210 # (cx, cy).\n\
00211 float64[9] K # 3x3 row-major matrix\n\
00212 \n\
00213 # Rectification matrix (stereo cameras only)\n\
00214 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00215 # stereo image plane so that epipolar lines in both stereo images are\n\
00216 # parallel.\n\
00217 float64[9] R # 3x3 row-major matrix\n\
00218 \n\
00219 # Projection/camera matrix\n\
00220 # [fx' 0 cx' Tx]\n\
00221 # P = [ 0 fy' cy' Ty]\n\
00222 # [ 0 0 1 0]\n\
00223 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00224 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00225 # is the normal camera intrinsic matrix for the rectified image.\n\
00226 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00227 # coordinates using the focal lengths (fx', fy') and principal point\n\
00228 # (cx', cy') - these may differ from the values in K.\n\
00229 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00230 # also have R = the identity and P[1:3,1:3] = K.\n\
00231 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00232 # position of the optical center of the second camera in the first\n\
00233 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00234 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00235 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00236 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00237 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00238 # the rectified image is given by:\n\
00239 # [u v w]' = P * [X Y Z 1]'\n\
00240 # x = u / w\n\
00241 # y = v / w\n\
00242 # This holds for both images of a stereo pair.\n\
00243 float64[12] P # 3x4 row-major matrix\n\
00244 \n\
00245 \n\
00246 #######################################################################\n\
00247 # Operational Parameters #\n\
00248 #######################################################################\n\
00249 # These define the image region actually captured by the camera #\n\
00250 # driver. Although they affect the geometry of the output image, they #\n\
00251 # may be changed freely without recalibrating the camera. #\n\
00252 #######################################################################\n\
00253 \n\
00254 # Binning refers here to any camera setting which combines rectangular\n\
00255 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00256 # resolution of the output image to\n\
00257 # (width / binning_x) x (height / binning_y).\n\
00258 # The default values binning_x = binning_y = 0 is considered the same\n\
00259 # as binning_x = binning_y = 1 (no subsampling).\n\
00260 uint32 binning_x\n\
00261 uint32 binning_y\n\
00262 \n\
00263 # Region of interest (subwindow of full camera resolution), given in\n\
00264 # full resolution (unbinned) image coordinates. A particular ROI\n\
00265 # always denotes the same window of pixels on the camera sensor,\n\
00266 # regardless of binning settings.\n\
00267 # The default setting of roi (all values 0) is considered the same as\n\
00268 # full resolution (roi.width = width, roi.height = height).\n\
00269 RegionOfInterest roi\n\
00270 \n\
00271 ================================================================================\n\
00272 MSG: sensor_msgs/RegionOfInterest\n\
00273 # This message is used to specify a region of interest within an image.\n\
00274 #\n\
00275 # When used to specify the ROI setting of the camera when the image was\n\
00276 # taken, the height and width fields should either match the height and\n\
00277 # width fields for the associated image; or height = width = 0\n\
00278 # indicates that the full resolution image was captured.\n\
00279 \n\
00280 uint32 x_offset # Leftmost pixel of the ROI\n\
00281 # (0 if the ROI includes the left edge of the image)\n\
00282 uint32 y_offset # Topmost pixel of the ROI\n\
00283 # (0 if the ROI includes the top edge of the image)\n\
00284 uint32 height # Height of ROI\n\
00285 uint32 width # Width of ROI\n\
00286 \n\
00287 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00288 # ROI in this message. Typically this should be False if the full image\n\
00289 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00290 # used).\n\
00291 bool do_rectify\n\
00292 \n\
00293 ";
00294 }
00295
00296 static const char* value(const ::camera_pose_calibration::RobotMeasurement_<ContainerAllocator> &) { return value(); }
00297 };
00298
00299 template<class ContainerAllocator> struct HasHeader< ::camera_pose_calibration::RobotMeasurement_<ContainerAllocator> > : public TrueType {};
00300 template<class ContainerAllocator> struct HasHeader< const ::camera_pose_calibration::RobotMeasurement_<ContainerAllocator> > : public TrueType {};
00301 }
00302 }
00303
00304 namespace ros
00305 {
00306 namespace serialization
00307 {
00308
00309 template<class ContainerAllocator> struct Serializer< ::camera_pose_calibration::RobotMeasurement_<ContainerAllocator> >
00310 {
00311 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00312 {
00313 stream.next(m.header);
00314 stream.next(m.M_cam);
00315 }
00316
00317 ROS_DECLARE_ALLINONE_SERIALIZER;
00318 };
00319 }
00320 }
00321
00322 namespace ros
00323 {
00324 namespace message_operations
00325 {
00326
00327 template<class ContainerAllocator>
00328 struct Printer< ::camera_pose_calibration::RobotMeasurement_<ContainerAllocator> >
00329 {
00330 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::camera_pose_calibration::RobotMeasurement_<ContainerAllocator> & v)
00331 {
00332 s << indent << "header: ";
00333 s << std::endl;
00334 Printer< ::std_msgs::Header_<ContainerAllocator> >::stream(s, indent + " ", v.header);
00335 s << indent << "M_cam[]" << std::endl;
00336 for (size_t i = 0; i < v.M_cam.size(); ++i)
00337 {
00338 s << indent << " M_cam[" << i << "]: ";
00339 s << std::endl;
00340 s << indent;
00341 Printer< ::camera_pose_calibration::CameraMeasurement_<ContainerAllocator> >::stream(s, indent + " ", v.M_cam[i]);
00342 }
00343 }
00344 };
00345
00346
00347 }
00348 }
00349
00350 #endif // CAMERA_POSE_CALIBRATION_MESSAGE_ROBOTMEASUREMENT_H
00351