LevenbergMarquardt.h
Go to the documentation of this file.
00001 // -*- coding: utf-8
00002 // vim: set fileencoding=utf-8
00003 
00004 // This file is part of Eigen, a lightweight C++ template library
00005 // for linear algebra.
00006 //
00007 // Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org>
00008 //
00009 // Eigen is free software; you can redistribute it and/or
00010 // modify it under the terms of the GNU Lesser General Public
00011 // License as published by the Free Software Foundation; either
00012 // version 3 of the License, or (at your option) any later version.
00013 //
00014 // Alternatively, you can redistribute it and/or
00015 // modify it under the terms of the GNU General Public License as
00016 // published by the Free Software Foundation; either version 2 of
00017 // the License, or (at your option) any later version.
00018 //
00019 // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
00020 // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
00021 // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
00022 // GNU General Public License for more details.
00023 //
00024 // You should have received a copy of the GNU Lesser General Public
00025 // License and a copy of the GNU General Public License along with
00026 // Eigen. If not, see <http://www.gnu.org/licenses/>.
00027 
00028 #ifndef EIGEN_LEVENBERGMARQUARDT__H
00029 #define EIGEN_LEVENBERGMARQUARDT__H
00030 
00031 
00032 namespace LevenbergMarquardtSpace {
00033     enum Status {
00034         NotStarted = -2,
00035         Running = -1,
00036         ImproperInputParameters = 0,
00037         RelativeReductionTooSmall = 1,
00038         RelativeErrorTooSmall = 2,
00039         RelativeErrorAndReductionTooSmall = 3,
00040         CosinusTooSmall = 4,
00041         TooManyFunctionEvaluation = 5,
00042         FtolTooSmall = 6,
00043         XtolTooSmall = 7,
00044         GtolTooSmall = 8,
00045         UserAsked = 9
00046     };
00047 }
00048 
00049 
00050 
00059 template<typename FunctorType, typename Scalar=double>
00060 class LevenbergMarquardt
00061 {
00062 public:
00063     LevenbergMarquardt(FunctorType &_functor)
00064         : functor(_functor) { nfev = njev = iter = 0;  fnorm = gnorm = 0.; useExternalScaling=false; }
00065 
00066     typedef DenseIndex Index;
00067 
00068     struct Parameters {
00069         Parameters()
00070             : factor(Scalar(100.))
00071             , maxfev(400)
00072             , ftol(internal::sqrt(NumTraits<Scalar>::epsilon()))
00073             , xtol(internal::sqrt(NumTraits<Scalar>::epsilon()))
00074             , gtol(Scalar(0.))
00075             , epsfcn(Scalar(0.)) {}
00076         Scalar factor;
00077         Index maxfev;   // maximum number of function evaluation
00078         Scalar ftol;
00079         Scalar xtol;
00080         Scalar gtol;
00081         Scalar epsfcn;
00082     };
00083 
00084     typedef Matrix< Scalar, Dynamic, 1 > FVectorType;
00085     typedef Matrix< Scalar, Dynamic, Dynamic > JacobianType;
00086 
00087     LevenbergMarquardtSpace::Status lmder1(
00088             FVectorType &x,
00089             const Scalar tol = internal::sqrt(NumTraits<Scalar>::epsilon())
00090             );
00091 
00092     LevenbergMarquardtSpace::Status minimize(FVectorType &x);
00093     LevenbergMarquardtSpace::Status minimizeInit(FVectorType &x);
00094     LevenbergMarquardtSpace::Status minimizeOneStep(FVectorType &x);
00095 
00096     static LevenbergMarquardtSpace::Status lmdif1(
00097             FunctorType &functor,
00098             FVectorType &x,
00099             Index *nfev,
00100             const Scalar tol = internal::sqrt(NumTraits<Scalar>::epsilon())
00101             );
00102 
00103     LevenbergMarquardtSpace::Status lmstr1(
00104             FVectorType  &x,
00105             const Scalar tol = internal::sqrt(NumTraits<Scalar>::epsilon())
00106             );
00107 
00108     LevenbergMarquardtSpace::Status minimizeOptimumStorage(FVectorType  &x);
00109     LevenbergMarquardtSpace::Status minimizeOptimumStorageInit(FVectorType  &x);
00110     LevenbergMarquardtSpace::Status minimizeOptimumStorageOneStep(FVectorType  &x);
00111 
00112     void resetParameters(void) { parameters = Parameters(); }
00113 
00114     Parameters parameters;
00115     FVectorType  fvec, qtf, diag;
00116     JacobianType fjac;
00117     PermutationMatrix<Dynamic,Dynamic> permutation;
00118     Index nfev;
00119     Index njev;
00120     Index iter;
00121     Scalar fnorm, gnorm;
00122     bool useExternalScaling; 
00123 
00124     Scalar lm_param(void) { return par; }
00125 private:
00126     FunctorType &functor;
00127     Index n;
00128     Index m;
00129     FVectorType wa1, wa2, wa3, wa4;
00130 
00131     Scalar par, sum;
00132     Scalar temp, temp1, temp2;
00133     Scalar delta;
00134     Scalar ratio;
00135     Scalar pnorm, xnorm, fnorm1, actred, dirder, prered;
00136 
00137     LevenbergMarquardt& operator=(const LevenbergMarquardt&);
00138 };
00139 
00140 template<typename FunctorType, typename Scalar>
00141 LevenbergMarquardtSpace::Status
00142 LevenbergMarquardt<FunctorType,Scalar>::lmder1(
00143         FVectorType  &x,
00144         const Scalar tol
00145         )
00146 {
00147     n = x.size();
00148     m = functor.values();
00149 
00150     /* check the input parameters for errors. */
00151     if (n <= 0 || m < n || tol < 0.)
00152         return LevenbergMarquardtSpace::ImproperInputParameters;
00153 
00154     resetParameters();
00155     parameters.ftol = tol;
00156     parameters.xtol = tol;
00157     parameters.maxfev = 100*(n+1);
00158 
00159     return minimize(x);
00160 }
00161 
00162 
00163 template<typename FunctorType, typename Scalar>
00164 LevenbergMarquardtSpace::Status
00165 LevenbergMarquardt<FunctorType,Scalar>::minimize(FVectorType  &x)
00166 {
00167     LevenbergMarquardtSpace::Status status = minimizeInit(x);
00168     if (status==LevenbergMarquardtSpace::ImproperInputParameters)
00169         return status;
00170     do {
00171         status = minimizeOneStep(x);
00172     } while (status==LevenbergMarquardtSpace::Running);
00173     return status;
00174 }
00175 
00176 template<typename FunctorType, typename Scalar>
00177 LevenbergMarquardtSpace::Status
00178 LevenbergMarquardt<FunctorType,Scalar>::minimizeInit(FVectorType  &x)
00179 {
00180     n = x.size();
00181     m = functor.values();
00182 
00183     wa1.resize(n); wa2.resize(n); wa3.resize(n);
00184     wa4.resize(m);
00185     fvec.resize(m);
00186     fjac.resize(m, n);
00187     if (!useExternalScaling)
00188         diag.resize(n);
00189     assert( (!useExternalScaling || diag.size()==n) || "When useExternalScaling is set, the caller must provide a valid 'diag'");
00190     qtf.resize(n);
00191 
00192     /* Function Body */
00193     nfev = 0;
00194     njev = 0;
00195 
00196     /*     check the input parameters for errors. */
00197     if (n <= 0 || m < n || parameters.ftol < 0. || parameters.xtol < 0. || parameters.gtol < 0. || parameters.maxfev <= 0 || parameters.factor <= 0.)
00198         return LevenbergMarquardtSpace::ImproperInputParameters;
00199 
00200     if (useExternalScaling)
00201         for (Index j = 0; j < n; ++j)
00202             if (diag[j] <= 0.)
00203                 return LevenbergMarquardtSpace::ImproperInputParameters;
00204 
00205     /*     evaluate the function at the starting point */
00206     /*     and calculate its norm. */
00207     nfev = 1;
00208     if ( functor(x, fvec) < 0)
00209         return LevenbergMarquardtSpace::UserAsked;
00210     fnorm = fvec.stableNorm();
00211 
00212     /*     initialize levenberg-marquardt parameter and iteration counter. */
00213     par = 0.;
00214     iter = 1;
00215 
00216     return LevenbergMarquardtSpace::NotStarted;
00217 }
00218 
00219 template<typename FunctorType, typename Scalar>
00220 LevenbergMarquardtSpace::Status
00221 LevenbergMarquardt<FunctorType,Scalar>::minimizeOneStep(FVectorType  &x)
00222 {
00223     assert(x.size()==n); // check the caller is not cheating us
00224 
00225     /* calculate the jacobian matrix. */
00226     Index df_ret = functor.df(x, fjac);
00227     if (df_ret<0)
00228         return LevenbergMarquardtSpace::UserAsked;
00229     if (df_ret>0)
00230         // numerical diff, we evaluated the function df_ret times
00231         nfev += df_ret;
00232     else njev++;
00233 
00234     /* compute the qr factorization of the jacobian. */
00235     wa2 = fjac.colwise().blueNorm();
00236     ColPivHouseholderQR<JacobianType> qrfac(fjac);
00237     fjac = qrfac.matrixQR();
00238     permutation = qrfac.colsPermutation();
00239 
00240     /* on the first iteration and if external scaling is not used, scale according */
00241     /* to the norms of the columns of the initial jacobian. */
00242     if (iter == 1) {
00243         if (!useExternalScaling)
00244             for (Index j = 0; j < n; ++j)
00245                 diag[j] = (wa2[j]==0.)? 1. : wa2[j];
00246 
00247         /* on the first iteration, calculate the norm of the scaled x */
00248         /* and initialize the step bound delta. */
00249         xnorm = diag.cwiseProduct(x).stableNorm();
00250         delta = parameters.factor * xnorm;
00251         if (delta == 0.)
00252             delta = parameters.factor;
00253     }
00254 
00255     /* form (q transpose)*fvec and store the first n components in */
00256     /* qtf. */
00257     wa4 = fvec;
00258     wa4.applyOnTheLeft(qrfac.householderQ().adjoint());
00259     qtf = wa4.head(n);
00260 
00261     /* compute the norm of the scaled gradient. */
00262     gnorm = 0.;
00263     if (fnorm != 0.)
00264         for (Index j = 0; j < n; ++j)
00265             if (wa2[permutation.indices()[j]] != 0.)
00266                 gnorm = std::max(gnorm, internal::abs( fjac.col(j).head(j+1).dot(qtf.head(j+1)/fnorm) / wa2[permutation.indices()[j]]));
00267 
00268     /* test for convergence of the gradient norm. */
00269     if (gnorm <= parameters.gtol)
00270         return LevenbergMarquardtSpace::CosinusTooSmall;
00271 
00272     /* rescale if necessary. */
00273     if (!useExternalScaling)
00274         diag = diag.cwiseMax(wa2);
00275 
00276     do {
00277 
00278         /* determine the levenberg-marquardt parameter. */
00279         internal::lmpar2<Scalar>(qrfac, diag, qtf, delta, par, wa1);
00280 
00281         /* store the direction p and x + p. calculate the norm of p. */
00282         wa1 = -wa1;
00283         wa2 = x + wa1;
00284         pnorm = diag.cwiseProduct(wa1).stableNorm();
00285 
00286         /* on the first iteration, adjust the initial step bound. */
00287         if (iter == 1)
00288             delta = std::min(delta,pnorm);
00289 
00290         /* evaluate the function at x + p and calculate its norm. */
00291         if ( functor(wa2, wa4) < 0)
00292             return LevenbergMarquardtSpace::UserAsked;
00293         ++nfev;
00294         fnorm1 = wa4.stableNorm();
00295 
00296         /* compute the scaled actual reduction. */
00297         actred = -1.;
00298         if (Scalar(.1) * fnorm1 < fnorm)
00299             actred = 1. - internal::abs2(fnorm1 / fnorm);
00300 
00301         /* compute the scaled predicted reduction and */
00302         /* the scaled directional derivative. */
00303         wa3 = fjac.template triangularView<Upper>() * (qrfac.colsPermutation().inverse() *wa1);
00304         temp1 = internal::abs2(wa3.stableNorm() / fnorm);
00305         temp2 = internal::abs2(internal::sqrt(par) * pnorm / fnorm);
00306         prered = temp1 + temp2 / Scalar(.5);
00307         dirder = -(temp1 + temp2);
00308 
00309         /* compute the ratio of the actual to the predicted */
00310         /* reduction. */
00311         ratio = 0.;
00312         if (prered != 0.)
00313             ratio = actred / prered;
00314 
00315         /* update the step bound. */
00316         if (ratio <= Scalar(.25)) {
00317             if (actred >= 0.)
00318                 temp = Scalar(.5);
00319             if (actred < 0.)
00320                 temp = Scalar(.5) * dirder / (dirder + Scalar(.5) * actred);
00321             if (Scalar(.1) * fnorm1 >= fnorm || temp < Scalar(.1))
00322                 temp = Scalar(.1);
00323             /* Computing MIN */
00324             delta = temp * std::min(delta, pnorm / Scalar(.1));
00325             par /= temp;
00326         } else if (!(par != 0. && ratio < Scalar(.75))) {
00327             delta = pnorm / Scalar(.5);
00328             par = Scalar(.5) * par;
00329         }
00330 
00331         /* test for successful iteration. */
00332         if (ratio >= Scalar(1e-4)) {
00333             /* successful iteration. update x, fvec, and their norms. */
00334             x = wa2;
00335             wa2 = diag.cwiseProduct(x);
00336             fvec = wa4;
00337             xnorm = wa2.stableNorm();
00338             fnorm = fnorm1;
00339             ++iter;
00340         }
00341 
00342         /* tests for convergence. */
00343         if (internal::abs(actred) <= parameters.ftol && prered <= parameters.ftol && Scalar(.5) * ratio <= 1. && delta <= parameters.xtol * xnorm)
00344             return LevenbergMarquardtSpace::RelativeErrorAndReductionTooSmall;
00345         if (internal::abs(actred) <= parameters.ftol && prered <= parameters.ftol && Scalar(.5) * ratio <= 1.)
00346             return LevenbergMarquardtSpace::RelativeReductionTooSmall;
00347         if (delta <= parameters.xtol * xnorm)
00348             return LevenbergMarquardtSpace::RelativeErrorTooSmall;
00349 
00350         /* tests for termination and stringent tolerances. */
00351         if (nfev >= parameters.maxfev)
00352             return LevenbergMarquardtSpace::TooManyFunctionEvaluation;
00353         if (internal::abs(actred) <= NumTraits<Scalar>::epsilon() && prered <= NumTraits<Scalar>::epsilon() && Scalar(.5) * ratio <= 1.)
00354             return LevenbergMarquardtSpace::FtolTooSmall;
00355         if (delta <= NumTraits<Scalar>::epsilon() * xnorm)
00356             return LevenbergMarquardtSpace::XtolTooSmall;
00357         if (gnorm <= NumTraits<Scalar>::epsilon())
00358             return LevenbergMarquardtSpace::GtolTooSmall;
00359 
00360     } while (ratio < Scalar(1e-4));
00361 
00362     return LevenbergMarquardtSpace::Running;
00363 }
00364 
00365 template<typename FunctorType, typename Scalar>
00366 LevenbergMarquardtSpace::Status
00367 LevenbergMarquardt<FunctorType,Scalar>::lmstr1(
00368         FVectorType  &x,
00369         const Scalar tol
00370         )
00371 {
00372     n = x.size();
00373     m = functor.values();
00374 
00375     /* check the input parameters for errors. */
00376     if (n <= 0 || m < n || tol < 0.)
00377         return LevenbergMarquardtSpace::ImproperInputParameters;
00378 
00379     resetParameters();
00380     parameters.ftol = tol;
00381     parameters.xtol = tol;
00382     parameters.maxfev = 100*(n+1);
00383 
00384     return minimizeOptimumStorage(x);
00385 }
00386 
00387 template<typename FunctorType, typename Scalar>
00388 LevenbergMarquardtSpace::Status
00389 LevenbergMarquardt<FunctorType,Scalar>::minimizeOptimumStorageInit(FVectorType  &x)
00390 {
00391     n = x.size();
00392     m = functor.values();
00393 
00394     wa1.resize(n); wa2.resize(n); wa3.resize(n);
00395     wa4.resize(m);
00396     fvec.resize(m);
00397     // Only R is stored in fjac. Q is only used to compute 'qtf', which is
00398     // Q.transpose()*rhs. qtf will be updated using givens rotation,
00399     // instead of storing them in Q.
00400     // The purpose it to only use a nxn matrix, instead of mxn here, so
00401     // that we can handle cases where m>>n :
00402     fjac.resize(n, n);
00403     if (!useExternalScaling)
00404         diag.resize(n);
00405     assert( (!useExternalScaling || diag.size()==n) || "When useExternalScaling is set, the caller must provide a valid 'diag'");
00406     qtf.resize(n);
00407 
00408     /* Function Body */
00409     nfev = 0;
00410     njev = 0;
00411 
00412     /*     check the input parameters for errors. */
00413     if (n <= 0 || m < n || parameters.ftol < 0. || parameters.xtol < 0. || parameters.gtol < 0. || parameters.maxfev <= 0 || parameters.factor <= 0.)
00414         return LevenbergMarquardtSpace::ImproperInputParameters;
00415 
00416     if (useExternalScaling)
00417         for (Index j = 0; j < n; ++j)
00418             if (diag[j] <= 0.)
00419                 return LevenbergMarquardtSpace::ImproperInputParameters;
00420 
00421     /*     evaluate the function at the starting point */
00422     /*     and calculate its norm. */
00423     nfev = 1;
00424     if ( functor(x, fvec) < 0)
00425         return LevenbergMarquardtSpace::UserAsked;
00426     fnorm = fvec.stableNorm();
00427 
00428     /*     initialize levenberg-marquardt parameter and iteration counter. */
00429     par = 0.;
00430     iter = 1;
00431 
00432     return LevenbergMarquardtSpace::NotStarted;
00433 }
00434 
00435 
00436 template<typename FunctorType, typename Scalar>
00437 LevenbergMarquardtSpace::Status
00438 LevenbergMarquardt<FunctorType,Scalar>::minimizeOptimumStorageOneStep(FVectorType  &x)
00439 {
00440     assert(x.size()==n); // check the caller is not cheating us
00441 
00442     Index i, j;
00443     bool sing;
00444 
00445     /* compute the qr factorization of the jacobian matrix */
00446     /* calculated one row at a time, while simultaneously */
00447     /* forming (q transpose)*fvec and storing the first */
00448     /* n components in qtf. */
00449     qtf.fill(0.);
00450     fjac.fill(0.);
00451     Index rownb = 2;
00452     for (i = 0; i < m; ++i) {
00453         if (functor.df(x, wa3, rownb) < 0) return LevenbergMarquardtSpace::UserAsked;
00454         internal::rwupdt<Scalar>(fjac, wa3, qtf, fvec[i]);
00455         ++rownb;
00456     }
00457     ++njev;
00458 
00459     /* if the jacobian is rank deficient, call qrfac to */
00460     /* reorder its columns and update the components of qtf. */
00461     sing = false;
00462     for (j = 0; j < n; ++j) {
00463         if (fjac(j,j) == 0.)
00464             sing = true;
00465         wa2[j] = fjac.col(j).head(j).stableNorm();
00466     }
00467     permutation.setIdentity(n);
00468     if (sing) {
00469         wa2 = fjac.colwise().blueNorm();
00470         // TODO We have no unit test covering this code path, do not modify
00471         // until it is carefully tested
00472         ColPivHouseholderQR<JacobianType> qrfac(fjac);
00473         fjac = qrfac.matrixQR();
00474         wa1 = fjac.diagonal();
00475         fjac.diagonal() = qrfac.hCoeffs();
00476         permutation = qrfac.colsPermutation();
00477         // TODO : avoid this:
00478         for(Index ii=0; ii< fjac.cols(); ii++) fjac.col(ii).segment(ii+1, fjac.rows()-ii-1) *= fjac(ii,ii); // rescale vectors
00479 
00480         for (j = 0; j < n; ++j) {
00481             if (fjac(j,j) != 0.) {
00482                 sum = 0.;
00483                 for (i = j; i < n; ++i)
00484                     sum += fjac(i,j) * qtf[i];
00485                 temp = -sum / fjac(j,j);
00486                 for (i = j; i < n; ++i)
00487                     qtf[i] += fjac(i,j) * temp;
00488             }
00489             fjac(j,j) = wa1[j];
00490         }
00491     }
00492 
00493     /* on the first iteration and if external scaling is not used, scale according */
00494     /* to the norms of the columns of the initial jacobian. */
00495     if (iter == 1) {
00496         if (!useExternalScaling)
00497             for (j = 0; j < n; ++j)
00498                 diag[j] = (wa2[j]==0.)? 1. : wa2[j];
00499 
00500         /* on the first iteration, calculate the norm of the scaled x */
00501         /* and initialize the step bound delta. */
00502         xnorm = diag.cwiseProduct(x).stableNorm();
00503         delta = parameters.factor * xnorm;
00504         if (delta == 0.)
00505             delta = parameters.factor;
00506     }
00507 
00508     /* compute the norm of the scaled gradient. */
00509     gnorm = 0.;
00510     if (fnorm != 0.)
00511         for (j = 0; j < n; ++j)
00512             if (wa2[permutation.indices()[j]] != 0.)
00513                 gnorm = std::max(gnorm, internal::abs( fjac.col(j).head(j+1).dot(qtf.head(j+1)/fnorm) / wa2[permutation.indices()[j]]));
00514 
00515     /* test for convergence of the gradient norm. */
00516     if (gnorm <= parameters.gtol)
00517         return LevenbergMarquardtSpace::CosinusTooSmall;
00518 
00519     /* rescale if necessary. */
00520     if (!useExternalScaling)
00521         diag = diag.cwiseMax(wa2);
00522 
00523     do {
00524 
00525         /* determine the levenberg-marquardt parameter. */
00526         internal::lmpar<Scalar>(fjac, permutation.indices(), diag, qtf, delta, par, wa1);
00527 
00528         /* store the direction p and x + p. calculate the norm of p. */
00529         wa1 = -wa1;
00530         wa2 = x + wa1;
00531         pnorm = diag.cwiseProduct(wa1).stableNorm();
00532 
00533         /* on the first iteration, adjust the initial step bound. */
00534         if (iter == 1)
00535             delta = std::min(delta,pnorm);
00536 
00537         /* evaluate the function at x + p and calculate its norm. */
00538         if ( functor(wa2, wa4) < 0)
00539             return LevenbergMarquardtSpace::UserAsked;
00540         ++nfev;
00541         fnorm1 = wa4.stableNorm();
00542 
00543         /* compute the scaled actual reduction. */
00544         actred = -1.;
00545         if (Scalar(.1) * fnorm1 < fnorm)
00546             actred = 1. - internal::abs2(fnorm1 / fnorm);
00547 
00548         /* compute the scaled predicted reduction and */
00549         /* the scaled directional derivative. */
00550         wa3 = fjac.topLeftCorner(n,n).template triangularView<Upper>() * (permutation.inverse() * wa1);
00551         temp1 = internal::abs2(wa3.stableNorm() / fnorm);
00552         temp2 = internal::abs2(internal::sqrt(par) * pnorm / fnorm);
00553         prered = temp1 + temp2 / Scalar(.5);
00554         dirder = -(temp1 + temp2);
00555 
00556         /* compute the ratio of the actual to the predicted */
00557         /* reduction. */
00558         ratio = 0.;
00559         if (prered != 0.)
00560             ratio = actred / prered;
00561 
00562         /* update the step bound. */
00563         if (ratio <= Scalar(.25)) {
00564             if (actred >= 0.)
00565                 temp = Scalar(.5);
00566             if (actred < 0.)
00567                 temp = Scalar(.5) * dirder / (dirder + Scalar(.5) * actred);
00568             if (Scalar(.1) * fnorm1 >= fnorm || temp < Scalar(.1))
00569                 temp = Scalar(.1);
00570             /* Computing MIN */
00571             delta = temp * std::min(delta, pnorm / Scalar(.1));
00572             par /= temp;
00573         } else if (!(par != 0. && ratio < Scalar(.75))) {
00574             delta = pnorm / Scalar(.5);
00575             par = Scalar(.5) * par;
00576         }
00577 
00578         /* test for successful iteration. */
00579         if (ratio >= Scalar(1e-4)) {
00580             /* successful iteration. update x, fvec, and their norms. */
00581             x = wa2;
00582             wa2 = diag.cwiseProduct(x);
00583             fvec = wa4;
00584             xnorm = wa2.stableNorm();
00585             fnorm = fnorm1;
00586             ++iter;
00587         }
00588 
00589         /* tests for convergence. */
00590         if (internal::abs(actred) <= parameters.ftol && prered <= parameters.ftol && Scalar(.5) * ratio <= 1. && delta <= parameters.xtol * xnorm)
00591             return LevenbergMarquardtSpace::RelativeErrorAndReductionTooSmall;
00592         if (internal::abs(actred) <= parameters.ftol && prered <= parameters.ftol && Scalar(.5) * ratio <= 1.)
00593             return LevenbergMarquardtSpace::RelativeReductionTooSmall;
00594         if (delta <= parameters.xtol * xnorm)
00595             return LevenbergMarquardtSpace::RelativeErrorTooSmall;
00596 
00597         /* tests for termination and stringent tolerances. */
00598         if (nfev >= parameters.maxfev)
00599             return LevenbergMarquardtSpace::TooManyFunctionEvaluation;
00600         if (internal::abs(actred) <= NumTraits<Scalar>::epsilon() && prered <= NumTraits<Scalar>::epsilon() && Scalar(.5) * ratio <= 1.)
00601             return LevenbergMarquardtSpace::FtolTooSmall;
00602         if (delta <= NumTraits<Scalar>::epsilon() * xnorm)
00603             return LevenbergMarquardtSpace::XtolTooSmall;
00604         if (gnorm <= NumTraits<Scalar>::epsilon())
00605             return LevenbergMarquardtSpace::GtolTooSmall;
00606 
00607     } while (ratio < Scalar(1e-4));
00608 
00609     return LevenbergMarquardtSpace::Running;
00610 }
00611 
00612 template<typename FunctorType, typename Scalar>
00613 LevenbergMarquardtSpace::Status
00614 LevenbergMarquardt<FunctorType,Scalar>::minimizeOptimumStorage(FVectorType  &x)
00615 {
00616     LevenbergMarquardtSpace::Status status = minimizeOptimumStorageInit(x);
00617     if (status==LevenbergMarquardtSpace::ImproperInputParameters)
00618         return status;
00619     do {
00620         status = minimizeOptimumStorageOneStep(x);
00621     } while (status==LevenbergMarquardtSpace::Running);
00622     return status;
00623 }
00624 
00625 template<typename FunctorType, typename Scalar>
00626 LevenbergMarquardtSpace::Status
00627 LevenbergMarquardt<FunctorType,Scalar>::lmdif1(
00628         FunctorType &functor,
00629         FVectorType  &x,
00630         Index *nfev,
00631         const Scalar tol
00632         )
00633 {
00634     Index n = x.size();
00635     Index m = functor.values();
00636 
00637     /* check the input parameters for errors. */
00638     if (n <= 0 || m < n || tol < 0.)
00639         return LevenbergMarquardtSpace::ImproperInputParameters;
00640 
00641     NumericalDiff<FunctorType> numDiff(functor);
00642     // embedded LevenbergMarquardt
00643     LevenbergMarquardt<NumericalDiff<FunctorType> > lm(numDiff);
00644     lm.parameters.ftol = tol;
00645     lm.parameters.xtol = tol;
00646     lm.parameters.maxfev = 200*(n+1);
00647 
00648     LevenbergMarquardtSpace::Status info = LevenbergMarquardtSpace::Status(lm.minimize(x));
00649     if (nfev)
00650         * nfev = lm.nfev;
00651     return info;
00652 }
00653 
00654 //vim: ai ts=4 sts=4 et sw=4
00655 #endif // EIGEN_LEVENBERGMARQUARDT__H
00656 


re_vision
Author(s): Dorian Galvez-Lopez
autogenerated on Sun Jan 5 2014 11:31:38