$search
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-electric-pr2_object_manipulation/doc_stacks/2013-03-05_12-10-38.333207/pr2_object_manipulation/applications/pr2_interactive_object_detection/msg/GraspableObjectList.msg */ 00002 #ifndef PR2_INTERACTIVE_OBJECT_DETECTION_MESSAGE_GRASPABLEOBJECTLIST_H 00003 #define PR2_INTERACTIVE_OBJECT_DETECTION_MESSAGE_GRASPABLEOBJECTLIST_H 00004 #include <string> 00005 #include <vector> 00006 #include <map> 00007 #include <ostream> 00008 #include "ros/serialization.h" 00009 #include "ros/builtin_message_traits.h" 00010 #include "ros/message_operations.h" 00011 #include "ros/time.h" 00012 00013 #include "ros/macros.h" 00014 00015 #include "ros/assert.h" 00016 00017 #include "object_manipulation_msgs/GraspableObject.h" 00018 #include "sensor_msgs/Image.h" 00019 #include "sensor_msgs/CameraInfo.h" 00020 #include "arm_navigation_msgs/Shape.h" 00021 #include "geometry_msgs/Pose.h" 00022 00023 namespace pr2_interactive_object_detection 00024 { 00025 template <class ContainerAllocator> 00026 struct GraspableObjectList_ { 00027 typedef GraspableObjectList_<ContainerAllocator> Type; 00028 00029 GraspableObjectList_() 00030 : graspable_objects() 00031 , image() 00032 , camera_info() 00033 , meshes() 00034 , reference_to_camera() 00035 { 00036 } 00037 00038 GraspableObjectList_(const ContainerAllocator& _alloc) 00039 : graspable_objects(_alloc) 00040 , image(_alloc) 00041 , camera_info(_alloc) 00042 , meshes(_alloc) 00043 , reference_to_camera(_alloc) 00044 { 00045 } 00046 00047 typedef std::vector< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::other > _graspable_objects_type; 00048 std::vector< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::other > graspable_objects; 00049 00050 typedef ::sensor_msgs::Image_<ContainerAllocator> _image_type; 00051 ::sensor_msgs::Image_<ContainerAllocator> image; 00052 00053 typedef ::sensor_msgs::CameraInfo_<ContainerAllocator> _camera_info_type; 00054 ::sensor_msgs::CameraInfo_<ContainerAllocator> camera_info; 00055 00056 typedef std::vector< ::arm_navigation_msgs::Shape_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::arm_navigation_msgs::Shape_<ContainerAllocator> >::other > _meshes_type; 00057 std::vector< ::arm_navigation_msgs::Shape_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::arm_navigation_msgs::Shape_<ContainerAllocator> >::other > meshes; 00058 00059 typedef ::geometry_msgs::Pose_<ContainerAllocator> _reference_to_camera_type; 00060 ::geometry_msgs::Pose_<ContainerAllocator> reference_to_camera; 00061 00062 00063 ROS_DEPRECATED uint32_t get_graspable_objects_size() const { return (uint32_t)graspable_objects.size(); } 00064 ROS_DEPRECATED void set_graspable_objects_size(uint32_t size) { graspable_objects.resize((size_t)size); } 00065 ROS_DEPRECATED void get_graspable_objects_vec(std::vector< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::other > & vec) const { vec = this->graspable_objects; } 00066 ROS_DEPRECATED void set_graspable_objects_vec(const std::vector< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::other > & vec) { this->graspable_objects = vec; } 00067 ROS_DEPRECATED uint32_t get_meshes_size() const { return (uint32_t)meshes.size(); } 00068 ROS_DEPRECATED void set_meshes_size(uint32_t size) { meshes.resize((size_t)size); } 00069 ROS_DEPRECATED void get_meshes_vec(std::vector< ::arm_navigation_msgs::Shape_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::arm_navigation_msgs::Shape_<ContainerAllocator> >::other > & vec) const { vec = this->meshes; } 00070 ROS_DEPRECATED void set_meshes_vec(const std::vector< ::arm_navigation_msgs::Shape_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::arm_navigation_msgs::Shape_<ContainerAllocator> >::other > & vec) { this->meshes = vec; } 00071 private: 00072 static const char* __s_getDataType_() { return "pr2_interactive_object_detection/GraspableObjectList"; } 00073 public: 00074 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); } 00075 00076 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); } 00077 00078 private: 00079 static const char* __s_getMD5Sum_() { return "3504435d89178a4a3df53086cd29599c"; } 00080 public: 00081 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); } 00082 00083 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); } 00084 00085 private: 00086 static const char* __s_getMessageDefinition_() { return "object_manipulation_msgs/GraspableObject[] graspable_objects\n\ 00087 \n\ 00088 #Information required for visualization\n\ 00089 \n\ 00090 sensor_msgs/Image image\n\ 00091 sensor_msgs/CameraInfo camera_info\n\ 00092 \n\ 00093 #Holds a single mesh for each recognized graspable object, an empty mesh otherwise\n\ 00094 arm_navigation_msgs/Shape[] meshes\n\ 00095 \n\ 00096 #pose to transform the frame of the clusters/object poses into camera coordinates\n\ 00097 geometry_msgs/Pose reference_to_camera\n\ 00098 \n\ 00099 ================================================================================\n\ 00100 MSG: object_manipulation_msgs/GraspableObject\n\ 00101 # an object that the object_manipulator can work on\n\ 00102 \n\ 00103 # a graspable object can be represented in multiple ways. This message\n\ 00104 # can contain all of them. Which one is actually used is up to the receiver\n\ 00105 # of this message. When adding new representations, one must be careful that\n\ 00106 # they have reasonable lightweight defaults indicating that that particular\n\ 00107 # representation is not available.\n\ 00108 \n\ 00109 # the tf frame to be used as a reference frame when combining information from\n\ 00110 # the different representations below\n\ 00111 string reference_frame_id\n\ 00112 \n\ 00113 # potential recognition results from a database of models\n\ 00114 # all poses are relative to the object reference pose\n\ 00115 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\ 00116 \n\ 00117 # the point cloud itself\n\ 00118 sensor_msgs/PointCloud cluster\n\ 00119 \n\ 00120 # a region of a PointCloud2 of interest\n\ 00121 object_manipulation_msgs/SceneRegion region\n\ 00122 \n\ 00123 # the name that this object has in the collision environment\n\ 00124 string collision_name\n\ 00125 ================================================================================\n\ 00126 MSG: household_objects_database_msgs/DatabaseModelPose\n\ 00127 # Informs that a specific model from the Model Database has been \n\ 00128 # identified at a certain location\n\ 00129 \n\ 00130 # the database id of the model\n\ 00131 int32 model_id\n\ 00132 \n\ 00133 # the pose that it can be found in\n\ 00134 geometry_msgs/PoseStamped pose\n\ 00135 \n\ 00136 # a measure of the confidence level in this detection result\n\ 00137 float32 confidence\n\ 00138 \n\ 00139 # the name of the object detector that generated this detection result\n\ 00140 string detector_name\n\ 00141 \n\ 00142 ================================================================================\n\ 00143 MSG: geometry_msgs/PoseStamped\n\ 00144 # A Pose with reference coordinate frame and timestamp\n\ 00145 Header header\n\ 00146 Pose pose\n\ 00147 \n\ 00148 ================================================================================\n\ 00149 MSG: std_msgs/Header\n\ 00150 # Standard metadata for higher-level stamped data types.\n\ 00151 # This is generally used to communicate timestamped data \n\ 00152 # in a particular coordinate frame.\n\ 00153 # \n\ 00154 # sequence ID: consecutively increasing ID \n\ 00155 uint32 seq\n\ 00156 #Two-integer timestamp that is expressed as:\n\ 00157 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00158 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00159 # time-handling sugar is provided by the client library\n\ 00160 time stamp\n\ 00161 #Frame this data is associated with\n\ 00162 # 0: no frame\n\ 00163 # 1: global frame\n\ 00164 string frame_id\n\ 00165 \n\ 00166 ================================================================================\n\ 00167 MSG: geometry_msgs/Pose\n\ 00168 # A representation of pose in free space, composed of postion and orientation. \n\ 00169 Point position\n\ 00170 Quaternion orientation\n\ 00171 \n\ 00172 ================================================================================\n\ 00173 MSG: geometry_msgs/Point\n\ 00174 # This contains the position of a point in free space\n\ 00175 float64 x\n\ 00176 float64 y\n\ 00177 float64 z\n\ 00178 \n\ 00179 ================================================================================\n\ 00180 MSG: geometry_msgs/Quaternion\n\ 00181 # This represents an orientation in free space in quaternion form.\n\ 00182 \n\ 00183 float64 x\n\ 00184 float64 y\n\ 00185 float64 z\n\ 00186 float64 w\n\ 00187 \n\ 00188 ================================================================================\n\ 00189 MSG: sensor_msgs/PointCloud\n\ 00190 # This message holds a collection of 3d points, plus optional additional\n\ 00191 # information about each point.\n\ 00192 \n\ 00193 # Time of sensor data acquisition, coordinate frame ID.\n\ 00194 Header header\n\ 00195 \n\ 00196 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 00197 # in the frame given in the header.\n\ 00198 geometry_msgs/Point32[] points\n\ 00199 \n\ 00200 # Each channel should have the same number of elements as points array,\n\ 00201 # and the data in each channel should correspond 1:1 with each point.\n\ 00202 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 00203 ChannelFloat32[] channels\n\ 00204 \n\ 00205 ================================================================================\n\ 00206 MSG: geometry_msgs/Point32\n\ 00207 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00208 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00209 # \n\ 00210 # This recommendation is to promote interoperability. \n\ 00211 #\n\ 00212 # This message is designed to take up less space when sending\n\ 00213 # lots of points at once, as in the case of a PointCloud. \n\ 00214 \n\ 00215 float32 x\n\ 00216 float32 y\n\ 00217 float32 z\n\ 00218 ================================================================================\n\ 00219 MSG: sensor_msgs/ChannelFloat32\n\ 00220 # This message is used by the PointCloud message to hold optional data\n\ 00221 # associated with each point in the cloud. The length of the values\n\ 00222 # array should be the same as the length of the points array in the\n\ 00223 # PointCloud, and each value should be associated with the corresponding\n\ 00224 # point.\n\ 00225 \n\ 00226 # Channel names in existing practice include:\n\ 00227 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 00228 # This is opposite to usual conventions but remains for\n\ 00229 # historical reasons. The newer PointCloud2 message has no\n\ 00230 # such problem.\n\ 00231 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 00232 # (R,G,B) values packed into the least significant 24 bits,\n\ 00233 # in order.\n\ 00234 # \"intensity\" - laser or pixel intensity.\n\ 00235 # \"distance\"\n\ 00236 \n\ 00237 # The channel name should give semantics of the channel (e.g.\n\ 00238 # \"intensity\" instead of \"value\").\n\ 00239 string name\n\ 00240 \n\ 00241 # The values array should be 1-1 with the elements of the associated\n\ 00242 # PointCloud.\n\ 00243 float32[] values\n\ 00244 \n\ 00245 ================================================================================\n\ 00246 MSG: object_manipulation_msgs/SceneRegion\n\ 00247 # Point cloud\n\ 00248 sensor_msgs/PointCloud2 cloud\n\ 00249 \n\ 00250 # Indices for the region of interest\n\ 00251 int32[] mask\n\ 00252 \n\ 00253 # One of the corresponding 2D images, if applicable\n\ 00254 sensor_msgs/Image image\n\ 00255 \n\ 00256 # The disparity image, if applicable\n\ 00257 sensor_msgs/Image disparity_image\n\ 00258 \n\ 00259 # Camera info for the camera that took the image\n\ 00260 sensor_msgs/CameraInfo cam_info\n\ 00261 \n\ 00262 # a 3D region of interest for grasp planning\n\ 00263 geometry_msgs/PoseStamped roi_box_pose\n\ 00264 geometry_msgs/Vector3 roi_box_dims\n\ 00265 \n\ 00266 ================================================================================\n\ 00267 MSG: sensor_msgs/PointCloud2\n\ 00268 # This message holds a collection of N-dimensional points, which may\n\ 00269 # contain additional information such as normals, intensity, etc. The\n\ 00270 # point data is stored as a binary blob, its layout described by the\n\ 00271 # contents of the \"fields\" array.\n\ 00272 \n\ 00273 # The point cloud data may be organized 2d (image-like) or 1d\n\ 00274 # (unordered). Point clouds organized as 2d images may be produced by\n\ 00275 # camera depth sensors such as stereo or time-of-flight.\n\ 00276 \n\ 00277 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 00278 # points).\n\ 00279 Header header\n\ 00280 \n\ 00281 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 00282 # 1 and width is the length of the point cloud.\n\ 00283 uint32 height\n\ 00284 uint32 width\n\ 00285 \n\ 00286 # Describes the channels and their layout in the binary data blob.\n\ 00287 PointField[] fields\n\ 00288 \n\ 00289 bool is_bigendian # Is this data bigendian?\n\ 00290 uint32 point_step # Length of a point in bytes\n\ 00291 uint32 row_step # Length of a row in bytes\n\ 00292 uint8[] data # Actual point data, size is (row_step*height)\n\ 00293 \n\ 00294 bool is_dense # True if there are no invalid points\n\ 00295 \n\ 00296 ================================================================================\n\ 00297 MSG: sensor_msgs/PointField\n\ 00298 # This message holds the description of one point entry in the\n\ 00299 # PointCloud2 message format.\n\ 00300 uint8 INT8 = 1\n\ 00301 uint8 UINT8 = 2\n\ 00302 uint8 INT16 = 3\n\ 00303 uint8 UINT16 = 4\n\ 00304 uint8 INT32 = 5\n\ 00305 uint8 UINT32 = 6\n\ 00306 uint8 FLOAT32 = 7\n\ 00307 uint8 FLOAT64 = 8\n\ 00308 \n\ 00309 string name # Name of field\n\ 00310 uint32 offset # Offset from start of point struct\n\ 00311 uint8 datatype # Datatype enumeration, see above\n\ 00312 uint32 count # How many elements in the field\n\ 00313 \n\ 00314 ================================================================================\n\ 00315 MSG: sensor_msgs/Image\n\ 00316 # This message contains an uncompressed image\n\ 00317 # (0, 0) is at top-left corner of image\n\ 00318 #\n\ 00319 \n\ 00320 Header header # Header timestamp should be acquisition time of image\n\ 00321 # Header frame_id should be optical frame of camera\n\ 00322 # origin of frame should be optical center of cameara\n\ 00323 # +x should point to the right in the image\n\ 00324 # +y should point down in the image\n\ 00325 # +z should point into to plane of the image\n\ 00326 # If the frame_id here and the frame_id of the CameraInfo\n\ 00327 # message associated with the image conflict\n\ 00328 # the behavior is undefined\n\ 00329 \n\ 00330 uint32 height # image height, that is, number of rows\n\ 00331 uint32 width # image width, that is, number of columns\n\ 00332 \n\ 00333 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00334 # If you want to standardize a new string format, join\n\ 00335 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00336 \n\ 00337 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00338 # taken from the list of strings in src/image_encodings.cpp\n\ 00339 \n\ 00340 uint8 is_bigendian # is this data bigendian?\n\ 00341 uint32 step # Full row length in bytes\n\ 00342 uint8[] data # actual matrix data, size is (step * rows)\n\ 00343 \n\ 00344 ================================================================================\n\ 00345 MSG: sensor_msgs/CameraInfo\n\ 00346 # This message defines meta information for a camera. It should be in a\n\ 00347 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00348 # image topics named:\n\ 00349 #\n\ 00350 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00351 # image - monochrome, distorted\n\ 00352 # image_color - color, distorted\n\ 00353 # image_rect - monochrome, rectified\n\ 00354 # image_rect_color - color, rectified\n\ 00355 #\n\ 00356 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00357 # for producing the four processed image topics from image_raw and\n\ 00358 # camera_info. The meaning of the camera parameters are described in\n\ 00359 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00360 #\n\ 00361 # The image_geometry package provides a user-friendly interface to\n\ 00362 # common operations using this meta information. If you want to, e.g.,\n\ 00363 # project a 3d point into image coordinates, we strongly recommend\n\ 00364 # using image_geometry.\n\ 00365 #\n\ 00366 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00367 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00368 # indicates an uncalibrated camera.\n\ 00369 \n\ 00370 #######################################################################\n\ 00371 # Image acquisition info #\n\ 00372 #######################################################################\n\ 00373 \n\ 00374 # Time of image acquisition, camera coordinate frame ID\n\ 00375 Header header # Header timestamp should be acquisition time of image\n\ 00376 # Header frame_id should be optical frame of camera\n\ 00377 # origin of frame should be optical center of camera\n\ 00378 # +x should point to the right in the image\n\ 00379 # +y should point down in the image\n\ 00380 # +z should point into the plane of the image\n\ 00381 \n\ 00382 \n\ 00383 #######################################################################\n\ 00384 # Calibration Parameters #\n\ 00385 #######################################################################\n\ 00386 # These are fixed during camera calibration. Their values will be the #\n\ 00387 # same in all messages until the camera is recalibrated. Note that #\n\ 00388 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00389 # #\n\ 00390 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00391 # to: #\n\ 00392 # 1. An undistorted image (requires D and K) #\n\ 00393 # 2. A rectified image (requires D, K, R) #\n\ 00394 # The projection matrix P projects 3D points into the rectified image.#\n\ 00395 #######################################################################\n\ 00396 \n\ 00397 # The image dimensions with which the camera was calibrated. Normally\n\ 00398 # this will be the full camera resolution in pixels.\n\ 00399 uint32 height\n\ 00400 uint32 width\n\ 00401 \n\ 00402 # The distortion model used. Supported models are listed in\n\ 00403 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00404 # simple model of radial and tangential distortion - is sufficent.\n\ 00405 string distortion_model\n\ 00406 \n\ 00407 # The distortion parameters, size depending on the distortion model.\n\ 00408 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00409 float64[] D\n\ 00410 \n\ 00411 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00412 # [fx 0 cx]\n\ 00413 # K = [ 0 fy cy]\n\ 00414 # [ 0 0 1]\n\ 00415 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00416 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00417 # (cx, cy).\n\ 00418 float64[9] K # 3x3 row-major matrix\n\ 00419 \n\ 00420 # Rectification matrix (stereo cameras only)\n\ 00421 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00422 # stereo image plane so that epipolar lines in both stereo images are\n\ 00423 # parallel.\n\ 00424 float64[9] R # 3x3 row-major matrix\n\ 00425 \n\ 00426 # Projection/camera matrix\n\ 00427 # [fx' 0 cx' Tx]\n\ 00428 # P = [ 0 fy' cy' Ty]\n\ 00429 # [ 0 0 1 0]\n\ 00430 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 00431 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 00432 # is the normal camera intrinsic matrix for the rectified image.\n\ 00433 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 00434 # coordinates using the focal lengths (fx', fy') and principal point\n\ 00435 # (cx', cy') - these may differ from the values in K.\n\ 00436 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 00437 # also have R = the identity and P[1:3,1:3] = K.\n\ 00438 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 00439 # position of the optical center of the second camera in the first\n\ 00440 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 00441 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 00442 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 00443 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 00444 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 00445 # the rectified image is given by:\n\ 00446 # [u v w]' = P * [X Y Z 1]'\n\ 00447 # x = u / w\n\ 00448 # y = v / w\n\ 00449 # This holds for both images of a stereo pair.\n\ 00450 float64[12] P # 3x4 row-major matrix\n\ 00451 \n\ 00452 \n\ 00453 #######################################################################\n\ 00454 # Operational Parameters #\n\ 00455 #######################################################################\n\ 00456 # These define the image region actually captured by the camera #\n\ 00457 # driver. Although they affect the geometry of the output image, they #\n\ 00458 # may be changed freely without recalibrating the camera. #\n\ 00459 #######################################################################\n\ 00460 \n\ 00461 # Binning refers here to any camera setting which combines rectangular\n\ 00462 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 00463 # resolution of the output image to\n\ 00464 # (width / binning_x) x (height / binning_y).\n\ 00465 # The default values binning_x = binning_y = 0 is considered the same\n\ 00466 # as binning_x = binning_y = 1 (no subsampling).\n\ 00467 uint32 binning_x\n\ 00468 uint32 binning_y\n\ 00469 \n\ 00470 # Region of interest (subwindow of full camera resolution), given in\n\ 00471 # full resolution (unbinned) image coordinates. A particular ROI\n\ 00472 # always denotes the same window of pixels on the camera sensor,\n\ 00473 # regardless of binning settings.\n\ 00474 # The default setting of roi (all values 0) is considered the same as\n\ 00475 # full resolution (roi.width = width, roi.height = height).\n\ 00476 RegionOfInterest roi\n\ 00477 \n\ 00478 ================================================================================\n\ 00479 MSG: sensor_msgs/RegionOfInterest\n\ 00480 # This message is used to specify a region of interest within an image.\n\ 00481 #\n\ 00482 # When used to specify the ROI setting of the camera when the image was\n\ 00483 # taken, the height and width fields should either match the height and\n\ 00484 # width fields for the associated image; or height = width = 0\n\ 00485 # indicates that the full resolution image was captured.\n\ 00486 \n\ 00487 uint32 x_offset # Leftmost pixel of the ROI\n\ 00488 # (0 if the ROI includes the left edge of the image)\n\ 00489 uint32 y_offset # Topmost pixel of the ROI\n\ 00490 # (0 if the ROI includes the top edge of the image)\n\ 00491 uint32 height # Height of ROI\n\ 00492 uint32 width # Width of ROI\n\ 00493 \n\ 00494 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 00495 # ROI in this message. Typically this should be False if the full image\n\ 00496 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 00497 # used).\n\ 00498 bool do_rectify\n\ 00499 \n\ 00500 ================================================================================\n\ 00501 MSG: geometry_msgs/Vector3\n\ 00502 # This represents a vector in free space. \n\ 00503 \n\ 00504 float64 x\n\ 00505 float64 y\n\ 00506 float64 z\n\ 00507 ================================================================================\n\ 00508 MSG: arm_navigation_msgs/Shape\n\ 00509 byte SPHERE=0\n\ 00510 byte BOX=1\n\ 00511 byte CYLINDER=2\n\ 00512 byte MESH=3\n\ 00513 \n\ 00514 byte type\n\ 00515 \n\ 00516 \n\ 00517 #### define sphere, box, cylinder ####\n\ 00518 # the origin of each shape is considered at the shape's center\n\ 00519 \n\ 00520 # for sphere\n\ 00521 # radius := dimensions[0]\n\ 00522 \n\ 00523 # for cylinder\n\ 00524 # radius := dimensions[0]\n\ 00525 # length := dimensions[1]\n\ 00526 # the length is along the Z axis\n\ 00527 \n\ 00528 # for box\n\ 00529 # size_x := dimensions[0]\n\ 00530 # size_y := dimensions[1]\n\ 00531 # size_z := dimensions[2]\n\ 00532 float64[] dimensions\n\ 00533 \n\ 00534 \n\ 00535 #### define mesh ####\n\ 00536 \n\ 00537 # list of triangles; triangle k is defined by tre vertices located\n\ 00538 # at indices triangles[3k], triangles[3k+1], triangles[3k+2]\n\ 00539 int32[] triangles\n\ 00540 geometry_msgs/Point[] vertices\n\ 00541 \n\ 00542 "; } 00543 public: 00544 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); } 00545 00546 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); } 00547 00548 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const 00549 { 00550 ros::serialization::OStream stream(write_ptr, 1000000000); 00551 ros::serialization::serialize(stream, graspable_objects); 00552 ros::serialization::serialize(stream, image); 00553 ros::serialization::serialize(stream, camera_info); 00554 ros::serialization::serialize(stream, meshes); 00555 ros::serialization::serialize(stream, reference_to_camera); 00556 return stream.getData(); 00557 } 00558 00559 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr) 00560 { 00561 ros::serialization::IStream stream(read_ptr, 1000000000); 00562 ros::serialization::deserialize(stream, graspable_objects); 00563 ros::serialization::deserialize(stream, image); 00564 ros::serialization::deserialize(stream, camera_info); 00565 ros::serialization::deserialize(stream, meshes); 00566 ros::serialization::deserialize(stream, reference_to_camera); 00567 return stream.getData(); 00568 } 00569 00570 ROS_DEPRECATED virtual uint32_t serializationLength() const 00571 { 00572 uint32_t size = 0; 00573 size += ros::serialization::serializationLength(graspable_objects); 00574 size += ros::serialization::serializationLength(image); 00575 size += ros::serialization::serializationLength(camera_info); 00576 size += ros::serialization::serializationLength(meshes); 00577 size += ros::serialization::serializationLength(reference_to_camera); 00578 return size; 00579 } 00580 00581 typedef boost::shared_ptr< ::pr2_interactive_object_detection::GraspableObjectList_<ContainerAllocator> > Ptr; 00582 typedef boost::shared_ptr< ::pr2_interactive_object_detection::GraspableObjectList_<ContainerAllocator> const> ConstPtr; 00583 boost::shared_ptr<std::map<std::string, std::string> > __connection_header; 00584 }; // struct GraspableObjectList 00585 typedef ::pr2_interactive_object_detection::GraspableObjectList_<std::allocator<void> > GraspableObjectList; 00586 00587 typedef boost::shared_ptr< ::pr2_interactive_object_detection::GraspableObjectList> GraspableObjectListPtr; 00588 typedef boost::shared_ptr< ::pr2_interactive_object_detection::GraspableObjectList const> GraspableObjectListConstPtr; 00589 00590 00591 template<typename ContainerAllocator> 00592 std::ostream& operator<<(std::ostream& s, const ::pr2_interactive_object_detection::GraspableObjectList_<ContainerAllocator> & v) 00593 { 00594 ros::message_operations::Printer< ::pr2_interactive_object_detection::GraspableObjectList_<ContainerAllocator> >::stream(s, "", v); 00595 return s;} 00596 00597 } // namespace pr2_interactive_object_detection 00598 00599 namespace ros 00600 { 00601 namespace message_traits 00602 { 00603 template<class ContainerAllocator> struct IsMessage< ::pr2_interactive_object_detection::GraspableObjectList_<ContainerAllocator> > : public TrueType {}; 00604 template<class ContainerAllocator> struct IsMessage< ::pr2_interactive_object_detection::GraspableObjectList_<ContainerAllocator> const> : public TrueType {}; 00605 template<class ContainerAllocator> 00606 struct MD5Sum< ::pr2_interactive_object_detection::GraspableObjectList_<ContainerAllocator> > { 00607 static const char* value() 00608 { 00609 return "3504435d89178a4a3df53086cd29599c"; 00610 } 00611 00612 static const char* value(const ::pr2_interactive_object_detection::GraspableObjectList_<ContainerAllocator> &) { return value(); } 00613 static const uint64_t static_value1 = 0x3504435d89178a4aULL; 00614 static const uint64_t static_value2 = 0x3df53086cd29599cULL; 00615 }; 00616 00617 template<class ContainerAllocator> 00618 struct DataType< ::pr2_interactive_object_detection::GraspableObjectList_<ContainerAllocator> > { 00619 static const char* value() 00620 { 00621 return "pr2_interactive_object_detection/GraspableObjectList"; 00622 } 00623 00624 static const char* value(const ::pr2_interactive_object_detection::GraspableObjectList_<ContainerAllocator> &) { return value(); } 00625 }; 00626 00627 template<class ContainerAllocator> 00628 struct Definition< ::pr2_interactive_object_detection::GraspableObjectList_<ContainerAllocator> > { 00629 static const char* value() 00630 { 00631 return "object_manipulation_msgs/GraspableObject[] graspable_objects\n\ 00632 \n\ 00633 #Information required for visualization\n\ 00634 \n\ 00635 sensor_msgs/Image image\n\ 00636 sensor_msgs/CameraInfo camera_info\n\ 00637 \n\ 00638 #Holds a single mesh for each recognized graspable object, an empty mesh otherwise\n\ 00639 arm_navigation_msgs/Shape[] meshes\n\ 00640 \n\ 00641 #pose to transform the frame of the clusters/object poses into camera coordinates\n\ 00642 geometry_msgs/Pose reference_to_camera\n\ 00643 \n\ 00644 ================================================================================\n\ 00645 MSG: object_manipulation_msgs/GraspableObject\n\ 00646 # an object that the object_manipulator can work on\n\ 00647 \n\ 00648 # a graspable object can be represented in multiple ways. This message\n\ 00649 # can contain all of them. Which one is actually used is up to the receiver\n\ 00650 # of this message. When adding new representations, one must be careful that\n\ 00651 # they have reasonable lightweight defaults indicating that that particular\n\ 00652 # representation is not available.\n\ 00653 \n\ 00654 # the tf frame to be used as a reference frame when combining information from\n\ 00655 # the different representations below\n\ 00656 string reference_frame_id\n\ 00657 \n\ 00658 # potential recognition results from a database of models\n\ 00659 # all poses are relative to the object reference pose\n\ 00660 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\ 00661 \n\ 00662 # the point cloud itself\n\ 00663 sensor_msgs/PointCloud cluster\n\ 00664 \n\ 00665 # a region of a PointCloud2 of interest\n\ 00666 object_manipulation_msgs/SceneRegion region\n\ 00667 \n\ 00668 # the name that this object has in the collision environment\n\ 00669 string collision_name\n\ 00670 ================================================================================\n\ 00671 MSG: household_objects_database_msgs/DatabaseModelPose\n\ 00672 # Informs that a specific model from the Model Database has been \n\ 00673 # identified at a certain location\n\ 00674 \n\ 00675 # the database id of the model\n\ 00676 int32 model_id\n\ 00677 \n\ 00678 # the pose that it can be found in\n\ 00679 geometry_msgs/PoseStamped pose\n\ 00680 \n\ 00681 # a measure of the confidence level in this detection result\n\ 00682 float32 confidence\n\ 00683 \n\ 00684 # the name of the object detector that generated this detection result\n\ 00685 string detector_name\n\ 00686 \n\ 00687 ================================================================================\n\ 00688 MSG: geometry_msgs/PoseStamped\n\ 00689 # A Pose with reference coordinate frame and timestamp\n\ 00690 Header header\n\ 00691 Pose pose\n\ 00692 \n\ 00693 ================================================================================\n\ 00694 MSG: std_msgs/Header\n\ 00695 # Standard metadata for higher-level stamped data types.\n\ 00696 # This is generally used to communicate timestamped data \n\ 00697 # in a particular coordinate frame.\n\ 00698 # \n\ 00699 # sequence ID: consecutively increasing ID \n\ 00700 uint32 seq\n\ 00701 #Two-integer timestamp that is expressed as:\n\ 00702 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00703 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00704 # time-handling sugar is provided by the client library\n\ 00705 time stamp\n\ 00706 #Frame this data is associated with\n\ 00707 # 0: no frame\n\ 00708 # 1: global frame\n\ 00709 string frame_id\n\ 00710 \n\ 00711 ================================================================================\n\ 00712 MSG: geometry_msgs/Pose\n\ 00713 # A representation of pose in free space, composed of postion and orientation. \n\ 00714 Point position\n\ 00715 Quaternion orientation\n\ 00716 \n\ 00717 ================================================================================\n\ 00718 MSG: geometry_msgs/Point\n\ 00719 # This contains the position of a point in free space\n\ 00720 float64 x\n\ 00721 float64 y\n\ 00722 float64 z\n\ 00723 \n\ 00724 ================================================================================\n\ 00725 MSG: geometry_msgs/Quaternion\n\ 00726 # This represents an orientation in free space in quaternion form.\n\ 00727 \n\ 00728 float64 x\n\ 00729 float64 y\n\ 00730 float64 z\n\ 00731 float64 w\n\ 00732 \n\ 00733 ================================================================================\n\ 00734 MSG: sensor_msgs/PointCloud\n\ 00735 # This message holds a collection of 3d points, plus optional additional\n\ 00736 # information about each point.\n\ 00737 \n\ 00738 # Time of sensor data acquisition, coordinate frame ID.\n\ 00739 Header header\n\ 00740 \n\ 00741 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 00742 # in the frame given in the header.\n\ 00743 geometry_msgs/Point32[] points\n\ 00744 \n\ 00745 # Each channel should have the same number of elements as points array,\n\ 00746 # and the data in each channel should correspond 1:1 with each point.\n\ 00747 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 00748 ChannelFloat32[] channels\n\ 00749 \n\ 00750 ================================================================================\n\ 00751 MSG: geometry_msgs/Point32\n\ 00752 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00753 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00754 # \n\ 00755 # This recommendation is to promote interoperability. \n\ 00756 #\n\ 00757 # This message is designed to take up less space when sending\n\ 00758 # lots of points at once, as in the case of a PointCloud. \n\ 00759 \n\ 00760 float32 x\n\ 00761 float32 y\n\ 00762 float32 z\n\ 00763 ================================================================================\n\ 00764 MSG: sensor_msgs/ChannelFloat32\n\ 00765 # This message is used by the PointCloud message to hold optional data\n\ 00766 # associated with each point in the cloud. The length of the values\n\ 00767 # array should be the same as the length of the points array in the\n\ 00768 # PointCloud, and each value should be associated with the corresponding\n\ 00769 # point.\n\ 00770 \n\ 00771 # Channel names in existing practice include:\n\ 00772 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 00773 # This is opposite to usual conventions but remains for\n\ 00774 # historical reasons. The newer PointCloud2 message has no\n\ 00775 # such problem.\n\ 00776 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 00777 # (R,G,B) values packed into the least significant 24 bits,\n\ 00778 # in order.\n\ 00779 # \"intensity\" - laser or pixel intensity.\n\ 00780 # \"distance\"\n\ 00781 \n\ 00782 # The channel name should give semantics of the channel (e.g.\n\ 00783 # \"intensity\" instead of \"value\").\n\ 00784 string name\n\ 00785 \n\ 00786 # The values array should be 1-1 with the elements of the associated\n\ 00787 # PointCloud.\n\ 00788 float32[] values\n\ 00789 \n\ 00790 ================================================================================\n\ 00791 MSG: object_manipulation_msgs/SceneRegion\n\ 00792 # Point cloud\n\ 00793 sensor_msgs/PointCloud2 cloud\n\ 00794 \n\ 00795 # Indices for the region of interest\n\ 00796 int32[] mask\n\ 00797 \n\ 00798 # One of the corresponding 2D images, if applicable\n\ 00799 sensor_msgs/Image image\n\ 00800 \n\ 00801 # The disparity image, if applicable\n\ 00802 sensor_msgs/Image disparity_image\n\ 00803 \n\ 00804 # Camera info for the camera that took the image\n\ 00805 sensor_msgs/CameraInfo cam_info\n\ 00806 \n\ 00807 # a 3D region of interest for grasp planning\n\ 00808 geometry_msgs/PoseStamped roi_box_pose\n\ 00809 geometry_msgs/Vector3 roi_box_dims\n\ 00810 \n\ 00811 ================================================================================\n\ 00812 MSG: sensor_msgs/PointCloud2\n\ 00813 # This message holds a collection of N-dimensional points, which may\n\ 00814 # contain additional information such as normals, intensity, etc. The\n\ 00815 # point data is stored as a binary blob, its layout described by the\n\ 00816 # contents of the \"fields\" array.\n\ 00817 \n\ 00818 # The point cloud data may be organized 2d (image-like) or 1d\n\ 00819 # (unordered). Point clouds organized as 2d images may be produced by\n\ 00820 # camera depth sensors such as stereo or time-of-flight.\n\ 00821 \n\ 00822 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 00823 # points).\n\ 00824 Header header\n\ 00825 \n\ 00826 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 00827 # 1 and width is the length of the point cloud.\n\ 00828 uint32 height\n\ 00829 uint32 width\n\ 00830 \n\ 00831 # Describes the channels and their layout in the binary data blob.\n\ 00832 PointField[] fields\n\ 00833 \n\ 00834 bool is_bigendian # Is this data bigendian?\n\ 00835 uint32 point_step # Length of a point in bytes\n\ 00836 uint32 row_step # Length of a row in bytes\n\ 00837 uint8[] data # Actual point data, size is (row_step*height)\n\ 00838 \n\ 00839 bool is_dense # True if there are no invalid points\n\ 00840 \n\ 00841 ================================================================================\n\ 00842 MSG: sensor_msgs/PointField\n\ 00843 # This message holds the description of one point entry in the\n\ 00844 # PointCloud2 message format.\n\ 00845 uint8 INT8 = 1\n\ 00846 uint8 UINT8 = 2\n\ 00847 uint8 INT16 = 3\n\ 00848 uint8 UINT16 = 4\n\ 00849 uint8 INT32 = 5\n\ 00850 uint8 UINT32 = 6\n\ 00851 uint8 FLOAT32 = 7\n\ 00852 uint8 FLOAT64 = 8\n\ 00853 \n\ 00854 string name # Name of field\n\ 00855 uint32 offset # Offset from start of point struct\n\ 00856 uint8 datatype # Datatype enumeration, see above\n\ 00857 uint32 count # How many elements in the field\n\ 00858 \n\ 00859 ================================================================================\n\ 00860 MSG: sensor_msgs/Image\n\ 00861 # This message contains an uncompressed image\n\ 00862 # (0, 0) is at top-left corner of image\n\ 00863 #\n\ 00864 \n\ 00865 Header header # Header timestamp should be acquisition time of image\n\ 00866 # Header frame_id should be optical frame of camera\n\ 00867 # origin of frame should be optical center of cameara\n\ 00868 # +x should point to the right in the image\n\ 00869 # +y should point down in the image\n\ 00870 # +z should point into to plane of the image\n\ 00871 # If the frame_id here and the frame_id of the CameraInfo\n\ 00872 # message associated with the image conflict\n\ 00873 # the behavior is undefined\n\ 00874 \n\ 00875 uint32 height # image height, that is, number of rows\n\ 00876 uint32 width # image width, that is, number of columns\n\ 00877 \n\ 00878 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00879 # If you want to standardize a new string format, join\n\ 00880 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00881 \n\ 00882 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00883 # taken from the list of strings in src/image_encodings.cpp\n\ 00884 \n\ 00885 uint8 is_bigendian # is this data bigendian?\n\ 00886 uint32 step # Full row length in bytes\n\ 00887 uint8[] data # actual matrix data, size is (step * rows)\n\ 00888 \n\ 00889 ================================================================================\n\ 00890 MSG: sensor_msgs/CameraInfo\n\ 00891 # This message defines meta information for a camera. It should be in a\n\ 00892 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00893 # image topics named:\n\ 00894 #\n\ 00895 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00896 # image - monochrome, distorted\n\ 00897 # image_color - color, distorted\n\ 00898 # image_rect - monochrome, rectified\n\ 00899 # image_rect_color - color, rectified\n\ 00900 #\n\ 00901 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00902 # for producing the four processed image topics from image_raw and\n\ 00903 # camera_info. The meaning of the camera parameters are described in\n\ 00904 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00905 #\n\ 00906 # The image_geometry package provides a user-friendly interface to\n\ 00907 # common operations using this meta information. If you want to, e.g.,\n\ 00908 # project a 3d point into image coordinates, we strongly recommend\n\ 00909 # using image_geometry.\n\ 00910 #\n\ 00911 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00912 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00913 # indicates an uncalibrated camera.\n\ 00914 \n\ 00915 #######################################################################\n\ 00916 # Image acquisition info #\n\ 00917 #######################################################################\n\ 00918 \n\ 00919 # Time of image acquisition, camera coordinate frame ID\n\ 00920 Header header # Header timestamp should be acquisition time of image\n\ 00921 # Header frame_id should be optical frame of camera\n\ 00922 # origin of frame should be optical center of camera\n\ 00923 # +x should point to the right in the image\n\ 00924 # +y should point down in the image\n\ 00925 # +z should point into the plane of the image\n\ 00926 \n\ 00927 \n\ 00928 #######################################################################\n\ 00929 # Calibration Parameters #\n\ 00930 #######################################################################\n\ 00931 # These are fixed during camera calibration. Their values will be the #\n\ 00932 # same in all messages until the camera is recalibrated. Note that #\n\ 00933 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00934 # #\n\ 00935 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00936 # to: #\n\ 00937 # 1. An undistorted image (requires D and K) #\n\ 00938 # 2. A rectified image (requires D, K, R) #\n\ 00939 # The projection matrix P projects 3D points into the rectified image.#\n\ 00940 #######################################################################\n\ 00941 \n\ 00942 # The image dimensions with which the camera was calibrated. Normally\n\ 00943 # this will be the full camera resolution in pixels.\n\ 00944 uint32 height\n\ 00945 uint32 width\n\ 00946 \n\ 00947 # The distortion model used. Supported models are listed in\n\ 00948 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00949 # simple model of radial and tangential distortion - is sufficent.\n\ 00950 string distortion_model\n\ 00951 \n\ 00952 # The distortion parameters, size depending on the distortion model.\n\ 00953 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00954 float64[] D\n\ 00955 \n\ 00956 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00957 # [fx 0 cx]\n\ 00958 # K = [ 0 fy cy]\n\ 00959 # [ 0 0 1]\n\ 00960 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00961 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00962 # (cx, cy).\n\ 00963 float64[9] K # 3x3 row-major matrix\n\ 00964 \n\ 00965 # Rectification matrix (stereo cameras only)\n\ 00966 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00967 # stereo image plane so that epipolar lines in both stereo images are\n\ 00968 # parallel.\n\ 00969 float64[9] R # 3x3 row-major matrix\n\ 00970 \n\ 00971 # Projection/camera matrix\n\ 00972 # [fx' 0 cx' Tx]\n\ 00973 # P = [ 0 fy' cy' Ty]\n\ 00974 # [ 0 0 1 0]\n\ 00975 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 00976 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 00977 # is the normal camera intrinsic matrix for the rectified image.\n\ 00978 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 00979 # coordinates using the focal lengths (fx', fy') and principal point\n\ 00980 # (cx', cy') - these may differ from the values in K.\n\ 00981 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 00982 # also have R = the identity and P[1:3,1:3] = K.\n\ 00983 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 00984 # position of the optical center of the second camera in the first\n\ 00985 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 00986 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 00987 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 00988 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 00989 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 00990 # the rectified image is given by:\n\ 00991 # [u v w]' = P * [X Y Z 1]'\n\ 00992 # x = u / w\n\ 00993 # y = v / w\n\ 00994 # This holds for both images of a stereo pair.\n\ 00995 float64[12] P # 3x4 row-major matrix\n\ 00996 \n\ 00997 \n\ 00998 #######################################################################\n\ 00999 # Operational Parameters #\n\ 01000 #######################################################################\n\ 01001 # These define the image region actually captured by the camera #\n\ 01002 # driver. Although they affect the geometry of the output image, they #\n\ 01003 # may be changed freely without recalibrating the camera. #\n\ 01004 #######################################################################\n\ 01005 \n\ 01006 # Binning refers here to any camera setting which combines rectangular\n\ 01007 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 01008 # resolution of the output image to\n\ 01009 # (width / binning_x) x (height / binning_y).\n\ 01010 # The default values binning_x = binning_y = 0 is considered the same\n\ 01011 # as binning_x = binning_y = 1 (no subsampling).\n\ 01012 uint32 binning_x\n\ 01013 uint32 binning_y\n\ 01014 \n\ 01015 # Region of interest (subwindow of full camera resolution), given in\n\ 01016 # full resolution (unbinned) image coordinates. A particular ROI\n\ 01017 # always denotes the same window of pixels on the camera sensor,\n\ 01018 # regardless of binning settings.\n\ 01019 # The default setting of roi (all values 0) is considered the same as\n\ 01020 # full resolution (roi.width = width, roi.height = height).\n\ 01021 RegionOfInterest roi\n\ 01022 \n\ 01023 ================================================================================\n\ 01024 MSG: sensor_msgs/RegionOfInterest\n\ 01025 # This message is used to specify a region of interest within an image.\n\ 01026 #\n\ 01027 # When used to specify the ROI setting of the camera when the image was\n\ 01028 # taken, the height and width fields should either match the height and\n\ 01029 # width fields for the associated image; or height = width = 0\n\ 01030 # indicates that the full resolution image was captured.\n\ 01031 \n\ 01032 uint32 x_offset # Leftmost pixel of the ROI\n\ 01033 # (0 if the ROI includes the left edge of the image)\n\ 01034 uint32 y_offset # Topmost pixel of the ROI\n\ 01035 # (0 if the ROI includes the top edge of the image)\n\ 01036 uint32 height # Height of ROI\n\ 01037 uint32 width # Width of ROI\n\ 01038 \n\ 01039 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 01040 # ROI in this message. Typically this should be False if the full image\n\ 01041 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 01042 # used).\n\ 01043 bool do_rectify\n\ 01044 \n\ 01045 ================================================================================\n\ 01046 MSG: geometry_msgs/Vector3\n\ 01047 # This represents a vector in free space. \n\ 01048 \n\ 01049 float64 x\n\ 01050 float64 y\n\ 01051 float64 z\n\ 01052 ================================================================================\n\ 01053 MSG: arm_navigation_msgs/Shape\n\ 01054 byte SPHERE=0\n\ 01055 byte BOX=1\n\ 01056 byte CYLINDER=2\n\ 01057 byte MESH=3\n\ 01058 \n\ 01059 byte type\n\ 01060 \n\ 01061 \n\ 01062 #### define sphere, box, cylinder ####\n\ 01063 # the origin of each shape is considered at the shape's center\n\ 01064 \n\ 01065 # for sphere\n\ 01066 # radius := dimensions[0]\n\ 01067 \n\ 01068 # for cylinder\n\ 01069 # radius := dimensions[0]\n\ 01070 # length := dimensions[1]\n\ 01071 # the length is along the Z axis\n\ 01072 \n\ 01073 # for box\n\ 01074 # size_x := dimensions[0]\n\ 01075 # size_y := dimensions[1]\n\ 01076 # size_z := dimensions[2]\n\ 01077 float64[] dimensions\n\ 01078 \n\ 01079 \n\ 01080 #### define mesh ####\n\ 01081 \n\ 01082 # list of triangles; triangle k is defined by tre vertices located\n\ 01083 # at indices triangles[3k], triangles[3k+1], triangles[3k+2]\n\ 01084 int32[] triangles\n\ 01085 geometry_msgs/Point[] vertices\n\ 01086 \n\ 01087 "; 01088 } 01089 01090 static const char* value(const ::pr2_interactive_object_detection::GraspableObjectList_<ContainerAllocator> &) { return value(); } 01091 }; 01092 01093 } // namespace message_traits 01094 } // namespace ros 01095 01096 namespace ros 01097 { 01098 namespace serialization 01099 { 01100 01101 template<class ContainerAllocator> struct Serializer< ::pr2_interactive_object_detection::GraspableObjectList_<ContainerAllocator> > 01102 { 01103 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m) 01104 { 01105 stream.next(m.graspable_objects); 01106 stream.next(m.image); 01107 stream.next(m.camera_info); 01108 stream.next(m.meshes); 01109 stream.next(m.reference_to_camera); 01110 } 01111 01112 ROS_DECLARE_ALLINONE_SERIALIZER; 01113 }; // struct GraspableObjectList_ 01114 } // namespace serialization 01115 } // namespace ros 01116 01117 namespace ros 01118 { 01119 namespace message_operations 01120 { 01121 01122 template<class ContainerAllocator> 01123 struct Printer< ::pr2_interactive_object_detection::GraspableObjectList_<ContainerAllocator> > 01124 { 01125 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::pr2_interactive_object_detection::GraspableObjectList_<ContainerAllocator> & v) 01126 { 01127 s << indent << "graspable_objects[]" << std::endl; 01128 for (size_t i = 0; i < v.graspable_objects.size(); ++i) 01129 { 01130 s << indent << " graspable_objects[" << i << "]: "; 01131 s << std::endl; 01132 s << indent; 01133 Printer< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::stream(s, indent + " ", v.graspable_objects[i]); 01134 } 01135 s << indent << "image: "; 01136 s << std::endl; 01137 Printer< ::sensor_msgs::Image_<ContainerAllocator> >::stream(s, indent + " ", v.image); 01138 s << indent << "camera_info: "; 01139 s << std::endl; 01140 Printer< ::sensor_msgs::CameraInfo_<ContainerAllocator> >::stream(s, indent + " ", v.camera_info); 01141 s << indent << "meshes[]" << std::endl; 01142 for (size_t i = 0; i < v.meshes.size(); ++i) 01143 { 01144 s << indent << " meshes[" << i << "]: "; 01145 s << std::endl; 01146 s << indent; 01147 Printer< ::arm_navigation_msgs::Shape_<ContainerAllocator> >::stream(s, indent + " ", v.meshes[i]); 01148 } 01149 s << indent << "reference_to_camera: "; 01150 s << std::endl; 01151 Printer< ::geometry_msgs::Pose_<ContainerAllocator> >::stream(s, indent + " ", v.reference_to_camera); 01152 } 01153 }; 01154 01155 01156 } // namespace message_operations 01157 } // namespace ros 01158 01159 #endif // PR2_INTERACTIVE_OBJECT_DETECTION_MESSAGE_GRASPABLEOBJECTLIST_H 01160