00001
00002 #ifndef PR2_OBJECT_MANIPULATION_MSGS_MESSAGE_IMGUIOPTIONS_H
00003 #define PR2_OBJECT_MANIPULATION_MSGS_MESSAGE_IMGUIOPTIONS_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012
00013 #include "ros/macros.h"
00014
00015 #include "ros/assert.h"
00016
00017 #include "object_manipulation_msgs/GraspableObject.h"
00018 #include "object_manipulation_msgs/GraspableObject.h"
00019 #include "pr2_object_manipulation_msgs/IMGUIAdvancedOptions.h"
00020
00021 namespace pr2_object_manipulation_msgs
00022 {
00023 template <class ContainerAllocator>
00024 struct IMGUIOptions_ {
00025 typedef IMGUIOptions_<ContainerAllocator> Type;
00026
00027 IMGUIOptions_()
00028 : collision_checked(false)
00029 , grasp_selection(0)
00030 , arm_selection(0)
00031 , reset_choice(0)
00032 , arm_action_choice(0)
00033 , arm_planner_choice(0)
00034 , gripper_slider_position(0)
00035 , selected_object()
00036 , movable_obstacles()
00037 , adv_options()
00038 {
00039 }
00040
00041 IMGUIOptions_(const ContainerAllocator& _alloc)
00042 : collision_checked(false)
00043 , grasp_selection(0)
00044 , arm_selection(0)
00045 , reset_choice(0)
00046 , arm_action_choice(0)
00047 , arm_planner_choice(0)
00048 , gripper_slider_position(0)
00049 , selected_object(_alloc)
00050 , movable_obstacles(_alloc)
00051 , adv_options(_alloc)
00052 {
00053 }
00054
00055 typedef uint8_t _collision_checked_type;
00056 uint8_t collision_checked;
00057
00058 typedef int32_t _grasp_selection_type;
00059 int32_t grasp_selection;
00060
00061 typedef int32_t _arm_selection_type;
00062 int32_t arm_selection;
00063
00064 typedef int32_t _reset_choice_type;
00065 int32_t reset_choice;
00066
00067 typedef int32_t _arm_action_choice_type;
00068 int32_t arm_action_choice;
00069
00070 typedef int32_t _arm_planner_choice_type;
00071 int32_t arm_planner_choice;
00072
00073 typedef int32_t _gripper_slider_position_type;
00074 int32_t gripper_slider_position;
00075
00076 typedef ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> _selected_object_type;
00077 ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> selected_object;
00078
00079 typedef std::vector< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::other > _movable_obstacles_type;
00080 std::vector< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::other > movable_obstacles;
00081
00082 typedef ::pr2_object_manipulation_msgs::IMGUIAdvancedOptions_<ContainerAllocator> _adv_options_type;
00083 ::pr2_object_manipulation_msgs::IMGUIAdvancedOptions_<ContainerAllocator> adv_options;
00084
00085
00086 typedef boost::shared_ptr< ::pr2_object_manipulation_msgs::IMGUIOptions_<ContainerAllocator> > Ptr;
00087 typedef boost::shared_ptr< ::pr2_object_manipulation_msgs::IMGUIOptions_<ContainerAllocator> const> ConstPtr;
00088 boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00089 };
00090 typedef ::pr2_object_manipulation_msgs::IMGUIOptions_<std::allocator<void> > IMGUIOptions;
00091
00092 typedef boost::shared_ptr< ::pr2_object_manipulation_msgs::IMGUIOptions> IMGUIOptionsPtr;
00093 typedef boost::shared_ptr< ::pr2_object_manipulation_msgs::IMGUIOptions const> IMGUIOptionsConstPtr;
00094
00095
00096 template<typename ContainerAllocator>
00097 std::ostream& operator<<(std::ostream& s, const ::pr2_object_manipulation_msgs::IMGUIOptions_<ContainerAllocator> & v)
00098 {
00099 ros::message_operations::Printer< ::pr2_object_manipulation_msgs::IMGUIOptions_<ContainerAllocator> >::stream(s, "", v);
00100 return s;}
00101
00102 }
00103
00104 namespace ros
00105 {
00106 namespace message_traits
00107 {
00108 template<class ContainerAllocator> struct IsMessage< ::pr2_object_manipulation_msgs::IMGUIOptions_<ContainerAllocator> > : public TrueType {};
00109 template<class ContainerAllocator> struct IsMessage< ::pr2_object_manipulation_msgs::IMGUIOptions_<ContainerAllocator> const> : public TrueType {};
00110 template<class ContainerAllocator>
00111 struct MD5Sum< ::pr2_object_manipulation_msgs::IMGUIOptions_<ContainerAllocator> > {
00112 static const char* value()
00113 {
00114 return "fe360ad5b5365ca34e5877d7a1ff5ab6";
00115 }
00116
00117 static const char* value(const ::pr2_object_manipulation_msgs::IMGUIOptions_<ContainerAllocator> &) { return value(); }
00118 static const uint64_t static_value1 = 0xfe360ad5b5365ca3ULL;
00119 static const uint64_t static_value2 = 0x4e5877d7a1ff5ab6ULL;
00120 };
00121
00122 template<class ContainerAllocator>
00123 struct DataType< ::pr2_object_manipulation_msgs::IMGUIOptions_<ContainerAllocator> > {
00124 static const char* value()
00125 {
00126 return "pr2_object_manipulation_msgs/IMGUIOptions";
00127 }
00128
00129 static const char* value(const ::pr2_object_manipulation_msgs::IMGUIOptions_<ContainerAllocator> &) { return value(); }
00130 };
00131
00132 template<class ContainerAllocator>
00133 struct Definition< ::pr2_object_manipulation_msgs::IMGUIOptions_<ContainerAllocator> > {
00134 static const char* value()
00135 {
00136 return "\n\
00137 # collision checking enabled\n\
00138 bool collision_checked\n\
00139 \n\
00140 # 0=call gripper click\n\
00141 # 1=grasp the provided graspable object\n\
00142 int32 grasp_selection\n\
00143 \n\
00144 # 0=right, 1=left arm\n\
00145 int32 arm_selection\n\
00146 \n\
00147 # for RESET commands\n\
00148 # 0=reset collision objects\n\
00149 # 1=reset attached objects\n\
00150 int32 reset_choice\n\
00151 \n\
00152 # for MOVE_ARM commands\n\
00153 # 0=side\n\
00154 # 1=front\n\
00155 # 2=side handoff\n\
00156 int32 arm_action_choice\n\
00157 \n\
00158 # for MOVE_ARM commands\n\
00159 # 0=open-loop\n\
00160 # 1=with planner\n\
00161 int32 arm_planner_choice\n\
00162 \n\
00163 # for MOVE_GRIPPER commands\n\
00164 # opening of gripper (0=closed..100=open)\n\
00165 int32 gripper_slider_position\n\
00166 \n\
00167 # used if grasp_selection == 1\n\
00168 object_manipulation_msgs/GraspableObject selected_object\n\
00169 \n\
00170 # indicates obstacles that can be moved during grasping\n\
00171 # presumably, the operator has marked these in some fashion\n\
00172 object_manipulation_msgs/GraspableObject[] movable_obstacles\n\
00173 \n\
00174 # more options..\n\
00175 IMGUIAdvancedOptions adv_options\n\
00176 \n\
00177 ================================================================================\n\
00178 MSG: object_manipulation_msgs/GraspableObject\n\
00179 # an object that the object_manipulator can work on\n\
00180 \n\
00181 # a graspable object can be represented in multiple ways. This message\n\
00182 # can contain all of them. Which one is actually used is up to the receiver\n\
00183 # of this message. When adding new representations, one must be careful that\n\
00184 # they have reasonable lightweight defaults indicating that that particular\n\
00185 # representation is not available.\n\
00186 \n\
00187 # the tf frame to be used as a reference frame when combining information from\n\
00188 # the different representations below\n\
00189 string reference_frame_id\n\
00190 \n\
00191 # potential recognition results from a database of models\n\
00192 # all poses are relative to the object reference pose\n\
00193 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00194 \n\
00195 # the point cloud itself\n\
00196 sensor_msgs/PointCloud cluster\n\
00197 \n\
00198 # a region of a PointCloud2 of interest\n\
00199 object_manipulation_msgs/SceneRegion region\n\
00200 \n\
00201 # the name that this object has in the collision environment\n\
00202 string collision_name\n\
00203 ================================================================================\n\
00204 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00205 # Informs that a specific model from the Model Database has been \n\
00206 # identified at a certain location\n\
00207 \n\
00208 # the database id of the model\n\
00209 int32 model_id\n\
00210 \n\
00211 # the pose that it can be found in\n\
00212 geometry_msgs/PoseStamped pose\n\
00213 \n\
00214 # a measure of the confidence level in this detection result\n\
00215 float32 confidence\n\
00216 \n\
00217 # the name of the object detector that generated this detection result\n\
00218 string detector_name\n\
00219 \n\
00220 ================================================================================\n\
00221 MSG: geometry_msgs/PoseStamped\n\
00222 # A Pose with reference coordinate frame and timestamp\n\
00223 Header header\n\
00224 Pose pose\n\
00225 \n\
00226 ================================================================================\n\
00227 MSG: std_msgs/Header\n\
00228 # Standard metadata for higher-level stamped data types.\n\
00229 # This is generally used to communicate timestamped data \n\
00230 # in a particular coordinate frame.\n\
00231 # \n\
00232 # sequence ID: consecutively increasing ID \n\
00233 uint32 seq\n\
00234 #Two-integer timestamp that is expressed as:\n\
00235 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00236 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00237 # time-handling sugar is provided by the client library\n\
00238 time stamp\n\
00239 #Frame this data is associated with\n\
00240 # 0: no frame\n\
00241 # 1: global frame\n\
00242 string frame_id\n\
00243 \n\
00244 ================================================================================\n\
00245 MSG: geometry_msgs/Pose\n\
00246 # A representation of pose in free space, composed of postion and orientation. \n\
00247 Point position\n\
00248 Quaternion orientation\n\
00249 \n\
00250 ================================================================================\n\
00251 MSG: geometry_msgs/Point\n\
00252 # This contains the position of a point in free space\n\
00253 float64 x\n\
00254 float64 y\n\
00255 float64 z\n\
00256 \n\
00257 ================================================================================\n\
00258 MSG: geometry_msgs/Quaternion\n\
00259 # This represents an orientation in free space in quaternion form.\n\
00260 \n\
00261 float64 x\n\
00262 float64 y\n\
00263 float64 z\n\
00264 float64 w\n\
00265 \n\
00266 ================================================================================\n\
00267 MSG: sensor_msgs/PointCloud\n\
00268 # This message holds a collection of 3d points, plus optional additional\n\
00269 # information about each point.\n\
00270 \n\
00271 # Time of sensor data acquisition, coordinate frame ID.\n\
00272 Header header\n\
00273 \n\
00274 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00275 # in the frame given in the header.\n\
00276 geometry_msgs/Point32[] points\n\
00277 \n\
00278 # Each channel should have the same number of elements as points array,\n\
00279 # and the data in each channel should correspond 1:1 with each point.\n\
00280 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00281 ChannelFloat32[] channels\n\
00282 \n\
00283 ================================================================================\n\
00284 MSG: geometry_msgs/Point32\n\
00285 # This contains the position of a point in free space(with 32 bits of precision).\n\
00286 # It is recommeded to use Point wherever possible instead of Point32. \n\
00287 # \n\
00288 # This recommendation is to promote interoperability. \n\
00289 #\n\
00290 # This message is designed to take up less space when sending\n\
00291 # lots of points at once, as in the case of a PointCloud. \n\
00292 \n\
00293 float32 x\n\
00294 float32 y\n\
00295 float32 z\n\
00296 ================================================================================\n\
00297 MSG: sensor_msgs/ChannelFloat32\n\
00298 # This message is used by the PointCloud message to hold optional data\n\
00299 # associated with each point in the cloud. The length of the values\n\
00300 # array should be the same as the length of the points array in the\n\
00301 # PointCloud, and each value should be associated with the corresponding\n\
00302 # point.\n\
00303 \n\
00304 # Channel names in existing practice include:\n\
00305 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00306 # This is opposite to usual conventions but remains for\n\
00307 # historical reasons. The newer PointCloud2 message has no\n\
00308 # such problem.\n\
00309 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00310 # (R,G,B) values packed into the least significant 24 bits,\n\
00311 # in order.\n\
00312 # \"intensity\" - laser or pixel intensity.\n\
00313 # \"distance\"\n\
00314 \n\
00315 # The channel name should give semantics of the channel (e.g.\n\
00316 # \"intensity\" instead of \"value\").\n\
00317 string name\n\
00318 \n\
00319 # The values array should be 1-1 with the elements of the associated\n\
00320 # PointCloud.\n\
00321 float32[] values\n\
00322 \n\
00323 ================================================================================\n\
00324 MSG: object_manipulation_msgs/SceneRegion\n\
00325 # Point cloud\n\
00326 sensor_msgs/PointCloud2 cloud\n\
00327 \n\
00328 # Indices for the region of interest\n\
00329 int32[] mask\n\
00330 \n\
00331 # One of the corresponding 2D images, if applicable\n\
00332 sensor_msgs/Image image\n\
00333 \n\
00334 # The disparity image, if applicable\n\
00335 sensor_msgs/Image disparity_image\n\
00336 \n\
00337 # Camera info for the camera that took the image\n\
00338 sensor_msgs/CameraInfo cam_info\n\
00339 \n\
00340 # a 3D region of interest for grasp planning\n\
00341 geometry_msgs/PoseStamped roi_box_pose\n\
00342 geometry_msgs/Vector3 roi_box_dims\n\
00343 \n\
00344 ================================================================================\n\
00345 MSG: sensor_msgs/PointCloud2\n\
00346 # This message holds a collection of N-dimensional points, which may\n\
00347 # contain additional information such as normals, intensity, etc. The\n\
00348 # point data is stored as a binary blob, its layout described by the\n\
00349 # contents of the \"fields\" array.\n\
00350 \n\
00351 # The point cloud data may be organized 2d (image-like) or 1d\n\
00352 # (unordered). Point clouds organized as 2d images may be produced by\n\
00353 # camera depth sensors such as stereo or time-of-flight.\n\
00354 \n\
00355 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00356 # points).\n\
00357 Header header\n\
00358 \n\
00359 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00360 # 1 and width is the length of the point cloud.\n\
00361 uint32 height\n\
00362 uint32 width\n\
00363 \n\
00364 # Describes the channels and their layout in the binary data blob.\n\
00365 PointField[] fields\n\
00366 \n\
00367 bool is_bigendian # Is this data bigendian?\n\
00368 uint32 point_step # Length of a point in bytes\n\
00369 uint32 row_step # Length of a row in bytes\n\
00370 uint8[] data # Actual point data, size is (row_step*height)\n\
00371 \n\
00372 bool is_dense # True if there are no invalid points\n\
00373 \n\
00374 ================================================================================\n\
00375 MSG: sensor_msgs/PointField\n\
00376 # This message holds the description of one point entry in the\n\
00377 # PointCloud2 message format.\n\
00378 uint8 INT8 = 1\n\
00379 uint8 UINT8 = 2\n\
00380 uint8 INT16 = 3\n\
00381 uint8 UINT16 = 4\n\
00382 uint8 INT32 = 5\n\
00383 uint8 UINT32 = 6\n\
00384 uint8 FLOAT32 = 7\n\
00385 uint8 FLOAT64 = 8\n\
00386 \n\
00387 string name # Name of field\n\
00388 uint32 offset # Offset from start of point struct\n\
00389 uint8 datatype # Datatype enumeration, see above\n\
00390 uint32 count # How many elements in the field\n\
00391 \n\
00392 ================================================================================\n\
00393 MSG: sensor_msgs/Image\n\
00394 # This message contains an uncompressed image\n\
00395 # (0, 0) is at top-left corner of image\n\
00396 #\n\
00397 \n\
00398 Header header # Header timestamp should be acquisition time of image\n\
00399 # Header frame_id should be optical frame of camera\n\
00400 # origin of frame should be optical center of cameara\n\
00401 # +x should point to the right in the image\n\
00402 # +y should point down in the image\n\
00403 # +z should point into to plane of the image\n\
00404 # If the frame_id here and the frame_id of the CameraInfo\n\
00405 # message associated with the image conflict\n\
00406 # the behavior is undefined\n\
00407 \n\
00408 uint32 height # image height, that is, number of rows\n\
00409 uint32 width # image width, that is, number of columns\n\
00410 \n\
00411 # The legal values for encoding are in file src/image_encodings.cpp\n\
00412 # If you want to standardize a new string format, join\n\
00413 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00414 \n\
00415 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00416 # taken from the list of strings in src/image_encodings.cpp\n\
00417 \n\
00418 uint8 is_bigendian # is this data bigendian?\n\
00419 uint32 step # Full row length in bytes\n\
00420 uint8[] data # actual matrix data, size is (step * rows)\n\
00421 \n\
00422 ================================================================================\n\
00423 MSG: sensor_msgs/CameraInfo\n\
00424 # This message defines meta information for a camera. It should be in a\n\
00425 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00426 # image topics named:\n\
00427 #\n\
00428 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00429 # image - monochrome, distorted\n\
00430 # image_color - color, distorted\n\
00431 # image_rect - monochrome, rectified\n\
00432 # image_rect_color - color, rectified\n\
00433 #\n\
00434 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00435 # for producing the four processed image topics from image_raw and\n\
00436 # camera_info. The meaning of the camera parameters are described in\n\
00437 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00438 #\n\
00439 # The image_geometry package provides a user-friendly interface to\n\
00440 # common operations using this meta information. If you want to, e.g.,\n\
00441 # project a 3d point into image coordinates, we strongly recommend\n\
00442 # using image_geometry.\n\
00443 #\n\
00444 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00445 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00446 # indicates an uncalibrated camera.\n\
00447 \n\
00448 #######################################################################\n\
00449 # Image acquisition info #\n\
00450 #######################################################################\n\
00451 \n\
00452 # Time of image acquisition, camera coordinate frame ID\n\
00453 Header header # Header timestamp should be acquisition time of image\n\
00454 # Header frame_id should be optical frame of camera\n\
00455 # origin of frame should be optical center of camera\n\
00456 # +x should point to the right in the image\n\
00457 # +y should point down in the image\n\
00458 # +z should point into the plane of the image\n\
00459 \n\
00460 \n\
00461 #######################################################################\n\
00462 # Calibration Parameters #\n\
00463 #######################################################################\n\
00464 # These are fixed during camera calibration. Their values will be the #\n\
00465 # same in all messages until the camera is recalibrated. Note that #\n\
00466 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00467 # #\n\
00468 # The internal parameters can be used to warp a raw (distorted) image #\n\
00469 # to: #\n\
00470 # 1. An undistorted image (requires D and K) #\n\
00471 # 2. A rectified image (requires D, K, R) #\n\
00472 # The projection matrix P projects 3D points into the rectified image.#\n\
00473 #######################################################################\n\
00474 \n\
00475 # The image dimensions with which the camera was calibrated. Normally\n\
00476 # this will be the full camera resolution in pixels.\n\
00477 uint32 height\n\
00478 uint32 width\n\
00479 \n\
00480 # The distortion model used. Supported models are listed in\n\
00481 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00482 # simple model of radial and tangential distortion - is sufficent.\n\
00483 string distortion_model\n\
00484 \n\
00485 # The distortion parameters, size depending on the distortion model.\n\
00486 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00487 float64[] D\n\
00488 \n\
00489 # Intrinsic camera matrix for the raw (distorted) images.\n\
00490 # [fx 0 cx]\n\
00491 # K = [ 0 fy cy]\n\
00492 # [ 0 0 1]\n\
00493 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00494 # coordinates using the focal lengths (fx, fy) and principal point\n\
00495 # (cx, cy).\n\
00496 float64[9] K # 3x3 row-major matrix\n\
00497 \n\
00498 # Rectification matrix (stereo cameras only)\n\
00499 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00500 # stereo image plane so that epipolar lines in both stereo images are\n\
00501 # parallel.\n\
00502 float64[9] R # 3x3 row-major matrix\n\
00503 \n\
00504 # Projection/camera matrix\n\
00505 # [fx' 0 cx' Tx]\n\
00506 # P = [ 0 fy' cy' Ty]\n\
00507 # [ 0 0 1 0]\n\
00508 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00509 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00510 # is the normal camera intrinsic matrix for the rectified image.\n\
00511 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00512 # coordinates using the focal lengths (fx', fy') and principal point\n\
00513 # (cx', cy') - these may differ from the values in K.\n\
00514 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00515 # also have R = the identity and P[1:3,1:3] = K.\n\
00516 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00517 # position of the optical center of the second camera in the first\n\
00518 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00519 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00520 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00521 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00522 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00523 # the rectified image is given by:\n\
00524 # [u v w]' = P * [X Y Z 1]'\n\
00525 # x = u / w\n\
00526 # y = v / w\n\
00527 # This holds for both images of a stereo pair.\n\
00528 float64[12] P # 3x4 row-major matrix\n\
00529 \n\
00530 \n\
00531 #######################################################################\n\
00532 # Operational Parameters #\n\
00533 #######################################################################\n\
00534 # These define the image region actually captured by the camera #\n\
00535 # driver. Although they affect the geometry of the output image, they #\n\
00536 # may be changed freely without recalibrating the camera. #\n\
00537 #######################################################################\n\
00538 \n\
00539 # Binning refers here to any camera setting which combines rectangular\n\
00540 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00541 # resolution of the output image to\n\
00542 # (width / binning_x) x (height / binning_y).\n\
00543 # The default values binning_x = binning_y = 0 is considered the same\n\
00544 # as binning_x = binning_y = 1 (no subsampling).\n\
00545 uint32 binning_x\n\
00546 uint32 binning_y\n\
00547 \n\
00548 # Region of interest (subwindow of full camera resolution), given in\n\
00549 # full resolution (unbinned) image coordinates. A particular ROI\n\
00550 # always denotes the same window of pixels on the camera sensor,\n\
00551 # regardless of binning settings.\n\
00552 # The default setting of roi (all values 0) is considered the same as\n\
00553 # full resolution (roi.width = width, roi.height = height).\n\
00554 RegionOfInterest roi\n\
00555 \n\
00556 ================================================================================\n\
00557 MSG: sensor_msgs/RegionOfInterest\n\
00558 # This message is used to specify a region of interest within an image.\n\
00559 #\n\
00560 # When used to specify the ROI setting of the camera when the image was\n\
00561 # taken, the height and width fields should either match the height and\n\
00562 # width fields for the associated image; or height = width = 0\n\
00563 # indicates that the full resolution image was captured.\n\
00564 \n\
00565 uint32 x_offset # Leftmost pixel of the ROI\n\
00566 # (0 if the ROI includes the left edge of the image)\n\
00567 uint32 y_offset # Topmost pixel of the ROI\n\
00568 # (0 if the ROI includes the top edge of the image)\n\
00569 uint32 height # Height of ROI\n\
00570 uint32 width # Width of ROI\n\
00571 \n\
00572 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00573 # ROI in this message. Typically this should be False if the full image\n\
00574 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00575 # used).\n\
00576 bool do_rectify\n\
00577 \n\
00578 ================================================================================\n\
00579 MSG: geometry_msgs/Vector3\n\
00580 # This represents a vector in free space. \n\
00581 \n\
00582 float64 x\n\
00583 float64 y\n\
00584 float64 z\n\
00585 ================================================================================\n\
00586 MSG: pr2_object_manipulation_msgs/IMGUIAdvancedOptions\n\
00587 \n\
00588 bool reactive_grasping\n\
00589 bool reactive_force \n\
00590 bool reactive_place\n\
00591 int32 lift_steps\n\
00592 int32 retreat_steps\n\
00593 int32 lift_direction_choice\n\
00594 int32 desired_approach\n\
00595 int32 min_approach\n\
00596 float32 max_contact_force\n\
00597 bool find_alternatives\n\
00598 bool always_plan_grasps\n\
00599 bool cycle_gripper_opening\n\
00600 \n\
00601 ";
00602 }
00603
00604 static const char* value(const ::pr2_object_manipulation_msgs::IMGUIOptions_<ContainerAllocator> &) { return value(); }
00605 };
00606
00607 }
00608 }
00609
00610 namespace ros
00611 {
00612 namespace serialization
00613 {
00614
00615 template<class ContainerAllocator> struct Serializer< ::pr2_object_manipulation_msgs::IMGUIOptions_<ContainerAllocator> >
00616 {
00617 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00618 {
00619 stream.next(m.collision_checked);
00620 stream.next(m.grasp_selection);
00621 stream.next(m.arm_selection);
00622 stream.next(m.reset_choice);
00623 stream.next(m.arm_action_choice);
00624 stream.next(m.arm_planner_choice);
00625 stream.next(m.gripper_slider_position);
00626 stream.next(m.selected_object);
00627 stream.next(m.movable_obstacles);
00628 stream.next(m.adv_options);
00629 }
00630
00631 ROS_DECLARE_ALLINONE_SERIALIZER;
00632 };
00633 }
00634 }
00635
00636 namespace ros
00637 {
00638 namespace message_operations
00639 {
00640
00641 template<class ContainerAllocator>
00642 struct Printer< ::pr2_object_manipulation_msgs::IMGUIOptions_<ContainerAllocator> >
00643 {
00644 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::pr2_object_manipulation_msgs::IMGUIOptions_<ContainerAllocator> & v)
00645 {
00646 s << indent << "collision_checked: ";
00647 Printer<uint8_t>::stream(s, indent + " ", v.collision_checked);
00648 s << indent << "grasp_selection: ";
00649 Printer<int32_t>::stream(s, indent + " ", v.grasp_selection);
00650 s << indent << "arm_selection: ";
00651 Printer<int32_t>::stream(s, indent + " ", v.arm_selection);
00652 s << indent << "reset_choice: ";
00653 Printer<int32_t>::stream(s, indent + " ", v.reset_choice);
00654 s << indent << "arm_action_choice: ";
00655 Printer<int32_t>::stream(s, indent + " ", v.arm_action_choice);
00656 s << indent << "arm_planner_choice: ";
00657 Printer<int32_t>::stream(s, indent + " ", v.arm_planner_choice);
00658 s << indent << "gripper_slider_position: ";
00659 Printer<int32_t>::stream(s, indent + " ", v.gripper_slider_position);
00660 s << indent << "selected_object: ";
00661 s << std::endl;
00662 Printer< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::stream(s, indent + " ", v.selected_object);
00663 s << indent << "movable_obstacles[]" << std::endl;
00664 for (size_t i = 0; i < v.movable_obstacles.size(); ++i)
00665 {
00666 s << indent << " movable_obstacles[" << i << "]: ";
00667 s << std::endl;
00668 s << indent;
00669 Printer< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::stream(s, indent + " ", v.movable_obstacles[i]);
00670 }
00671 s << indent << "adv_options: ";
00672 s << std::endl;
00673 Printer< ::pr2_object_manipulation_msgs::IMGUIAdvancedOptions_<ContainerAllocator> >::stream(s, indent + " ", v.adv_options);
00674 }
00675 };
00676
00677
00678 }
00679 }
00680
00681 #endif // PR2_OBJECT_MANIPULATION_MSGS_MESSAGE_IMGUIOPTIONS_H
00682