00001 /*************************************************************************** 00002 tag: Peter Soetens Thu Oct 22 11:59:07 CEST 2009 BufferUnSync.hpp 00003 00004 BufferUnSync.hpp - description 00005 ------------------- 00006 begin : Thu October 22 2009 00007 copyright : (C) 2009 Peter Soetens 00008 email : peter@thesourcworks.com 00009 00010 *************************************************************************** 00011 * This library is free software; you can redistribute it and/or * 00012 * modify it under the terms of the GNU General Public * 00013 * License as published by the Free Software Foundation; * 00014 * version 2 of the License. * 00015 * * 00016 * As a special exception, you may use this file as part of a free * 00017 * software library without restriction. Specifically, if other files * 00018 * instantiate templates or use macros or inline functions from this * 00019 * file, or you compile this file and link it with other files to * 00020 * produce an executable, this file does not by itself cause the * 00021 * resulting executable to be covered by the GNU General Public * 00022 * License. This exception does not however invalidate any other * 00023 * reasons why the executable file might be covered by the GNU General * 00024 * Public License. * 00025 * * 00026 * This library is distributed in the hope that it will be useful, * 00027 * but WITHOUT ANY WARRANTY; without even the implied warranty of * 00028 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * 00029 * Lesser General Public License for more details. * 00030 * * 00031 * You should have received a copy of the GNU General Public * 00032 * License along with this library; if not, write to the Free Software * 00033 * Foundation, Inc., 59 Temple Place, * 00034 * Suite 330, Boston, MA 02111-1307 USA * 00035 * * 00036 ***************************************************************************/ 00037 00038 00039 00040 #ifndef ORO_CORELIB_BUFFER_UNSYNC_HPP 00041 #define ORO_CORELIB_BUFFER_UNSYNC_HPP 00042 00043 #include "BufferInterface.hpp" 00044 #include <deque> 00045 00046 namespace RTT 00047 { namespace base { 00048 00049 00057 template<class T> 00058 class BufferUnSync 00059 :public BufferInterface<T> 00060 { 00061 public: 00062 typedef typename BufferInterface<T>::reference_t reference_t; 00063 typedef typename BufferInterface<T>::param_t param_t; 00064 typedef typename BufferInterface<T>::size_type size_type; 00065 typedef T value_t; 00066 00070 BufferUnSync( size_type size, const T& initial_value = T(), bool circular = false ) 00071 : cap(size), buf(), mcircular(circular) 00072 { 00073 data_sample(initial_value); 00074 } 00075 00076 virtual void data_sample( const T& sample ) 00077 { 00078 buf.resize(cap, sample); 00079 buf.resize(0); 00080 } 00081 00082 virtual T data_sample() const 00083 { 00084 return lastSample; 00085 } 00086 00090 ~BufferUnSync() {} 00091 00092 bool Push( param_t item ) 00093 { 00094 if (cap == (size_type)buf.size() ) { 00095 if (!mcircular) 00096 return false; 00097 else 00098 buf.pop_front(); 00099 } 00100 buf.push_back( item ); 00101 return true; 00102 } 00103 00104 size_type Push(const std::vector<T>& items) 00105 { 00106 typename std::vector<T>::const_iterator itl( items.begin() ); 00107 if (mcircular && (size_type)items.size() >= cap ) { 00108 // clear out current data and reset iterator to first element we're going to take. 00109 buf.clear(); 00110 itl = items.begin() + ( items.size() - cap ); 00111 } else if ( mcircular && (size_type)(buf.size() + items.size()) > cap) { 00112 // drop excess elements from front 00113 assert( (size_type)items.size() < cap ); 00114 while ( (size_type)(buf.size() + items.size()) > cap ) 00115 buf.pop_front(); 00116 // itl still points at first element of items. 00117 } 00118 while ( ((size_type)buf.size() != cap) && (itl != items.end()) ) { 00119 buf.push_back( *itl ); 00120 ++itl; 00121 } 00122 return (itl - items.begin()); 00123 } 00124 00125 bool Pop( reference_t item ) 00126 { 00127 if ( buf.empty() ) { 00128 return false; 00129 } 00130 item = buf.front(); 00131 buf.pop_front(); 00132 return true; 00133 } 00134 00135 size_type Pop(std::vector<T>& items ) 00136 { 00137 int quant = 0; 00138 items.clear(); 00139 while ( !buf.empty() ) { 00140 items.push_back( buf.front() ); 00141 buf.pop_front(); 00142 ++quant; 00143 } 00144 return quant; 00145 } 00146 00147 value_t* PopWithoutRelease() 00148 { 00149 if(buf.empty()) 00150 return 0; 00151 00152 //note we need to copy the sample, as 00153 //front is not garanteed to be valid after 00154 //any other operation on the deque 00155 lastSample = buf.front(); 00156 buf.pop_front(); 00157 return &lastSample; 00158 00159 return 0; 00160 } 00161 00162 void Release(value_t *item) 00163 { 00164 //we do not need to release any memory, but we can check 00165 //if the other side messed up 00166 assert(item == &lastSample && "Wrong pointer given back to buffer"); 00167 } 00168 00169 size_type capacity() const { 00170 return cap; 00171 } 00172 00173 size_type size() const { 00174 return buf.size(); 00175 } 00176 00177 void clear() { 00178 buf.clear(); 00179 } 00180 00181 bool empty() const { 00182 return buf.empty(); 00183 } 00184 00185 bool full() const { 00186 return (size_type)buf.size() == cap; 00187 } 00188 private: 00189 size_type cap; 00190 std::deque<T> buf; 00191 value_t lastSample; 00192 const bool mcircular; 00193 }; 00194 }} 00195 00196 #endif // BUFFERSIMPLE_HPP