00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011 #include "rt_nonfinite.h"
00012 #include "Optimal_affine_tracking_3d16_fast_realtime.h"
00013 #include "randn.h"
00014 #include "Optimal_affine_tracking_3d16_fast_realtime_data.h"
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025 static real_T eml_rand_mt19937ar(uint32_T b_state[625]);
00026 static void genrand_uint32_vector(uint32_T mt[625], uint32_T u[2]);
00027
00028
00029 static real_T eml_rand_mt19937ar(uint32_T b_state[625])
00030 {
00031 real_T r;
00032 int32_T exitg1;
00033 uint32_T u32[2];
00034 int32_T i;
00035 static const real_T dv14[257] = { 0.0, 0.215241895984875, 0.286174591792068,
00036 0.335737519214422, 0.375121332878378, 0.408389134611989, 0.43751840220787,
00037 0.46363433679088, 0.487443966139235, 0.50942332960209, 0.529909720661557,
00038 0.549151702327164, 0.567338257053817, 0.584616766106378, 0.601104617755991,
00039 0.61689699000775, 0.63207223638606, 0.646695714894993, 0.660822574244419,
00040 0.674499822837293, 0.687767892795788, 0.700661841106814, 0.713212285190975,
00041 0.725446140909999, 0.737387211434295, 0.749056662017815, 0.760473406430107,
00042 0.771654424224568, 0.782615023307232, 0.793369058840623, 0.80392911698997,
00043 0.814306670135215, 0.824512208752291, 0.834555354086381, 0.844444954909153,
00044 0.854189171008163, 0.863795545553308, 0.87327106808886, 0.882622229585165,
00045 0.891855070732941, 0.900975224461221, 0.909987953496718, 0.91889818364959,
00046 0.927710533401999, 0.936429340286575, 0.945058684468165, 0.953602409881086,
00047 0.96206414322304, 0.970447311064224, 0.978755155294224, 0.986990747099062,
00048 0.99515699963509, 1.00325667954467, 1.01129241744, 1.01926671746548,
00049 1.02718196603564, 1.03504043983344, 1.04284431314415, 1.05059566459093,
00050 1.05829648333067, 1.06594867476212, 1.07355406579244, 1.0811144097034,
00051 1.08863139065398, 1.09610662785202, 1.10354167942464, 1.11093804601357,
00052 1.11829717411934, 1.12562045921553, 1.13290924865253, 1.14016484436815,
00053 1.14738850542085, 1.15458145035993, 1.16174485944561, 1.16887987673083,
00054 1.17598761201545, 1.18306914268269, 1.19012551542669, 1.19715774787944,
00055 1.20416683014438, 1.2111537262437, 1.21811937548548, 1.22506469375653,
00056 1.23199057474614, 1.23889789110569, 1.24578749554863, 1.2526602218949,
00057 1.25951688606371, 1.26635828701823, 1.27318520766536, 1.27999841571382,
00058 1.28679866449324, 1.29358669373695, 1.30036323033084, 1.30712898903073,
00059 1.31388467315022, 1.32063097522106, 1.32736857762793, 1.33409815321936,
00060 1.3408203658964, 1.34753587118059, 1.35424531676263, 1.36094934303328,
00061 1.36764858359748, 1.37434366577317, 1.38103521107586, 1.38772383568998,
00062 1.39441015092814, 1.40109476367925, 1.4077782768464, 1.41446128977547,
00063 1.42114439867531, 1.42782819703026, 1.43451327600589, 1.44120022484872,
00064 1.44788963128058, 1.45458208188841, 1.46127816251028, 1.46797845861808,
00065 1.47468355569786, 1.48139403962819, 1.48811049705745, 1.49483351578049,
00066 1.50156368511546, 1.50830159628131, 1.51504784277671, 1.521803020761,
00067 1.52856772943771, 1.53534257144151, 1.542128153229, 1.54892508547417,
00068 1.55573398346918, 1.56255546753104, 1.56939016341512, 1.57623870273591,
00069 1.58310172339603, 1.58997987002419, 1.59687379442279, 1.60378415602609,
00070 1.61071162236983, 1.61765686957301, 1.62462058283303, 1.63160345693487,
00071 1.63860619677555, 1.64562951790478, 1.65267414708306, 1.65974082285818,
00072 1.66683029616166, 1.67394333092612, 1.68108070472517, 1.68824320943719,
00073 1.69543165193456, 1.70264685479992, 1.7098896570713, 1.71716091501782,
00074 1.72446150294804, 1.73179231405296, 1.73915426128591, 1.74654827828172,
00075 1.75397532031767, 1.76143636531891, 1.76893241491127, 1.77646449552452,
00076 1.78403365954944, 1.79164098655216, 1.79928758454972, 1.80697459135082,
00077 1.81470317596628, 1.82247454009388, 1.83028991968276, 1.83815058658281,
00078 1.84605785028518, 1.8540130597602, 1.86201760539967, 1.87007292107127,
00079 1.878180486293, 1.88634182853678, 1.8945585256707, 1.90283220855043,
00080 1.91116456377125, 1.91955733659319, 1.92801233405266, 1.93653142827569,
00081 1.94511656000868, 1.95376974238465, 1.96249306494436, 1.97128869793366,
00082 1.98015889690048, 1.98910600761744, 1.99813247135842, 2.00724083056053,
00083 2.0164337349062, 2.02571394786385, 2.03508435372962, 2.04454796521753,
00084 2.05410793165065, 2.06376754781173, 2.07353026351874, 2.0833996939983,
00085 2.09337963113879, 2.10347405571488, 2.11368715068665, 2.12402331568952,
00086 2.13448718284602, 2.14508363404789, 2.15581781987674, 2.16669518035431,
00087 2.17772146774029, 2.18890277162636, 2.20024554661128, 2.21175664288416,
00088 2.22344334009251, 2.23531338492992, 2.24737503294739, 2.25963709517379,
00089 2.27210899022838, 2.28480080272449, 2.29772334890286, 2.31088825060137,
00090 2.32430801887113, 2.33799614879653, 2.35196722737914, 2.36623705671729,
00091 2.38082279517208, 2.39574311978193, 2.41101841390112, 2.42667098493715,
00092 2.44272531820036, 2.4592083743347, 2.47614993967052, 2.49358304127105,
00093 2.51154444162669, 2.53007523215985, 2.54922155032478, 2.56903545268184,
00094 2.58957598670829, 2.61091051848882, 2.63311639363158, 2.65628303757674,
00095 2.68051464328574, 2.70593365612306, 2.73268535904401, 2.76094400527999,
00096 2.79092117400193, 2.82287739682644, 2.85713873087322, 2.89412105361341,
00097 2.93436686720889, 2.97860327988184, 3.02783779176959, 3.08352613200214,
00098 3.147889289518, 3.2245750520478, 3.32024473383983, 3.44927829856143,
00099 3.65415288536101, 3.91075795952492 };
00100
00101 real_T u;
00102 static const real_T dv15[257] = { 1.0, 0.977101701267673, 0.959879091800108,
00103 0.9451989534423, 0.932060075959231, 0.919991505039348, 0.908726440052131,
00104 0.898095921898344, 0.887984660755834, 0.878309655808918, 0.869008688036857,
00105 0.860033621196332, 0.851346258458678, 0.842915653112205, 0.834716292986884,
00106 0.826726833946222, 0.818929191603703, 0.811307874312656, 0.803849483170964,
00107 0.796542330422959, 0.789376143566025, 0.782341832654803, 0.775431304981187,
00108 0.768637315798486, 0.761953346836795, 0.755373506507096, 0.748892447219157,
00109 0.742505296340151, 0.736207598126863, 0.729995264561476, 0.72386453346863,
00110 0.717811932630722, 0.711834248878248, 0.705928501332754, 0.700091918136512,
00111 0.694321916126117, 0.688616083004672, 0.682972161644995, 0.677388036218774,
00112 0.671861719897082, 0.66639134390875, 0.660975147776663, 0.655611470579697,
00113 0.650298743110817, 0.645035480820822, 0.639820277453057, 0.634651799287624,
00114 0.629528779924837, 0.624450015547027, 0.619414360605834, 0.614420723888914,
00115 0.609468064925773, 0.604555390697468, 0.599681752619125, 0.594846243767987,
00116 0.590047996332826, 0.585286179263371, 0.580559996100791, 0.575868682972354,
00117 0.571211506735253, 0.566587763256165, 0.561996775814525, 0.557437893618766,
00118 0.552910490425833, 0.548413963255266, 0.543947731190026, 0.539511234256952,
00119 0.535103932380458, 0.530725304403662, 0.526374847171684, 0.522052074672322,
00120 0.517756517229756, 0.513487720747327, 0.509245245995748, 0.505028667943468,
00121 0.500837575126149, 0.49667156905249, 0.492530263643869, 0.488413284705458,
00122 0.484320269426683, 0.480250865909047, 0.476204732719506, 0.47218153846773,
00123 0.468180961405694, 0.464202689048174, 0.460246417812843, 0.456311852678716,
00124 0.452398706861849, 0.448506701507203, 0.444635565395739, 0.440785034665804,
00125 0.436954852547985, 0.433144769112652, 0.429354541029442, 0.425583931338022,
00126 0.421832709229496, 0.418100649837848, 0.414387534040891, 0.410693148270188,
00127 0.407017284329473, 0.403359739221114, 0.399720314980197, 0.396098818515832,
00128 0.392495061459315, 0.388908860018789, 0.385340034840077, 0.381788410873393,
00129 0.378253817245619, 0.374736087137891, 0.371235057668239, 0.367750569779032,
00130 0.364282468129004, 0.360830600989648, 0.357394820145781, 0.353974980800077,
00131 0.350570941481406, 0.347182563956794, 0.343809713146851, 0.340452257044522,
00132 0.337110066637006, 0.333783015830718, 0.330470981379163, 0.327173842813601,
00133 0.323891482376391, 0.320623784956905, 0.317370638029914, 0.314131931596337,
00134 0.310907558126286, 0.307697412504292, 0.30450139197665, 0.301319396100803,
00135 0.298151326696685, 0.294997087799962, 0.291856585617095, 0.288729728482183,
00136 0.285616426815502, 0.282516593083708, 0.279430141761638, 0.276356989295668,
00137 0.273297054068577, 0.270250256365875, 0.267216518343561, 0.264195763997261,
00138 0.261187919132721, 0.258192911337619, 0.255210669954662, 0.252241126055942,
00139 0.249284212418529, 0.246339863501264, 0.24340801542275, 0.240488605940501,
00140 0.237581574431238, 0.23468686187233, 0.231804410824339, 0.228934165414681,
00141 0.226076071322381, 0.223230075763918, 0.220396127480152, 0.217574176724331,
00142 0.214764175251174, 0.211966076307031, 0.209179834621125, 0.206405406397881,
00143 0.203642749310335, 0.200891822494657, 0.198152586545776, 0.195425003514135,
00144 0.192709036903589, 0.190004651670465, 0.187311814223801, 0.1846304924268,
00145 0.181960655599523, 0.179302274522848, 0.176655321443735, 0.174019770081839,
00146 0.171395595637506, 0.168782774801212, 0.166181285764482, 0.163591108232366,
00147 0.161012223437511, 0.158444614155925, 0.15588826472448, 0.153343161060263,
00148 0.150809290681846, 0.148286642732575, 0.145775208005994, 0.143274978973514,
00149 0.140785949814445, 0.138308116448551, 0.135841476571254, 0.133386029691669,
00150 0.130941777173644, 0.12850872228, 0.126086870220186, 0.123676228201597,
00151 0.12127680548479, 0.11888861344291, 0.116511665625611, 0.114145977827839,
00152 0.111791568163838, 0.109448457146812, 0.107116667774684, 0.104796225622487,
00153 0.102487158941935, 0.10018949876881, 0.0979032790388625, 0.095628536713009,
00154 0.093365311912691, 0.0911136480663738, 0.0888735920682759,
00155 0.0866451944505581, 0.0844285095703535, 0.082223595813203,
00156 0.0800305158146631, 0.0778493367020961, 0.0756801303589272,
00157 0.0735229737139814, 0.0713779490588905, 0.0692451443970068,
00158 0.0671246538277886, 0.065016577971243, 0.0629210244377582, 0.06083810834954,
00159 0.0587679529209339, 0.0567106901062031, 0.0546664613248891,
00160 0.0526354182767924, 0.0506177238609479, 0.0486135532158687,
00161 0.0466230949019305, 0.0446465522512946, 0.0426841449164746,
00162 0.0407361106559411, 0.0388027074045262, 0.0368842156885674,
00163 0.0349809414617162, 0.0330932194585786, 0.0312214171919203,
00164 0.0293659397581334, 0.0275272356696031, 0.0257058040085489,
00165 0.0239022033057959, 0.0221170627073089, 0.0203510962300445,
00166 0.0186051212757247, 0.0168800831525432, 0.0151770883079353,
00167 0.0134974506017399, 0.0118427578579079, 0.0102149714397015,
00168 0.00861658276939875, 0.00705087547137324, 0.00552240329925101,
00169 0.00403797259336304, 0.00260907274610216, 0.0012602859304986,
00170 0.000477467764609386 };
00171
00172 real_T x;
00173 do {
00174 exitg1 = 0;
00175 genrand_uint32_vector(b_state, u32);
00176 i = (int32_T)((u32[1] >> 24U) + 1U);
00177 r = (((real_T)(u32[0] >> 3U) * 1.6777216E+7 + (real_T)((int32_T)u32[1] &
00178 16777215)) * 2.2204460492503131E-16 - 1.0) * dv14[i];
00179 if (fabs(r) <= dv14[i - 1]) {
00180 exitg1 = 1;
00181 } else if (i < 256) {
00182 u = genrandu(b_state);
00183 if (dv15[i] + u * (dv15[i - 1] - dv15[i]) < exp(-0.5 * r * r)) {
00184 exitg1 = 1;
00185 }
00186 } else {
00187 do {
00188 u = genrandu(b_state);
00189 x = log(u) * 0.273661237329758;
00190 u = genrandu(b_state);
00191 } while (!(-2.0 * log(u) > x * x));
00192
00193 if (r < 0.0) {
00194 r = x - 3.65415288536101;
00195 } else {
00196 r = 3.65415288536101 - x;
00197 }
00198
00199 exitg1 = 1;
00200 }
00201 } while (exitg1 == 0U);
00202
00203 return r;
00204 }
00205
00206 static void genrand_uint32_vector(uint32_T mt[625], uint32_T u[2])
00207 {
00208 int32_T i;
00209 uint32_T mti;
00210 int32_T kk;
00211 uint32_T y;
00212 for (i = 0; i < 2; i++) {
00213 u[i] = 0U;
00214 }
00215
00216 for (i = 0; i < 2; i++) {
00217 mti = mt[624] + 1U;
00218 if (mti >= 625U) {
00219 for (kk = 0; kk < 227; kk++) {
00220 y = (mt[kk] & 2147483648U) | (mt[1 + kk] & 2147483647U);
00221 if ((int32_T)(y & 1U) == 0) {
00222 y >>= 1U;
00223 } else {
00224 y = y >> 1U ^ 2567483615U;
00225 }
00226
00227 mt[kk] = mt[397 + kk] ^ y;
00228 }
00229
00230 for (kk = 0; kk < 396; kk++) {
00231 y = (mt[227 + kk] & 2147483648U) | (mt[228 + kk] & 2147483647U);
00232 if ((int32_T)(y & 1U) == 0) {
00233 y >>= 1U;
00234 } else {
00235 y = y >> 1U ^ 2567483615U;
00236 }
00237
00238 mt[227 + kk] = mt[kk] ^ y;
00239 }
00240
00241 y = (mt[623] & 2147483648U) | (mt[0] & 2147483647U);
00242 if ((int32_T)(y & 1U) == 0) {
00243 y >>= 1U;
00244 } else {
00245 y = y >> 1U ^ 2567483615U;
00246 }
00247
00248 mt[623] = mt[396] ^ y;
00249 mti = 1U;
00250 }
00251
00252 y = mt[(int32_T)mti - 1];
00253 mt[624] = mti;
00254 y ^= y >> 11U;
00255 y ^= y << 7U & 2636928640U;
00256 y ^= y << 15U & 4022730752U;
00257 y ^= y >> 18U;
00258 u[i] = y;
00259 }
00260 }
00261
00262 real_T genrandu(uint32_T mt[625])
00263 {
00264 real_T r;
00265 int32_T exitg1;
00266 uint32_T u[2];
00267 boolean_T isvalid;
00268 int32_T k;
00269 boolean_T exitg2;
00270 uint32_T b_r;
00271
00272
00273
00274
00275
00276
00277
00278
00279
00280
00281
00282
00283
00284
00285
00286
00287
00288
00289
00290
00291
00292
00293
00294
00295
00296
00297
00298
00299
00300
00301
00302
00303
00304
00305
00306 do {
00307 exitg1 = 0;
00308 genrand_uint32_vector(mt, u);
00309 u[0] >>= 5U;
00310 u[1] >>= 6U;
00311 r = 1.1102230246251565E-16 * ((real_T)u[0] * 6.7108864E+7 + (real_T)u[1]);
00312 if (r == 0.0) {
00313 if ((mt[624] >= 1U) && (mt[624] < 625U)) {
00314 isvalid = TRUE;
00315 } else {
00316 isvalid = FALSE;
00317 }
00318
00319 if (isvalid) {
00320 isvalid = FALSE;
00321 k = 1;
00322 exitg2 = FALSE;
00323 while ((exitg2 == 0U) && (k < 625)) {
00324 if (mt[k - 1] == 0U) {
00325 k++;
00326 } else {
00327 isvalid = TRUE;
00328 exitg2 = TRUE;
00329 }
00330 }
00331 }
00332
00333 if (!isvalid) {
00334 b_r = 5489U;
00335 mt[0] = 5489U;
00336 for (k = 0; k < 623; k++) {
00337 b_r = ((b_r ^ b_r >> 30U) * 1812433253U + (uint32_T)k) + 1U;
00338 mt[1 + k] = b_r;
00339 }
00340
00341 mt[624] = 624U;
00342 }
00343 } else {
00344 exitg1 = 1;
00345 }
00346 } while (exitg1 == 0U);
00347
00348 return r;
00349 }
00350
00351 void randn(real_T r[6])
00352 {
00353 int32_T k;
00354 real_T d3;
00355 if (!method_not_empty) {
00356 method_not_empty = TRUE;
00357 }
00358
00359 for (k = 0; k < 6; k++) {
00360 d3 = eml_rand_mt19937ar(state);
00361 r[k] = d3;
00362 }
00363 }
00364
00365