$search
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-electric-remote_lab/doc_stacks/2013-03-03_11-54-58.406785/remote_lab/pr2_pick_and_place_service/msg/PickPlaceObject.msg */ 00002 #ifndef PR2_PICK_AND_PLACE_SERVICE_MESSAGE_PICKPLACEOBJECT_H 00003 #define PR2_PICK_AND_PLACE_SERVICE_MESSAGE_PICKPLACEOBJECT_H 00004 #include <string> 00005 #include <vector> 00006 #include <map> 00007 #include <ostream> 00008 #include "ros/serialization.h" 00009 #include "ros/builtin_message_traits.h" 00010 #include "ros/message_operations.h" 00011 #include "ros/time.h" 00012 00013 #include "ros/macros.h" 00014 00015 #include "ros/assert.h" 00016 00017 #include "object_manipulation_msgs/GraspableObject.h" 00018 #include "geometry_msgs/PoseStamped.h" 00019 00020 namespace pr2_pick_and_place_service 00021 { 00022 template <class ContainerAllocator> 00023 struct PickPlaceObject_ { 00024 typedef PickPlaceObject_<ContainerAllocator> Type; 00025 00026 PickPlaceObject_() 00027 : objectid(0) 00028 , object() 00029 , pose() 00030 , boundingbox() 00031 { 00032 } 00033 00034 PickPlaceObject_(const ContainerAllocator& _alloc) 00035 : objectid(0) 00036 , object(_alloc) 00037 , pose(_alloc) 00038 , boundingbox(_alloc) 00039 { 00040 } 00041 00042 typedef int32_t _objectid_type; 00043 int32_t objectid; 00044 00045 typedef ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> _object_type; 00046 ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> object; 00047 00048 typedef ::geometry_msgs::PoseStamped_<ContainerAllocator> _pose_type; 00049 ::geometry_msgs::PoseStamped_<ContainerAllocator> pose; 00050 00051 typedef std::vector<double, typename ContainerAllocator::template rebind<double>::other > _boundingbox_type; 00052 std::vector<double, typename ContainerAllocator::template rebind<double>::other > boundingbox; 00053 00054 00055 ROS_DEPRECATED uint32_t get_boundingbox_size() const { return (uint32_t)boundingbox.size(); } 00056 ROS_DEPRECATED void set_boundingbox_size(uint32_t size) { boundingbox.resize((size_t)size); } 00057 ROS_DEPRECATED void get_boundingbox_vec(std::vector<double, typename ContainerAllocator::template rebind<double>::other > & vec) const { vec = this->boundingbox; } 00058 ROS_DEPRECATED void set_boundingbox_vec(const std::vector<double, typename ContainerAllocator::template rebind<double>::other > & vec) { this->boundingbox = vec; } 00059 private: 00060 static const char* __s_getDataType_() { return "pr2_pick_and_place_service/PickPlaceObject"; } 00061 public: 00062 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); } 00063 00064 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); } 00065 00066 private: 00067 static const char* __s_getMD5Sum_() { return "ffd374baae36dd335477c70d55c3f483"; } 00068 public: 00069 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); } 00070 00071 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); } 00072 00073 private: 00074 static const char* __s_getMessageDefinition_() { return "int32 objectid\n\ 00075 object_manipulation_msgs/GraspableObject object\n\ 00076 geometry_msgs/PoseStamped pose\n\ 00077 float64[] boundingbox\n\ 00078 \n\ 00079 ================================================================================\n\ 00080 MSG: object_manipulation_msgs/GraspableObject\n\ 00081 # an object that the object_manipulator can work on\n\ 00082 \n\ 00083 # a graspable object can be represented in multiple ways. This message\n\ 00084 # can contain all of them. Which one is actually used is up to the receiver\n\ 00085 # of this message. When adding new representations, one must be careful that\n\ 00086 # they have reasonable lightweight defaults indicating that that particular\n\ 00087 # representation is not available.\n\ 00088 \n\ 00089 # the tf frame to be used as a reference frame when combining information from\n\ 00090 # the different representations below\n\ 00091 string reference_frame_id\n\ 00092 \n\ 00093 # potential recognition results from a database of models\n\ 00094 # all poses are relative to the object reference pose\n\ 00095 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\ 00096 \n\ 00097 # the point cloud itself\n\ 00098 sensor_msgs/PointCloud cluster\n\ 00099 \n\ 00100 # a region of a PointCloud2 of interest\n\ 00101 object_manipulation_msgs/SceneRegion region\n\ 00102 \n\ 00103 # the name that this object has in the collision environment\n\ 00104 string collision_name\n\ 00105 ================================================================================\n\ 00106 MSG: household_objects_database_msgs/DatabaseModelPose\n\ 00107 # Informs that a specific model from the Model Database has been \n\ 00108 # identified at a certain location\n\ 00109 \n\ 00110 # the database id of the model\n\ 00111 int32 model_id\n\ 00112 \n\ 00113 # the pose that it can be found in\n\ 00114 geometry_msgs/PoseStamped pose\n\ 00115 \n\ 00116 # a measure of the confidence level in this detection result\n\ 00117 float32 confidence\n\ 00118 \n\ 00119 # the name of the object detector that generated this detection result\n\ 00120 string detector_name\n\ 00121 \n\ 00122 ================================================================================\n\ 00123 MSG: geometry_msgs/PoseStamped\n\ 00124 # A Pose with reference coordinate frame and timestamp\n\ 00125 Header header\n\ 00126 Pose pose\n\ 00127 \n\ 00128 ================================================================================\n\ 00129 MSG: std_msgs/Header\n\ 00130 # Standard metadata for higher-level stamped data types.\n\ 00131 # This is generally used to communicate timestamped data \n\ 00132 # in a particular coordinate frame.\n\ 00133 # \n\ 00134 # sequence ID: consecutively increasing ID \n\ 00135 uint32 seq\n\ 00136 #Two-integer timestamp that is expressed as:\n\ 00137 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00138 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00139 # time-handling sugar is provided by the client library\n\ 00140 time stamp\n\ 00141 #Frame this data is associated with\n\ 00142 # 0: no frame\n\ 00143 # 1: global frame\n\ 00144 string frame_id\n\ 00145 \n\ 00146 ================================================================================\n\ 00147 MSG: geometry_msgs/Pose\n\ 00148 # A representation of pose in free space, composed of postion and orientation. \n\ 00149 Point position\n\ 00150 Quaternion orientation\n\ 00151 \n\ 00152 ================================================================================\n\ 00153 MSG: geometry_msgs/Point\n\ 00154 # This contains the position of a point in free space\n\ 00155 float64 x\n\ 00156 float64 y\n\ 00157 float64 z\n\ 00158 \n\ 00159 ================================================================================\n\ 00160 MSG: geometry_msgs/Quaternion\n\ 00161 # This represents an orientation in free space in quaternion form.\n\ 00162 \n\ 00163 float64 x\n\ 00164 float64 y\n\ 00165 float64 z\n\ 00166 float64 w\n\ 00167 \n\ 00168 ================================================================================\n\ 00169 MSG: sensor_msgs/PointCloud\n\ 00170 # This message holds a collection of 3d points, plus optional additional\n\ 00171 # information about each point.\n\ 00172 \n\ 00173 # Time of sensor data acquisition, coordinate frame ID.\n\ 00174 Header header\n\ 00175 \n\ 00176 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 00177 # in the frame given in the header.\n\ 00178 geometry_msgs/Point32[] points\n\ 00179 \n\ 00180 # Each channel should have the same number of elements as points array,\n\ 00181 # and the data in each channel should correspond 1:1 with each point.\n\ 00182 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 00183 ChannelFloat32[] channels\n\ 00184 \n\ 00185 ================================================================================\n\ 00186 MSG: geometry_msgs/Point32\n\ 00187 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00188 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00189 # \n\ 00190 # This recommendation is to promote interoperability. \n\ 00191 #\n\ 00192 # This message is designed to take up less space when sending\n\ 00193 # lots of points at once, as in the case of a PointCloud. \n\ 00194 \n\ 00195 float32 x\n\ 00196 float32 y\n\ 00197 float32 z\n\ 00198 ================================================================================\n\ 00199 MSG: sensor_msgs/ChannelFloat32\n\ 00200 # This message is used by the PointCloud message to hold optional data\n\ 00201 # associated with each point in the cloud. The length of the values\n\ 00202 # array should be the same as the length of the points array in the\n\ 00203 # PointCloud, and each value should be associated with the corresponding\n\ 00204 # point.\n\ 00205 \n\ 00206 # Channel names in existing practice include:\n\ 00207 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 00208 # This is opposite to usual conventions but remains for\n\ 00209 # historical reasons. The newer PointCloud2 message has no\n\ 00210 # such problem.\n\ 00211 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 00212 # (R,G,B) values packed into the least significant 24 bits,\n\ 00213 # in order.\n\ 00214 # \"intensity\" - laser or pixel intensity.\n\ 00215 # \"distance\"\n\ 00216 \n\ 00217 # The channel name should give semantics of the channel (e.g.\n\ 00218 # \"intensity\" instead of \"value\").\n\ 00219 string name\n\ 00220 \n\ 00221 # The values array should be 1-1 with the elements of the associated\n\ 00222 # PointCloud.\n\ 00223 float32[] values\n\ 00224 \n\ 00225 ================================================================================\n\ 00226 MSG: object_manipulation_msgs/SceneRegion\n\ 00227 # Point cloud\n\ 00228 sensor_msgs/PointCloud2 cloud\n\ 00229 \n\ 00230 # Indices for the region of interest\n\ 00231 int32[] mask\n\ 00232 \n\ 00233 # One of the corresponding 2D images, if applicable\n\ 00234 sensor_msgs/Image image\n\ 00235 \n\ 00236 # The disparity image, if applicable\n\ 00237 sensor_msgs/Image disparity_image\n\ 00238 \n\ 00239 # Camera info for the camera that took the image\n\ 00240 sensor_msgs/CameraInfo cam_info\n\ 00241 \n\ 00242 # a 3D region of interest for grasp planning\n\ 00243 geometry_msgs/PoseStamped roi_box_pose\n\ 00244 geometry_msgs/Vector3 roi_box_dims\n\ 00245 \n\ 00246 ================================================================================\n\ 00247 MSG: sensor_msgs/PointCloud2\n\ 00248 # This message holds a collection of N-dimensional points, which may\n\ 00249 # contain additional information such as normals, intensity, etc. The\n\ 00250 # point data is stored as a binary blob, its layout described by the\n\ 00251 # contents of the \"fields\" array.\n\ 00252 \n\ 00253 # The point cloud data may be organized 2d (image-like) or 1d\n\ 00254 # (unordered). Point clouds organized as 2d images may be produced by\n\ 00255 # camera depth sensors such as stereo or time-of-flight.\n\ 00256 \n\ 00257 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 00258 # points).\n\ 00259 Header header\n\ 00260 \n\ 00261 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 00262 # 1 and width is the length of the point cloud.\n\ 00263 uint32 height\n\ 00264 uint32 width\n\ 00265 \n\ 00266 # Describes the channels and their layout in the binary data blob.\n\ 00267 PointField[] fields\n\ 00268 \n\ 00269 bool is_bigendian # Is this data bigendian?\n\ 00270 uint32 point_step # Length of a point in bytes\n\ 00271 uint32 row_step # Length of a row in bytes\n\ 00272 uint8[] data # Actual point data, size is (row_step*height)\n\ 00273 \n\ 00274 bool is_dense # True if there are no invalid points\n\ 00275 \n\ 00276 ================================================================================\n\ 00277 MSG: sensor_msgs/PointField\n\ 00278 # This message holds the description of one point entry in the\n\ 00279 # PointCloud2 message format.\n\ 00280 uint8 INT8 = 1\n\ 00281 uint8 UINT8 = 2\n\ 00282 uint8 INT16 = 3\n\ 00283 uint8 UINT16 = 4\n\ 00284 uint8 INT32 = 5\n\ 00285 uint8 UINT32 = 6\n\ 00286 uint8 FLOAT32 = 7\n\ 00287 uint8 FLOAT64 = 8\n\ 00288 \n\ 00289 string name # Name of field\n\ 00290 uint32 offset # Offset from start of point struct\n\ 00291 uint8 datatype # Datatype enumeration, see above\n\ 00292 uint32 count # How many elements in the field\n\ 00293 \n\ 00294 ================================================================================\n\ 00295 MSG: sensor_msgs/Image\n\ 00296 # This message contains an uncompressed image\n\ 00297 # (0, 0) is at top-left corner of image\n\ 00298 #\n\ 00299 \n\ 00300 Header header # Header timestamp should be acquisition time of image\n\ 00301 # Header frame_id should be optical frame of camera\n\ 00302 # origin of frame should be optical center of cameara\n\ 00303 # +x should point to the right in the image\n\ 00304 # +y should point down in the image\n\ 00305 # +z should point into to plane of the image\n\ 00306 # If the frame_id here and the frame_id of the CameraInfo\n\ 00307 # message associated with the image conflict\n\ 00308 # the behavior is undefined\n\ 00309 \n\ 00310 uint32 height # image height, that is, number of rows\n\ 00311 uint32 width # image width, that is, number of columns\n\ 00312 \n\ 00313 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00314 # If you want to standardize a new string format, join\n\ 00315 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00316 \n\ 00317 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00318 # taken from the list of strings in src/image_encodings.cpp\n\ 00319 \n\ 00320 uint8 is_bigendian # is this data bigendian?\n\ 00321 uint32 step # Full row length in bytes\n\ 00322 uint8[] data # actual matrix data, size is (step * rows)\n\ 00323 \n\ 00324 ================================================================================\n\ 00325 MSG: sensor_msgs/CameraInfo\n\ 00326 # This message defines meta information for a camera. It should be in a\n\ 00327 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00328 # image topics named:\n\ 00329 #\n\ 00330 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00331 # image - monochrome, distorted\n\ 00332 # image_color - color, distorted\n\ 00333 # image_rect - monochrome, rectified\n\ 00334 # image_rect_color - color, rectified\n\ 00335 #\n\ 00336 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00337 # for producing the four processed image topics from image_raw and\n\ 00338 # camera_info. The meaning of the camera parameters are described in\n\ 00339 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00340 #\n\ 00341 # The image_geometry package provides a user-friendly interface to\n\ 00342 # common operations using this meta information. If you want to, e.g.,\n\ 00343 # project a 3d point into image coordinates, we strongly recommend\n\ 00344 # using image_geometry.\n\ 00345 #\n\ 00346 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00347 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00348 # indicates an uncalibrated camera.\n\ 00349 \n\ 00350 #######################################################################\n\ 00351 # Image acquisition info #\n\ 00352 #######################################################################\n\ 00353 \n\ 00354 # Time of image acquisition, camera coordinate frame ID\n\ 00355 Header header # Header timestamp should be acquisition time of image\n\ 00356 # Header frame_id should be optical frame of camera\n\ 00357 # origin of frame should be optical center of camera\n\ 00358 # +x should point to the right in the image\n\ 00359 # +y should point down in the image\n\ 00360 # +z should point into the plane of the image\n\ 00361 \n\ 00362 \n\ 00363 #######################################################################\n\ 00364 # Calibration Parameters #\n\ 00365 #######################################################################\n\ 00366 # These are fixed during camera calibration. Their values will be the #\n\ 00367 # same in all messages until the camera is recalibrated. Note that #\n\ 00368 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00369 # #\n\ 00370 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00371 # to: #\n\ 00372 # 1. An undistorted image (requires D and K) #\n\ 00373 # 2. A rectified image (requires D, K, R) #\n\ 00374 # The projection matrix P projects 3D points into the rectified image.#\n\ 00375 #######################################################################\n\ 00376 \n\ 00377 # The image dimensions with which the camera was calibrated. Normally\n\ 00378 # this will be the full camera resolution in pixels.\n\ 00379 uint32 height\n\ 00380 uint32 width\n\ 00381 \n\ 00382 # The distortion model used. Supported models are listed in\n\ 00383 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00384 # simple model of radial and tangential distortion - is sufficent.\n\ 00385 string distortion_model\n\ 00386 \n\ 00387 # The distortion parameters, size depending on the distortion model.\n\ 00388 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00389 float64[] D\n\ 00390 \n\ 00391 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00392 # [fx 0 cx]\n\ 00393 # K = [ 0 fy cy]\n\ 00394 # [ 0 0 1]\n\ 00395 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00396 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00397 # (cx, cy).\n\ 00398 float64[9] K # 3x3 row-major matrix\n\ 00399 \n\ 00400 # Rectification matrix (stereo cameras only)\n\ 00401 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00402 # stereo image plane so that epipolar lines in both stereo images are\n\ 00403 # parallel.\n\ 00404 float64[9] R # 3x3 row-major matrix\n\ 00405 \n\ 00406 # Projection/camera matrix\n\ 00407 # [fx' 0 cx' Tx]\n\ 00408 # P = [ 0 fy' cy' Ty]\n\ 00409 # [ 0 0 1 0]\n\ 00410 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 00411 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 00412 # is the normal camera intrinsic matrix for the rectified image.\n\ 00413 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 00414 # coordinates using the focal lengths (fx', fy') and principal point\n\ 00415 # (cx', cy') - these may differ from the values in K.\n\ 00416 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 00417 # also have R = the identity and P[1:3,1:3] = K.\n\ 00418 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 00419 # position of the optical center of the second camera in the first\n\ 00420 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 00421 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 00422 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 00423 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 00424 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 00425 # the rectified image is given by:\n\ 00426 # [u v w]' = P * [X Y Z 1]'\n\ 00427 # x = u / w\n\ 00428 # y = v / w\n\ 00429 # This holds for both images of a stereo pair.\n\ 00430 float64[12] P # 3x4 row-major matrix\n\ 00431 \n\ 00432 \n\ 00433 #######################################################################\n\ 00434 # Operational Parameters #\n\ 00435 #######################################################################\n\ 00436 # These define the image region actually captured by the camera #\n\ 00437 # driver. Although they affect the geometry of the output image, they #\n\ 00438 # may be changed freely without recalibrating the camera. #\n\ 00439 #######################################################################\n\ 00440 \n\ 00441 # Binning refers here to any camera setting which combines rectangular\n\ 00442 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 00443 # resolution of the output image to\n\ 00444 # (width / binning_x) x (height / binning_y).\n\ 00445 # The default values binning_x = binning_y = 0 is considered the same\n\ 00446 # as binning_x = binning_y = 1 (no subsampling).\n\ 00447 uint32 binning_x\n\ 00448 uint32 binning_y\n\ 00449 \n\ 00450 # Region of interest (subwindow of full camera resolution), given in\n\ 00451 # full resolution (unbinned) image coordinates. A particular ROI\n\ 00452 # always denotes the same window of pixels on the camera sensor,\n\ 00453 # regardless of binning settings.\n\ 00454 # The default setting of roi (all values 0) is considered the same as\n\ 00455 # full resolution (roi.width = width, roi.height = height).\n\ 00456 RegionOfInterest roi\n\ 00457 \n\ 00458 ================================================================================\n\ 00459 MSG: sensor_msgs/RegionOfInterest\n\ 00460 # This message is used to specify a region of interest within an image.\n\ 00461 #\n\ 00462 # When used to specify the ROI setting of the camera when the image was\n\ 00463 # taken, the height and width fields should either match the height and\n\ 00464 # width fields for the associated image; or height = width = 0\n\ 00465 # indicates that the full resolution image was captured.\n\ 00466 \n\ 00467 uint32 x_offset # Leftmost pixel of the ROI\n\ 00468 # (0 if the ROI includes the left edge of the image)\n\ 00469 uint32 y_offset # Topmost pixel of the ROI\n\ 00470 # (0 if the ROI includes the top edge of the image)\n\ 00471 uint32 height # Height of ROI\n\ 00472 uint32 width # Width of ROI\n\ 00473 \n\ 00474 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 00475 # ROI in this message. Typically this should be False if the full image\n\ 00476 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 00477 # used).\n\ 00478 bool do_rectify\n\ 00479 \n\ 00480 ================================================================================\n\ 00481 MSG: geometry_msgs/Vector3\n\ 00482 # This represents a vector in free space. \n\ 00483 \n\ 00484 float64 x\n\ 00485 float64 y\n\ 00486 float64 z\n\ 00487 "; } 00488 public: 00489 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); } 00490 00491 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); } 00492 00493 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const 00494 { 00495 ros::serialization::OStream stream(write_ptr, 1000000000); 00496 ros::serialization::serialize(stream, objectid); 00497 ros::serialization::serialize(stream, object); 00498 ros::serialization::serialize(stream, pose); 00499 ros::serialization::serialize(stream, boundingbox); 00500 return stream.getData(); 00501 } 00502 00503 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr) 00504 { 00505 ros::serialization::IStream stream(read_ptr, 1000000000); 00506 ros::serialization::deserialize(stream, objectid); 00507 ros::serialization::deserialize(stream, object); 00508 ros::serialization::deserialize(stream, pose); 00509 ros::serialization::deserialize(stream, boundingbox); 00510 return stream.getData(); 00511 } 00512 00513 ROS_DEPRECATED virtual uint32_t serializationLength() const 00514 { 00515 uint32_t size = 0; 00516 size += ros::serialization::serializationLength(objectid); 00517 size += ros::serialization::serializationLength(object); 00518 size += ros::serialization::serializationLength(pose); 00519 size += ros::serialization::serializationLength(boundingbox); 00520 return size; 00521 } 00522 00523 typedef boost::shared_ptr< ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> > Ptr; 00524 typedef boost::shared_ptr< ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> const> ConstPtr; 00525 boost::shared_ptr<std::map<std::string, std::string> > __connection_header; 00526 }; // struct PickPlaceObject 00527 typedef ::pr2_pick_and_place_service::PickPlaceObject_<std::allocator<void> > PickPlaceObject; 00528 00529 typedef boost::shared_ptr< ::pr2_pick_and_place_service::PickPlaceObject> PickPlaceObjectPtr; 00530 typedef boost::shared_ptr< ::pr2_pick_and_place_service::PickPlaceObject const> PickPlaceObjectConstPtr; 00531 00532 00533 template<typename ContainerAllocator> 00534 std::ostream& operator<<(std::ostream& s, const ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> & v) 00535 { 00536 ros::message_operations::Printer< ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> >::stream(s, "", v); 00537 return s;} 00538 00539 } // namespace pr2_pick_and_place_service 00540 00541 namespace ros 00542 { 00543 namespace message_traits 00544 { 00545 template<class ContainerAllocator> struct IsMessage< ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> > : public TrueType {}; 00546 template<class ContainerAllocator> struct IsMessage< ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> const> : public TrueType {}; 00547 template<class ContainerAllocator> 00548 struct MD5Sum< ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> > { 00549 static const char* value() 00550 { 00551 return "ffd374baae36dd335477c70d55c3f483"; 00552 } 00553 00554 static const char* value(const ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> &) { return value(); } 00555 static const uint64_t static_value1 = 0xffd374baae36dd33ULL; 00556 static const uint64_t static_value2 = 0x5477c70d55c3f483ULL; 00557 }; 00558 00559 template<class ContainerAllocator> 00560 struct DataType< ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> > { 00561 static const char* value() 00562 { 00563 return "pr2_pick_and_place_service/PickPlaceObject"; 00564 } 00565 00566 static const char* value(const ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> &) { return value(); } 00567 }; 00568 00569 template<class ContainerAllocator> 00570 struct Definition< ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> > { 00571 static const char* value() 00572 { 00573 return "int32 objectid\n\ 00574 object_manipulation_msgs/GraspableObject object\n\ 00575 geometry_msgs/PoseStamped pose\n\ 00576 float64[] boundingbox\n\ 00577 \n\ 00578 ================================================================================\n\ 00579 MSG: object_manipulation_msgs/GraspableObject\n\ 00580 # an object that the object_manipulator can work on\n\ 00581 \n\ 00582 # a graspable object can be represented in multiple ways. This message\n\ 00583 # can contain all of them. Which one is actually used is up to the receiver\n\ 00584 # of this message. When adding new representations, one must be careful that\n\ 00585 # they have reasonable lightweight defaults indicating that that particular\n\ 00586 # representation is not available.\n\ 00587 \n\ 00588 # the tf frame to be used as a reference frame when combining information from\n\ 00589 # the different representations below\n\ 00590 string reference_frame_id\n\ 00591 \n\ 00592 # potential recognition results from a database of models\n\ 00593 # all poses are relative to the object reference pose\n\ 00594 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\ 00595 \n\ 00596 # the point cloud itself\n\ 00597 sensor_msgs/PointCloud cluster\n\ 00598 \n\ 00599 # a region of a PointCloud2 of interest\n\ 00600 object_manipulation_msgs/SceneRegion region\n\ 00601 \n\ 00602 # the name that this object has in the collision environment\n\ 00603 string collision_name\n\ 00604 ================================================================================\n\ 00605 MSG: household_objects_database_msgs/DatabaseModelPose\n\ 00606 # Informs that a specific model from the Model Database has been \n\ 00607 # identified at a certain location\n\ 00608 \n\ 00609 # the database id of the model\n\ 00610 int32 model_id\n\ 00611 \n\ 00612 # the pose that it can be found in\n\ 00613 geometry_msgs/PoseStamped pose\n\ 00614 \n\ 00615 # a measure of the confidence level in this detection result\n\ 00616 float32 confidence\n\ 00617 \n\ 00618 # the name of the object detector that generated this detection result\n\ 00619 string detector_name\n\ 00620 \n\ 00621 ================================================================================\n\ 00622 MSG: geometry_msgs/PoseStamped\n\ 00623 # A Pose with reference coordinate frame and timestamp\n\ 00624 Header header\n\ 00625 Pose pose\n\ 00626 \n\ 00627 ================================================================================\n\ 00628 MSG: std_msgs/Header\n\ 00629 # Standard metadata for higher-level stamped data types.\n\ 00630 # This is generally used to communicate timestamped data \n\ 00631 # in a particular coordinate frame.\n\ 00632 # \n\ 00633 # sequence ID: consecutively increasing ID \n\ 00634 uint32 seq\n\ 00635 #Two-integer timestamp that is expressed as:\n\ 00636 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00637 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00638 # time-handling sugar is provided by the client library\n\ 00639 time stamp\n\ 00640 #Frame this data is associated with\n\ 00641 # 0: no frame\n\ 00642 # 1: global frame\n\ 00643 string frame_id\n\ 00644 \n\ 00645 ================================================================================\n\ 00646 MSG: geometry_msgs/Pose\n\ 00647 # A representation of pose in free space, composed of postion and orientation. \n\ 00648 Point position\n\ 00649 Quaternion orientation\n\ 00650 \n\ 00651 ================================================================================\n\ 00652 MSG: geometry_msgs/Point\n\ 00653 # This contains the position of a point in free space\n\ 00654 float64 x\n\ 00655 float64 y\n\ 00656 float64 z\n\ 00657 \n\ 00658 ================================================================================\n\ 00659 MSG: geometry_msgs/Quaternion\n\ 00660 # This represents an orientation in free space in quaternion form.\n\ 00661 \n\ 00662 float64 x\n\ 00663 float64 y\n\ 00664 float64 z\n\ 00665 float64 w\n\ 00666 \n\ 00667 ================================================================================\n\ 00668 MSG: sensor_msgs/PointCloud\n\ 00669 # This message holds a collection of 3d points, plus optional additional\n\ 00670 # information about each point.\n\ 00671 \n\ 00672 # Time of sensor data acquisition, coordinate frame ID.\n\ 00673 Header header\n\ 00674 \n\ 00675 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 00676 # in the frame given in the header.\n\ 00677 geometry_msgs/Point32[] points\n\ 00678 \n\ 00679 # Each channel should have the same number of elements as points array,\n\ 00680 # and the data in each channel should correspond 1:1 with each point.\n\ 00681 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 00682 ChannelFloat32[] channels\n\ 00683 \n\ 00684 ================================================================================\n\ 00685 MSG: geometry_msgs/Point32\n\ 00686 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00687 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00688 # \n\ 00689 # This recommendation is to promote interoperability. \n\ 00690 #\n\ 00691 # This message is designed to take up less space when sending\n\ 00692 # lots of points at once, as in the case of a PointCloud. \n\ 00693 \n\ 00694 float32 x\n\ 00695 float32 y\n\ 00696 float32 z\n\ 00697 ================================================================================\n\ 00698 MSG: sensor_msgs/ChannelFloat32\n\ 00699 # This message is used by the PointCloud message to hold optional data\n\ 00700 # associated with each point in the cloud. The length of the values\n\ 00701 # array should be the same as the length of the points array in the\n\ 00702 # PointCloud, and each value should be associated with the corresponding\n\ 00703 # point.\n\ 00704 \n\ 00705 # Channel names in existing practice include:\n\ 00706 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 00707 # This is opposite to usual conventions but remains for\n\ 00708 # historical reasons. The newer PointCloud2 message has no\n\ 00709 # such problem.\n\ 00710 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 00711 # (R,G,B) values packed into the least significant 24 bits,\n\ 00712 # in order.\n\ 00713 # \"intensity\" - laser or pixel intensity.\n\ 00714 # \"distance\"\n\ 00715 \n\ 00716 # The channel name should give semantics of the channel (e.g.\n\ 00717 # \"intensity\" instead of \"value\").\n\ 00718 string name\n\ 00719 \n\ 00720 # The values array should be 1-1 with the elements of the associated\n\ 00721 # PointCloud.\n\ 00722 float32[] values\n\ 00723 \n\ 00724 ================================================================================\n\ 00725 MSG: object_manipulation_msgs/SceneRegion\n\ 00726 # Point cloud\n\ 00727 sensor_msgs/PointCloud2 cloud\n\ 00728 \n\ 00729 # Indices for the region of interest\n\ 00730 int32[] mask\n\ 00731 \n\ 00732 # One of the corresponding 2D images, if applicable\n\ 00733 sensor_msgs/Image image\n\ 00734 \n\ 00735 # The disparity image, if applicable\n\ 00736 sensor_msgs/Image disparity_image\n\ 00737 \n\ 00738 # Camera info for the camera that took the image\n\ 00739 sensor_msgs/CameraInfo cam_info\n\ 00740 \n\ 00741 # a 3D region of interest for grasp planning\n\ 00742 geometry_msgs/PoseStamped roi_box_pose\n\ 00743 geometry_msgs/Vector3 roi_box_dims\n\ 00744 \n\ 00745 ================================================================================\n\ 00746 MSG: sensor_msgs/PointCloud2\n\ 00747 # This message holds a collection of N-dimensional points, which may\n\ 00748 # contain additional information such as normals, intensity, etc. The\n\ 00749 # point data is stored as a binary blob, its layout described by the\n\ 00750 # contents of the \"fields\" array.\n\ 00751 \n\ 00752 # The point cloud data may be organized 2d (image-like) or 1d\n\ 00753 # (unordered). Point clouds organized as 2d images may be produced by\n\ 00754 # camera depth sensors such as stereo or time-of-flight.\n\ 00755 \n\ 00756 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 00757 # points).\n\ 00758 Header header\n\ 00759 \n\ 00760 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 00761 # 1 and width is the length of the point cloud.\n\ 00762 uint32 height\n\ 00763 uint32 width\n\ 00764 \n\ 00765 # Describes the channels and their layout in the binary data blob.\n\ 00766 PointField[] fields\n\ 00767 \n\ 00768 bool is_bigendian # Is this data bigendian?\n\ 00769 uint32 point_step # Length of a point in bytes\n\ 00770 uint32 row_step # Length of a row in bytes\n\ 00771 uint8[] data # Actual point data, size is (row_step*height)\n\ 00772 \n\ 00773 bool is_dense # True if there are no invalid points\n\ 00774 \n\ 00775 ================================================================================\n\ 00776 MSG: sensor_msgs/PointField\n\ 00777 # This message holds the description of one point entry in the\n\ 00778 # PointCloud2 message format.\n\ 00779 uint8 INT8 = 1\n\ 00780 uint8 UINT8 = 2\n\ 00781 uint8 INT16 = 3\n\ 00782 uint8 UINT16 = 4\n\ 00783 uint8 INT32 = 5\n\ 00784 uint8 UINT32 = 6\n\ 00785 uint8 FLOAT32 = 7\n\ 00786 uint8 FLOAT64 = 8\n\ 00787 \n\ 00788 string name # Name of field\n\ 00789 uint32 offset # Offset from start of point struct\n\ 00790 uint8 datatype # Datatype enumeration, see above\n\ 00791 uint32 count # How many elements in the field\n\ 00792 \n\ 00793 ================================================================================\n\ 00794 MSG: sensor_msgs/Image\n\ 00795 # This message contains an uncompressed image\n\ 00796 # (0, 0) is at top-left corner of image\n\ 00797 #\n\ 00798 \n\ 00799 Header header # Header timestamp should be acquisition time of image\n\ 00800 # Header frame_id should be optical frame of camera\n\ 00801 # origin of frame should be optical center of cameara\n\ 00802 # +x should point to the right in the image\n\ 00803 # +y should point down in the image\n\ 00804 # +z should point into to plane of the image\n\ 00805 # If the frame_id here and the frame_id of the CameraInfo\n\ 00806 # message associated with the image conflict\n\ 00807 # the behavior is undefined\n\ 00808 \n\ 00809 uint32 height # image height, that is, number of rows\n\ 00810 uint32 width # image width, that is, number of columns\n\ 00811 \n\ 00812 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00813 # If you want to standardize a new string format, join\n\ 00814 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00815 \n\ 00816 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00817 # taken from the list of strings in src/image_encodings.cpp\n\ 00818 \n\ 00819 uint8 is_bigendian # is this data bigendian?\n\ 00820 uint32 step # Full row length in bytes\n\ 00821 uint8[] data # actual matrix data, size is (step * rows)\n\ 00822 \n\ 00823 ================================================================================\n\ 00824 MSG: sensor_msgs/CameraInfo\n\ 00825 # This message defines meta information for a camera. It should be in a\n\ 00826 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00827 # image topics named:\n\ 00828 #\n\ 00829 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00830 # image - monochrome, distorted\n\ 00831 # image_color - color, distorted\n\ 00832 # image_rect - monochrome, rectified\n\ 00833 # image_rect_color - color, rectified\n\ 00834 #\n\ 00835 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00836 # for producing the four processed image topics from image_raw and\n\ 00837 # camera_info. The meaning of the camera parameters are described in\n\ 00838 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00839 #\n\ 00840 # The image_geometry package provides a user-friendly interface to\n\ 00841 # common operations using this meta information. If you want to, e.g.,\n\ 00842 # project a 3d point into image coordinates, we strongly recommend\n\ 00843 # using image_geometry.\n\ 00844 #\n\ 00845 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00846 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00847 # indicates an uncalibrated camera.\n\ 00848 \n\ 00849 #######################################################################\n\ 00850 # Image acquisition info #\n\ 00851 #######################################################################\n\ 00852 \n\ 00853 # Time of image acquisition, camera coordinate frame ID\n\ 00854 Header header # Header timestamp should be acquisition time of image\n\ 00855 # Header frame_id should be optical frame of camera\n\ 00856 # origin of frame should be optical center of camera\n\ 00857 # +x should point to the right in the image\n\ 00858 # +y should point down in the image\n\ 00859 # +z should point into the plane of the image\n\ 00860 \n\ 00861 \n\ 00862 #######################################################################\n\ 00863 # Calibration Parameters #\n\ 00864 #######################################################################\n\ 00865 # These are fixed during camera calibration. Their values will be the #\n\ 00866 # same in all messages until the camera is recalibrated. Note that #\n\ 00867 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00868 # #\n\ 00869 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00870 # to: #\n\ 00871 # 1. An undistorted image (requires D and K) #\n\ 00872 # 2. A rectified image (requires D, K, R) #\n\ 00873 # The projection matrix P projects 3D points into the rectified image.#\n\ 00874 #######################################################################\n\ 00875 \n\ 00876 # The image dimensions with which the camera was calibrated. Normally\n\ 00877 # this will be the full camera resolution in pixels.\n\ 00878 uint32 height\n\ 00879 uint32 width\n\ 00880 \n\ 00881 # The distortion model used. Supported models are listed in\n\ 00882 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00883 # simple model of radial and tangential distortion - is sufficent.\n\ 00884 string distortion_model\n\ 00885 \n\ 00886 # The distortion parameters, size depending on the distortion model.\n\ 00887 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00888 float64[] D\n\ 00889 \n\ 00890 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00891 # [fx 0 cx]\n\ 00892 # K = [ 0 fy cy]\n\ 00893 # [ 0 0 1]\n\ 00894 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00895 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00896 # (cx, cy).\n\ 00897 float64[9] K # 3x3 row-major matrix\n\ 00898 \n\ 00899 # Rectification matrix (stereo cameras only)\n\ 00900 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00901 # stereo image plane so that epipolar lines in both stereo images are\n\ 00902 # parallel.\n\ 00903 float64[9] R # 3x3 row-major matrix\n\ 00904 \n\ 00905 # Projection/camera matrix\n\ 00906 # [fx' 0 cx' Tx]\n\ 00907 # P = [ 0 fy' cy' Ty]\n\ 00908 # [ 0 0 1 0]\n\ 00909 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 00910 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 00911 # is the normal camera intrinsic matrix for the rectified image.\n\ 00912 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 00913 # coordinates using the focal lengths (fx', fy') and principal point\n\ 00914 # (cx', cy') - these may differ from the values in K.\n\ 00915 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 00916 # also have R = the identity and P[1:3,1:3] = K.\n\ 00917 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 00918 # position of the optical center of the second camera in the first\n\ 00919 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 00920 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 00921 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 00922 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 00923 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 00924 # the rectified image is given by:\n\ 00925 # [u v w]' = P * [X Y Z 1]'\n\ 00926 # x = u / w\n\ 00927 # y = v / w\n\ 00928 # This holds for both images of a stereo pair.\n\ 00929 float64[12] P # 3x4 row-major matrix\n\ 00930 \n\ 00931 \n\ 00932 #######################################################################\n\ 00933 # Operational Parameters #\n\ 00934 #######################################################################\n\ 00935 # These define the image region actually captured by the camera #\n\ 00936 # driver. Although they affect the geometry of the output image, they #\n\ 00937 # may be changed freely without recalibrating the camera. #\n\ 00938 #######################################################################\n\ 00939 \n\ 00940 # Binning refers here to any camera setting which combines rectangular\n\ 00941 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 00942 # resolution of the output image to\n\ 00943 # (width / binning_x) x (height / binning_y).\n\ 00944 # The default values binning_x = binning_y = 0 is considered the same\n\ 00945 # as binning_x = binning_y = 1 (no subsampling).\n\ 00946 uint32 binning_x\n\ 00947 uint32 binning_y\n\ 00948 \n\ 00949 # Region of interest (subwindow of full camera resolution), given in\n\ 00950 # full resolution (unbinned) image coordinates. A particular ROI\n\ 00951 # always denotes the same window of pixels on the camera sensor,\n\ 00952 # regardless of binning settings.\n\ 00953 # The default setting of roi (all values 0) is considered the same as\n\ 00954 # full resolution (roi.width = width, roi.height = height).\n\ 00955 RegionOfInterest roi\n\ 00956 \n\ 00957 ================================================================================\n\ 00958 MSG: sensor_msgs/RegionOfInterest\n\ 00959 # This message is used to specify a region of interest within an image.\n\ 00960 #\n\ 00961 # When used to specify the ROI setting of the camera when the image was\n\ 00962 # taken, the height and width fields should either match the height and\n\ 00963 # width fields for the associated image; or height = width = 0\n\ 00964 # indicates that the full resolution image was captured.\n\ 00965 \n\ 00966 uint32 x_offset # Leftmost pixel of the ROI\n\ 00967 # (0 if the ROI includes the left edge of the image)\n\ 00968 uint32 y_offset # Topmost pixel of the ROI\n\ 00969 # (0 if the ROI includes the top edge of the image)\n\ 00970 uint32 height # Height of ROI\n\ 00971 uint32 width # Width of ROI\n\ 00972 \n\ 00973 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 00974 # ROI in this message. Typically this should be False if the full image\n\ 00975 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 00976 # used).\n\ 00977 bool do_rectify\n\ 00978 \n\ 00979 ================================================================================\n\ 00980 MSG: geometry_msgs/Vector3\n\ 00981 # This represents a vector in free space. \n\ 00982 \n\ 00983 float64 x\n\ 00984 float64 y\n\ 00985 float64 z\n\ 00986 "; 00987 } 00988 00989 static const char* value(const ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> &) { return value(); } 00990 }; 00991 00992 } // namespace message_traits 00993 } // namespace ros 00994 00995 namespace ros 00996 { 00997 namespace serialization 00998 { 00999 01000 template<class ContainerAllocator> struct Serializer< ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> > 01001 { 01002 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m) 01003 { 01004 stream.next(m.objectid); 01005 stream.next(m.object); 01006 stream.next(m.pose); 01007 stream.next(m.boundingbox); 01008 } 01009 01010 ROS_DECLARE_ALLINONE_SERIALIZER; 01011 }; // struct PickPlaceObject_ 01012 } // namespace serialization 01013 } // namespace ros 01014 01015 namespace ros 01016 { 01017 namespace message_operations 01018 { 01019 01020 template<class ContainerAllocator> 01021 struct Printer< ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> > 01022 { 01023 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> & v) 01024 { 01025 s << indent << "objectid: "; 01026 Printer<int32_t>::stream(s, indent + " ", v.objectid); 01027 s << indent << "object: "; 01028 s << std::endl; 01029 Printer< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::stream(s, indent + " ", v.object); 01030 s << indent << "pose: "; 01031 s << std::endl; 01032 Printer< ::geometry_msgs::PoseStamped_<ContainerAllocator> >::stream(s, indent + " ", v.pose); 01033 s << indent << "boundingbox[]" << std::endl; 01034 for (size_t i = 0; i < v.boundingbox.size(); ++i) 01035 { 01036 s << indent << " boundingbox[" << i << "]: "; 01037 Printer<double>::stream(s, indent + " ", v.boundingbox[i]); 01038 } 01039 } 01040 }; 01041 01042 01043 } // namespace message_operations 01044 } // namespace ros 01045 01046 #endif // PR2_PICK_AND_PLACE_SERVICE_MESSAGE_PICKPLACEOBJECT_H 01047