Abstract Class representing all Conditional Gaussians with additive gaussian noise. More...
#include <conditionalgaussian_additivenoise.h>

Public Member Functions | |
| const MatrixWrapper::ColumnVector & | AdditiveNoiseMuGet () const |
| Get the mean Value of the Additive Gaussian uncertainty. | |
| void | AdditiveNoiseMuSet (const MatrixWrapper::ColumnVector &mu) |
| Set the mean Value of the Additive Gaussian uncertainty. | |
| const MatrixWrapper::SymmetricMatrix & | AdditiveNoiseSigmaGet () const |
| Get the covariance matrix of the Additive Gaussian uncertainty. | |
| void | AdditiveNoiseSigmaSet (const MatrixWrapper::SymmetricMatrix &sigma) |
| Set the covariance of the Additive Gaussian uncertainty. | |
| ConditionalGaussianAdditiveNoise (const Gaussian &gaus, int num_conditional_arguments=1) | |
| Constructor. | |
| ConditionalGaussianAdditiveNoise (int dim=0, int num_conditional_arguments=0) | |
| Constructor 2, Gaussian not yet known. | |
| virtual MatrixWrapper::SymmetricMatrix | CovarianceGet () const |
| Get the Covariance Matrix E[(x - E[x])^2] of the Analytic pdf. | |
| virtual | ~ConditionalGaussianAdditiveNoise () |
| Destructor. | |
Protected Attributes | |
| MatrixWrapper::ColumnVector | _additiveNoise_Mu |
| additive noise expected value | |
| MatrixWrapper::SymmetricMatrix | _additiveNoise_Sigma |
| additive noise covariance | |
Abstract Class representing all Conditional Gaussians with additive gaussian noise.
This class represents all Pdf's of the type
where
and
and
f is not necessarily a analytical function
Definition at line 39 of file conditionalgaussian_additivenoise.h.
| BFL::ConditionalGaussianAdditiveNoise::ConditionalGaussianAdditiveNoise | ( | const Gaussian & | gaus, |
| int | num_conditional_arguments = 1 |
||
| ) |
Constructor.
| gaus | Gaussian representing the additive uncertainty |
| num_conditional_arguments | The number of conditional arguments. |
| BFL::ConditionalGaussianAdditiveNoise::ConditionalGaussianAdditiveNoise | ( | int | dim = 0, |
| int | num_conditional_arguments = 0 |
||
| ) |
Constructor 2, Gaussian not yet known.
| dim | Dimension of state |
| num_conditional_arguments | The number of conditional arguments. |
| virtual BFL::ConditionalGaussianAdditiveNoise::~ConditionalGaussianAdditiveNoise | ( | ) | [virtual] |
Destructor.
| const MatrixWrapper::ColumnVector& BFL::ConditionalGaussianAdditiveNoise::AdditiveNoiseMuGet | ( | ) | const |
| void BFL::ConditionalGaussianAdditiveNoise::AdditiveNoiseMuSet | ( | const MatrixWrapper::ColumnVector & | mu | ) |
| const MatrixWrapper::SymmetricMatrix& BFL::ConditionalGaussianAdditiveNoise::AdditiveNoiseSigmaGet | ( | ) | const |
| void BFL::ConditionalGaussianAdditiveNoise::AdditiveNoiseSigmaSet | ( | const MatrixWrapper::SymmetricMatrix & | sigma | ) |
| virtual MatrixWrapper::SymmetricMatrix BFL::ConditionalGaussianAdditiveNoise::CovarianceGet | ( | ) | const [virtual] |
Get the Covariance Matrix E[(x - E[x])^2] of the Analytic pdf.
Get first order statistic (Covariance) of this AnalyticPdf
Reimplemented from BFL::BFL::Pdf< MatrixWrapper::ColumnVector >.
MatrixWrapper::ColumnVector BFL::ConditionalGaussianAdditiveNoise::_additiveNoise_Mu [protected] |
additive noise expected value
Definition at line 94 of file conditionalgaussian_additivenoise.h.
MatrixWrapper::SymmetricMatrix BFL::ConditionalGaussianAdditiveNoise::_additiveNoise_Sigma [protected] |
additive noise covariance
Definition at line 97 of file conditionalgaussian_additivenoise.h.