Go to the documentation of this file.00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00022
00023
00024
00025
00026
00027
00029
00030 #include <algorithm>
00031
00032 #include <sys/types.h>
00033 #include <math.h>
00034
00035 #include "amcl_odom.h"
00036
00037 using namespace amcl;
00038
00039 static double
00040 normalize(double z)
00041 {
00042 return atan2(sin(z),cos(z));
00043 }
00044 static double
00045 angle_diff(double a, double b)
00046 {
00047 double d1, d2;
00048 a = normalize(a);
00049 b = normalize(b);
00050 d1 = a-b;
00051 d2 = 2*M_PI - fabs(d1);
00052 if(d1 > 0)
00053 d2 *= -1.0;
00054 if(fabs(d1) < fabs(d2))
00055 return(d1);
00056 else
00057 return(d2);
00058 }
00059
00061
00062 AMCLOdom::AMCLOdom() : AMCLSensor()
00063 {
00064 this->time = 0.0;
00065 }
00066
00067 void
00068 AMCLOdom::SetModelDiff(double alpha1,
00069 double alpha2,
00070 double alpha3,
00071 double alpha4)
00072 {
00073 this->model_type = ODOM_MODEL_DIFF;
00074 this->alpha1 = alpha1;
00075 this->alpha2 = alpha2;
00076 this->alpha3 = alpha3;
00077 this->alpha4 = alpha4;
00078 }
00079
00080 void
00081 AMCLOdom::SetModelOmni(double alpha1,
00082 double alpha2,
00083 double alpha3,
00084 double alpha4,
00085 double alpha5)
00086 {
00087 this->model_type = ODOM_MODEL_OMNI;
00088 this->alpha1 = alpha1;
00089 this->alpha2 = alpha2;
00090 this->alpha3 = alpha3;
00091 this->alpha4 = alpha4;
00092 this->alpha5 = alpha5;
00093 }
00094
00095
00097
00098 bool AMCLOdom::UpdateAction(pf_t *pf, AMCLSensorData *data)
00099 {
00100 AMCLOdomData *ndata;
00101 ndata = (AMCLOdomData*) data;
00102
00103
00104 pf_sample_set_t *set;
00105
00106 set = pf->sets + pf->current_set;
00107 pf_vector_t old_pose = pf_vector_sub(ndata->pose, ndata->delta);
00108
00109 if(this->model_type == ODOM_MODEL_OMNI)
00110 {
00111 double delta_trans, delta_rot, delta_bearing;
00112 double delta_trans_hat, delta_rot_hat, delta_strafe_hat;
00113
00114 delta_trans = sqrt(ndata->delta.v[0]*ndata->delta.v[0] +
00115 ndata->delta.v[1]*ndata->delta.v[1]);
00116 delta_rot = ndata->delta.v[2];
00117
00118
00119 double trans_hat_stddev = (alpha3 * (delta_trans*delta_trans) +
00120 alpha1 * (delta_rot*delta_rot));
00121 double rot_hat_stddev = (alpha4 * (delta_rot*delta_rot) +
00122 alpha2 * (delta_trans*delta_trans));
00123 double strafe_hat_stddev = (alpha1 * (delta_rot*delta_rot) +
00124 alpha5 * (delta_trans*delta_trans));
00125
00126 for (int i = 0; i < set->sample_count; i++)
00127 {
00128 pf_sample_t* sample = set->samples + i;
00129
00130 delta_bearing = angle_diff(atan2(ndata->delta.v[1], ndata->delta.v[0]),
00131 old_pose.v[2]) + sample->pose.v[2];
00132 double cs_bearing = cos(delta_bearing);
00133 double sn_bearing = sin(delta_bearing);
00134
00135
00136 delta_trans_hat = delta_trans + pf_ran_gaussian(trans_hat_stddev);
00137 delta_rot_hat = delta_rot + pf_ran_gaussian(rot_hat_stddev);
00138 delta_strafe_hat = 0 + pf_ran_gaussian(strafe_hat_stddev);
00139
00140 sample->pose.v[0] += (delta_trans_hat * cs_bearing +
00141 delta_strafe_hat * sn_bearing);
00142 sample->pose.v[1] += (delta_trans_hat * sn_bearing -
00143 delta_strafe_hat * cs_bearing);
00144 sample->pose.v[2] += delta_rot_hat ;
00145 sample->weight = 1.0 / set->sample_count;
00146 }
00147 }
00148 else
00149 {
00150
00151 double delta_rot1, delta_trans, delta_rot2;
00152 double delta_rot1_hat, delta_trans_hat, delta_rot2_hat;
00153 double delta_rot1_noise, delta_rot2_noise;
00154
00155
00156
00157 if(sqrt(ndata->delta.v[1]*ndata->delta.v[1] +
00158 ndata->delta.v[0]*ndata->delta.v[0]) < 0.01)
00159 delta_rot1 = 0.0;
00160 else
00161 delta_rot1 = angle_diff(atan2(ndata->delta.v[1], ndata->delta.v[0]),
00162 old_pose.v[2]);
00163 delta_trans = sqrt(ndata->delta.v[0]*ndata->delta.v[0] +
00164 ndata->delta.v[1]*ndata->delta.v[1]);
00165 delta_rot2 = angle_diff(ndata->delta.v[2], delta_rot1);
00166
00167
00168
00169
00170 delta_rot1_noise = std::min(fabs(angle_diff(delta_rot1,0.0)),
00171 fabs(angle_diff(delta_rot1,M_PI)));
00172 delta_rot2_noise = std::min(fabs(angle_diff(delta_rot2,0.0)),
00173 fabs(angle_diff(delta_rot2,M_PI)));
00174
00175 for (int i = 0; i < set->sample_count; i++)
00176 {
00177 pf_sample_t* sample = set->samples + i;
00178
00179
00180 delta_rot1_hat = angle_diff(delta_rot1,
00181 pf_ran_gaussian(this->alpha1*delta_rot1_noise*delta_rot1_noise +
00182 this->alpha2*delta_trans*delta_trans));
00183 delta_trans_hat = delta_trans -
00184 pf_ran_gaussian(this->alpha3*delta_trans*delta_trans +
00185 this->alpha4*delta_rot1_noise*delta_rot1_noise +
00186 this->alpha4*delta_rot2_noise*delta_rot2_noise);
00187 delta_rot2_hat = angle_diff(delta_rot2,
00188 pf_ran_gaussian(this->alpha1*delta_rot2_noise*delta_rot2_noise +
00189 this->alpha2*delta_trans*delta_trans));
00190
00191
00192 sample->pose.v[0] += delta_trans_hat *
00193 cos(sample->pose.v[2] + delta_rot1_hat);
00194 sample->pose.v[1] += delta_trans_hat *
00195 sin(sample->pose.v[2] + delta_rot1_hat);
00196 sample->pose.v[2] += delta_rot1_hat + delta_rot2_hat;
00197 sample->weight = 1.0 / set->sample_count;
00198 }
00199 }
00200
00201 return true;
00202 }