Classes | Functions | Variables
laser_interface::random_forest Namespace Reference

Classes

class  Dataset
class  DecisionTree
class  LinearDimReduceDataset
class  RFBase
class  RFBreiman
class  RFRandomInputSubset

Functions

def binary_greater_than
def binary_less_than
def create_binary_tests
def evaluate_classifier
def identity
def load_pickle
def min_entropy_split
def mode_exhaustive
def print_separator
def random_subset
def random_subset_split
def split_random_subset
def totally_random_split

Variables

tuple dataset = Dataset(inputs, outputs)
dictionary extra_args = {'number_of_learners': (i+1)*10}
tuple inputs = np.float32(iris_array[:, 0:4])
tuple iris_array = np.matrix(np.loadtxt('iris.data', dtype='|S30', delimiter=','))
list outputs = iris_array[:, 4]
 test_iris = False
 test_number_trees = False
 test_pca = False
 test_pickle = True
list tree_types = [RFBreiman, RFRandomInputSubset]

Function Documentation

def laser_interface.random_forest.binary_greater_than (   attribute,
  threshold,
  input_vec 
)

Definition at line 132 of file random_forest.py.

def laser_interface.random_forest.binary_less_than (   attribute,
  threshold,
  input_vec 
)

Definition at line 129 of file random_forest.py.

def laser_interface.random_forest.create_binary_tests (   attribute,
  threshold 
)

Definition at line 135 of file random_forest.py.

def laser_interface.random_forest.evaluate_classifier (   building_func,
  data,
  times = 10.0,
  percentage = None,
  extra_args = {},
  test_pca = False 
)
    Evaluate classifier by dividing dataset into training and test set.
    @param building_func Function that will build classifier given data and args in extra_args.
    @param data Dataset to use for evaluation/training.
    @param times The number of bootstrap samples to take.
    @param percentage The percentage of data to use for training.
    @param extra_args Extra arguments to pass to building_func.

Definition at line 330 of file random_forest.py.

Definition at line 293 of file random_forest.py.

Definition at line 466 of file random_forest.py.

    Find the split that produces subsets with the minimum combined entropy
    return splitting attribute & splitting point for that attribute

Definition at line 165 of file random_forest.py.

   Finds the mode of a given set

Definition at line 139 of file random_forest.py.

Definition at line 472 of file random_forest.py.

def laser_interface.random_forest.random_subset (   subset_size,
  total_size 
)

Definition at line 190 of file random_forest.py.

def laser_interface.random_forest.random_subset_split (   num_subset,
  dataset 
)
splitter in decision tree 

Definition at line 209 of file random_forest.py.

def laser_interface.random_forest.split_random_subset (   subset_size,
  total_size 
)

Definition at line 199 of file random_forest.py.

Definition at line 218 of file random_forest.py.


Variable Documentation

Definition at line 451 of file random_forest.py.

dictionary laser_interface::random_forest::extra_args = {'number_of_learners': (i+1)*10}

Definition at line 491 of file random_forest.py.

Definition at line 449 of file random_forest.py.

tuple laser_interface::random_forest::iris_array = np.matrix(np.loadtxt('iris.data', dtype='|S30', delimiter=','))

Definition at line 448 of file random_forest.py.

Definition at line 450 of file random_forest.py.

Definition at line 442 of file random_forest.py.

Definition at line 444 of file random_forest.py.

Definition at line 445 of file random_forest.py.

Definition at line 443 of file random_forest.py.

Definition at line 483 of file random_forest.py.



laser_interface
Author(s): Hai Nguyen and Travis Deyle. Advisor: Prof. Charlie Kemp, Lab: Healthcare Robotics Lab at Georgia Tech
autogenerated on Wed Nov 27 2013 11:45:51