$search
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-electric-pr2_object_manipulation/doc_stacks/2013-03-05_12-10-38.333207/pr2_object_manipulation/perception/object_segmentation_gui/msg/ObjectSegmentationGuiResult.msg */ 00002 #ifndef OBJECT_SEGMENTATION_GUI_MESSAGE_OBJECTSEGMENTATIONGUIRESULT_H 00003 #define OBJECT_SEGMENTATION_GUI_MESSAGE_OBJECTSEGMENTATIONGUIRESULT_H 00004 #include <string> 00005 #include <vector> 00006 #include <map> 00007 #include <ostream> 00008 #include "ros/serialization.h" 00009 #include "ros/builtin_message_traits.h" 00010 #include "ros/message_operations.h" 00011 #include "ros/time.h" 00012 00013 #include "ros/macros.h" 00014 00015 #include "ros/assert.h" 00016 00017 #include "tabletop_object_detector/Table.h" 00018 #include "sensor_msgs/PointCloud.h" 00019 00020 namespace object_segmentation_gui 00021 { 00022 template <class ContainerAllocator> 00023 struct ObjectSegmentationGuiResult_ { 00024 typedef ObjectSegmentationGuiResult_<ContainerAllocator> Type; 00025 00026 ObjectSegmentationGuiResult_() 00027 : table() 00028 , clusters() 00029 , result(0) 00030 { 00031 } 00032 00033 ObjectSegmentationGuiResult_(const ContainerAllocator& _alloc) 00034 : table(_alloc) 00035 , clusters(_alloc) 00036 , result(0) 00037 { 00038 } 00039 00040 typedef ::tabletop_object_detector::Table_<ContainerAllocator> _table_type; 00041 ::tabletop_object_detector::Table_<ContainerAllocator> table; 00042 00043 typedef std::vector< ::sensor_msgs::PointCloud_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::sensor_msgs::PointCloud_<ContainerAllocator> >::other > _clusters_type; 00044 std::vector< ::sensor_msgs::PointCloud_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::sensor_msgs::PointCloud_<ContainerAllocator> >::other > clusters; 00045 00046 typedef int32_t _result_type; 00047 int32_t result; 00048 00049 enum { NO_CLOUD_RECEIVED = 1 }; 00050 enum { NO_TABLE = 2 }; 00051 enum { OTHER_ERROR = 3 }; 00052 enum { SUCCESS = 4 }; 00053 00054 ROS_DEPRECATED uint32_t get_clusters_size() const { return (uint32_t)clusters.size(); } 00055 ROS_DEPRECATED void set_clusters_size(uint32_t size) { clusters.resize((size_t)size); } 00056 ROS_DEPRECATED void get_clusters_vec(std::vector< ::sensor_msgs::PointCloud_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::sensor_msgs::PointCloud_<ContainerAllocator> >::other > & vec) const { vec = this->clusters; } 00057 ROS_DEPRECATED void set_clusters_vec(const std::vector< ::sensor_msgs::PointCloud_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::sensor_msgs::PointCloud_<ContainerAllocator> >::other > & vec) { this->clusters = vec; } 00058 private: 00059 static const char* __s_getDataType_() { return "object_segmentation_gui/ObjectSegmentationGuiResult"; } 00060 public: 00061 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); } 00062 00063 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); } 00064 00065 private: 00066 static const char* __s_getMD5Sum_() { return "1ece7d86360ba38c12673652ea654b18"; } 00067 public: 00068 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); } 00069 00070 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); } 00071 00072 private: 00073 static const char* __s_getMessageDefinition_() { return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00074 # The information for the plane that has been detected\n\ 00075 tabletop_object_detector/Table table\n\ 00076 \n\ 00077 # The raw clusters detected in the scan \n\ 00078 sensor_msgs/PointCloud[] clusters\n\ 00079 \n\ 00080 # Whether the detection has succeeded or failed\n\ 00081 int32 NO_CLOUD_RECEIVED = 1\n\ 00082 int32 NO_TABLE = 2\n\ 00083 int32 OTHER_ERROR = 3\n\ 00084 int32 SUCCESS = 4\n\ 00085 int32 result\n\ 00086 \n\ 00087 \n\ 00088 ================================================================================\n\ 00089 MSG: tabletop_object_detector/Table\n\ 00090 # Informs that a planar table has been detected at a given location\n\ 00091 \n\ 00092 # The pose gives you the transform that take you to the coordinate system\n\ 00093 # of the table, with the origin somewhere in the table plane and the \n\ 00094 # z axis normal to the plane\n\ 00095 geometry_msgs/PoseStamped pose\n\ 00096 \n\ 00097 # These values give you the observed extents of the table, along x and y,\n\ 00098 # in the table's own coordinate system (above)\n\ 00099 # there is no guarantee that the origin of the table coordinate system is\n\ 00100 # inside the boundary defined by these values. \n\ 00101 float32 x_min\n\ 00102 float32 x_max\n\ 00103 float32 y_min\n\ 00104 float32 y_max\n\ 00105 \n\ 00106 # There is no guarantee that the table does NOT extend further than these \n\ 00107 # values; this is just as far as we've observed it.\n\ 00108 \n\ 00109 \n\ 00110 # Newer table definition as triangle mesh of convex hull (relative to pose)\n\ 00111 arm_navigation_msgs/Shape convex_hull\n\ 00112 \n\ 00113 ================================================================================\n\ 00114 MSG: geometry_msgs/PoseStamped\n\ 00115 # A Pose with reference coordinate frame and timestamp\n\ 00116 Header header\n\ 00117 Pose pose\n\ 00118 \n\ 00119 ================================================================================\n\ 00120 MSG: std_msgs/Header\n\ 00121 # Standard metadata for higher-level stamped data types.\n\ 00122 # This is generally used to communicate timestamped data \n\ 00123 # in a particular coordinate frame.\n\ 00124 # \n\ 00125 # sequence ID: consecutively increasing ID \n\ 00126 uint32 seq\n\ 00127 #Two-integer timestamp that is expressed as:\n\ 00128 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00129 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00130 # time-handling sugar is provided by the client library\n\ 00131 time stamp\n\ 00132 #Frame this data is associated with\n\ 00133 # 0: no frame\n\ 00134 # 1: global frame\n\ 00135 string frame_id\n\ 00136 \n\ 00137 ================================================================================\n\ 00138 MSG: geometry_msgs/Pose\n\ 00139 # A representation of pose in free space, composed of postion and orientation. \n\ 00140 Point position\n\ 00141 Quaternion orientation\n\ 00142 \n\ 00143 ================================================================================\n\ 00144 MSG: geometry_msgs/Point\n\ 00145 # This contains the position of a point in free space\n\ 00146 float64 x\n\ 00147 float64 y\n\ 00148 float64 z\n\ 00149 \n\ 00150 ================================================================================\n\ 00151 MSG: geometry_msgs/Quaternion\n\ 00152 # This represents an orientation in free space in quaternion form.\n\ 00153 \n\ 00154 float64 x\n\ 00155 float64 y\n\ 00156 float64 z\n\ 00157 float64 w\n\ 00158 \n\ 00159 ================================================================================\n\ 00160 MSG: arm_navigation_msgs/Shape\n\ 00161 byte SPHERE=0\n\ 00162 byte BOX=1\n\ 00163 byte CYLINDER=2\n\ 00164 byte MESH=3\n\ 00165 \n\ 00166 byte type\n\ 00167 \n\ 00168 \n\ 00169 #### define sphere, box, cylinder ####\n\ 00170 # the origin of each shape is considered at the shape's center\n\ 00171 \n\ 00172 # for sphere\n\ 00173 # radius := dimensions[0]\n\ 00174 \n\ 00175 # for cylinder\n\ 00176 # radius := dimensions[0]\n\ 00177 # length := dimensions[1]\n\ 00178 # the length is along the Z axis\n\ 00179 \n\ 00180 # for box\n\ 00181 # size_x := dimensions[0]\n\ 00182 # size_y := dimensions[1]\n\ 00183 # size_z := dimensions[2]\n\ 00184 float64[] dimensions\n\ 00185 \n\ 00186 \n\ 00187 #### define mesh ####\n\ 00188 \n\ 00189 # list of triangles; triangle k is defined by tre vertices located\n\ 00190 # at indices triangles[3k], triangles[3k+1], triangles[3k+2]\n\ 00191 int32[] triangles\n\ 00192 geometry_msgs/Point[] vertices\n\ 00193 \n\ 00194 ================================================================================\n\ 00195 MSG: sensor_msgs/PointCloud\n\ 00196 # This message holds a collection of 3d points, plus optional additional\n\ 00197 # information about each point.\n\ 00198 \n\ 00199 # Time of sensor data acquisition, coordinate frame ID.\n\ 00200 Header header\n\ 00201 \n\ 00202 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 00203 # in the frame given in the header.\n\ 00204 geometry_msgs/Point32[] points\n\ 00205 \n\ 00206 # Each channel should have the same number of elements as points array,\n\ 00207 # and the data in each channel should correspond 1:1 with each point.\n\ 00208 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 00209 ChannelFloat32[] channels\n\ 00210 \n\ 00211 ================================================================================\n\ 00212 MSG: geometry_msgs/Point32\n\ 00213 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00214 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00215 # \n\ 00216 # This recommendation is to promote interoperability. \n\ 00217 #\n\ 00218 # This message is designed to take up less space when sending\n\ 00219 # lots of points at once, as in the case of a PointCloud. \n\ 00220 \n\ 00221 float32 x\n\ 00222 float32 y\n\ 00223 float32 z\n\ 00224 ================================================================================\n\ 00225 MSG: sensor_msgs/ChannelFloat32\n\ 00226 # This message is used by the PointCloud message to hold optional data\n\ 00227 # associated with each point in the cloud. The length of the values\n\ 00228 # array should be the same as the length of the points array in the\n\ 00229 # PointCloud, and each value should be associated with the corresponding\n\ 00230 # point.\n\ 00231 \n\ 00232 # Channel names in existing practice include:\n\ 00233 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 00234 # This is opposite to usual conventions but remains for\n\ 00235 # historical reasons. The newer PointCloud2 message has no\n\ 00236 # such problem.\n\ 00237 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 00238 # (R,G,B) values packed into the least significant 24 bits,\n\ 00239 # in order.\n\ 00240 # \"intensity\" - laser or pixel intensity.\n\ 00241 # \"distance\"\n\ 00242 \n\ 00243 # The channel name should give semantics of the channel (e.g.\n\ 00244 # \"intensity\" instead of \"value\").\n\ 00245 string name\n\ 00246 \n\ 00247 # The values array should be 1-1 with the elements of the associated\n\ 00248 # PointCloud.\n\ 00249 float32[] values\n\ 00250 \n\ 00251 "; } 00252 public: 00253 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); } 00254 00255 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); } 00256 00257 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const 00258 { 00259 ros::serialization::OStream stream(write_ptr, 1000000000); 00260 ros::serialization::serialize(stream, table); 00261 ros::serialization::serialize(stream, clusters); 00262 ros::serialization::serialize(stream, result); 00263 return stream.getData(); 00264 } 00265 00266 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr) 00267 { 00268 ros::serialization::IStream stream(read_ptr, 1000000000); 00269 ros::serialization::deserialize(stream, table); 00270 ros::serialization::deserialize(stream, clusters); 00271 ros::serialization::deserialize(stream, result); 00272 return stream.getData(); 00273 } 00274 00275 ROS_DEPRECATED virtual uint32_t serializationLength() const 00276 { 00277 uint32_t size = 0; 00278 size += ros::serialization::serializationLength(table); 00279 size += ros::serialization::serializationLength(clusters); 00280 size += ros::serialization::serializationLength(result); 00281 return size; 00282 } 00283 00284 typedef boost::shared_ptr< ::object_segmentation_gui::ObjectSegmentationGuiResult_<ContainerAllocator> > Ptr; 00285 typedef boost::shared_ptr< ::object_segmentation_gui::ObjectSegmentationGuiResult_<ContainerAllocator> const> ConstPtr; 00286 boost::shared_ptr<std::map<std::string, std::string> > __connection_header; 00287 }; // struct ObjectSegmentationGuiResult 00288 typedef ::object_segmentation_gui::ObjectSegmentationGuiResult_<std::allocator<void> > ObjectSegmentationGuiResult; 00289 00290 typedef boost::shared_ptr< ::object_segmentation_gui::ObjectSegmentationGuiResult> ObjectSegmentationGuiResultPtr; 00291 typedef boost::shared_ptr< ::object_segmentation_gui::ObjectSegmentationGuiResult const> ObjectSegmentationGuiResultConstPtr; 00292 00293 00294 template<typename ContainerAllocator> 00295 std::ostream& operator<<(std::ostream& s, const ::object_segmentation_gui::ObjectSegmentationGuiResult_<ContainerAllocator> & v) 00296 { 00297 ros::message_operations::Printer< ::object_segmentation_gui::ObjectSegmentationGuiResult_<ContainerAllocator> >::stream(s, "", v); 00298 return s;} 00299 00300 } // namespace object_segmentation_gui 00301 00302 namespace ros 00303 { 00304 namespace message_traits 00305 { 00306 template<class ContainerAllocator> struct IsMessage< ::object_segmentation_gui::ObjectSegmentationGuiResult_<ContainerAllocator> > : public TrueType {}; 00307 template<class ContainerAllocator> struct IsMessage< ::object_segmentation_gui::ObjectSegmentationGuiResult_<ContainerAllocator> const> : public TrueType {}; 00308 template<class ContainerAllocator> 00309 struct MD5Sum< ::object_segmentation_gui::ObjectSegmentationGuiResult_<ContainerAllocator> > { 00310 static const char* value() 00311 { 00312 return "1ece7d86360ba38c12673652ea654b18"; 00313 } 00314 00315 static const char* value(const ::object_segmentation_gui::ObjectSegmentationGuiResult_<ContainerAllocator> &) { return value(); } 00316 static const uint64_t static_value1 = 0x1ece7d86360ba38cULL; 00317 static const uint64_t static_value2 = 0x12673652ea654b18ULL; 00318 }; 00319 00320 template<class ContainerAllocator> 00321 struct DataType< ::object_segmentation_gui::ObjectSegmentationGuiResult_<ContainerAllocator> > { 00322 static const char* value() 00323 { 00324 return "object_segmentation_gui/ObjectSegmentationGuiResult"; 00325 } 00326 00327 static const char* value(const ::object_segmentation_gui::ObjectSegmentationGuiResult_<ContainerAllocator> &) { return value(); } 00328 }; 00329 00330 template<class ContainerAllocator> 00331 struct Definition< ::object_segmentation_gui::ObjectSegmentationGuiResult_<ContainerAllocator> > { 00332 static const char* value() 00333 { 00334 return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00335 # The information for the plane that has been detected\n\ 00336 tabletop_object_detector/Table table\n\ 00337 \n\ 00338 # The raw clusters detected in the scan \n\ 00339 sensor_msgs/PointCloud[] clusters\n\ 00340 \n\ 00341 # Whether the detection has succeeded or failed\n\ 00342 int32 NO_CLOUD_RECEIVED = 1\n\ 00343 int32 NO_TABLE = 2\n\ 00344 int32 OTHER_ERROR = 3\n\ 00345 int32 SUCCESS = 4\n\ 00346 int32 result\n\ 00347 \n\ 00348 \n\ 00349 ================================================================================\n\ 00350 MSG: tabletop_object_detector/Table\n\ 00351 # Informs that a planar table has been detected at a given location\n\ 00352 \n\ 00353 # The pose gives you the transform that take you to the coordinate system\n\ 00354 # of the table, with the origin somewhere in the table plane and the \n\ 00355 # z axis normal to the plane\n\ 00356 geometry_msgs/PoseStamped pose\n\ 00357 \n\ 00358 # These values give you the observed extents of the table, along x and y,\n\ 00359 # in the table's own coordinate system (above)\n\ 00360 # there is no guarantee that the origin of the table coordinate system is\n\ 00361 # inside the boundary defined by these values. \n\ 00362 float32 x_min\n\ 00363 float32 x_max\n\ 00364 float32 y_min\n\ 00365 float32 y_max\n\ 00366 \n\ 00367 # There is no guarantee that the table does NOT extend further than these \n\ 00368 # values; this is just as far as we've observed it.\n\ 00369 \n\ 00370 \n\ 00371 # Newer table definition as triangle mesh of convex hull (relative to pose)\n\ 00372 arm_navigation_msgs/Shape convex_hull\n\ 00373 \n\ 00374 ================================================================================\n\ 00375 MSG: geometry_msgs/PoseStamped\n\ 00376 # A Pose with reference coordinate frame and timestamp\n\ 00377 Header header\n\ 00378 Pose pose\n\ 00379 \n\ 00380 ================================================================================\n\ 00381 MSG: std_msgs/Header\n\ 00382 # Standard metadata for higher-level stamped data types.\n\ 00383 # This is generally used to communicate timestamped data \n\ 00384 # in a particular coordinate frame.\n\ 00385 # \n\ 00386 # sequence ID: consecutively increasing ID \n\ 00387 uint32 seq\n\ 00388 #Two-integer timestamp that is expressed as:\n\ 00389 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00390 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00391 # time-handling sugar is provided by the client library\n\ 00392 time stamp\n\ 00393 #Frame this data is associated with\n\ 00394 # 0: no frame\n\ 00395 # 1: global frame\n\ 00396 string frame_id\n\ 00397 \n\ 00398 ================================================================================\n\ 00399 MSG: geometry_msgs/Pose\n\ 00400 # A representation of pose in free space, composed of postion and orientation. \n\ 00401 Point position\n\ 00402 Quaternion orientation\n\ 00403 \n\ 00404 ================================================================================\n\ 00405 MSG: geometry_msgs/Point\n\ 00406 # This contains the position of a point in free space\n\ 00407 float64 x\n\ 00408 float64 y\n\ 00409 float64 z\n\ 00410 \n\ 00411 ================================================================================\n\ 00412 MSG: geometry_msgs/Quaternion\n\ 00413 # This represents an orientation in free space in quaternion form.\n\ 00414 \n\ 00415 float64 x\n\ 00416 float64 y\n\ 00417 float64 z\n\ 00418 float64 w\n\ 00419 \n\ 00420 ================================================================================\n\ 00421 MSG: arm_navigation_msgs/Shape\n\ 00422 byte SPHERE=0\n\ 00423 byte BOX=1\n\ 00424 byte CYLINDER=2\n\ 00425 byte MESH=3\n\ 00426 \n\ 00427 byte type\n\ 00428 \n\ 00429 \n\ 00430 #### define sphere, box, cylinder ####\n\ 00431 # the origin of each shape is considered at the shape's center\n\ 00432 \n\ 00433 # for sphere\n\ 00434 # radius := dimensions[0]\n\ 00435 \n\ 00436 # for cylinder\n\ 00437 # radius := dimensions[0]\n\ 00438 # length := dimensions[1]\n\ 00439 # the length is along the Z axis\n\ 00440 \n\ 00441 # for box\n\ 00442 # size_x := dimensions[0]\n\ 00443 # size_y := dimensions[1]\n\ 00444 # size_z := dimensions[2]\n\ 00445 float64[] dimensions\n\ 00446 \n\ 00447 \n\ 00448 #### define mesh ####\n\ 00449 \n\ 00450 # list of triangles; triangle k is defined by tre vertices located\n\ 00451 # at indices triangles[3k], triangles[3k+1], triangles[3k+2]\n\ 00452 int32[] triangles\n\ 00453 geometry_msgs/Point[] vertices\n\ 00454 \n\ 00455 ================================================================================\n\ 00456 MSG: sensor_msgs/PointCloud\n\ 00457 # This message holds a collection of 3d points, plus optional additional\n\ 00458 # information about each point.\n\ 00459 \n\ 00460 # Time of sensor data acquisition, coordinate frame ID.\n\ 00461 Header header\n\ 00462 \n\ 00463 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 00464 # in the frame given in the header.\n\ 00465 geometry_msgs/Point32[] points\n\ 00466 \n\ 00467 # Each channel should have the same number of elements as points array,\n\ 00468 # and the data in each channel should correspond 1:1 with each point.\n\ 00469 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 00470 ChannelFloat32[] channels\n\ 00471 \n\ 00472 ================================================================================\n\ 00473 MSG: geometry_msgs/Point32\n\ 00474 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00475 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00476 # \n\ 00477 # This recommendation is to promote interoperability. \n\ 00478 #\n\ 00479 # This message is designed to take up less space when sending\n\ 00480 # lots of points at once, as in the case of a PointCloud. \n\ 00481 \n\ 00482 float32 x\n\ 00483 float32 y\n\ 00484 float32 z\n\ 00485 ================================================================================\n\ 00486 MSG: sensor_msgs/ChannelFloat32\n\ 00487 # This message is used by the PointCloud message to hold optional data\n\ 00488 # associated with each point in the cloud. The length of the values\n\ 00489 # array should be the same as the length of the points array in the\n\ 00490 # PointCloud, and each value should be associated with the corresponding\n\ 00491 # point.\n\ 00492 \n\ 00493 # Channel names in existing practice include:\n\ 00494 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 00495 # This is opposite to usual conventions but remains for\n\ 00496 # historical reasons. The newer PointCloud2 message has no\n\ 00497 # such problem.\n\ 00498 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 00499 # (R,G,B) values packed into the least significant 24 bits,\n\ 00500 # in order.\n\ 00501 # \"intensity\" - laser or pixel intensity.\n\ 00502 # \"distance\"\n\ 00503 \n\ 00504 # The channel name should give semantics of the channel (e.g.\n\ 00505 # \"intensity\" instead of \"value\").\n\ 00506 string name\n\ 00507 \n\ 00508 # The values array should be 1-1 with the elements of the associated\n\ 00509 # PointCloud.\n\ 00510 float32[] values\n\ 00511 \n\ 00512 "; 00513 } 00514 00515 static const char* value(const ::object_segmentation_gui::ObjectSegmentationGuiResult_<ContainerAllocator> &) { return value(); } 00516 }; 00517 00518 } // namespace message_traits 00519 } // namespace ros 00520 00521 namespace ros 00522 { 00523 namespace serialization 00524 { 00525 00526 template<class ContainerAllocator> struct Serializer< ::object_segmentation_gui::ObjectSegmentationGuiResult_<ContainerAllocator> > 00527 { 00528 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m) 00529 { 00530 stream.next(m.table); 00531 stream.next(m.clusters); 00532 stream.next(m.result); 00533 } 00534 00535 ROS_DECLARE_ALLINONE_SERIALIZER; 00536 }; // struct ObjectSegmentationGuiResult_ 00537 } // namespace serialization 00538 } // namespace ros 00539 00540 namespace ros 00541 { 00542 namespace message_operations 00543 { 00544 00545 template<class ContainerAllocator> 00546 struct Printer< ::object_segmentation_gui::ObjectSegmentationGuiResult_<ContainerAllocator> > 00547 { 00548 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_segmentation_gui::ObjectSegmentationGuiResult_<ContainerAllocator> & v) 00549 { 00550 s << indent << "table: "; 00551 s << std::endl; 00552 Printer< ::tabletop_object_detector::Table_<ContainerAllocator> >::stream(s, indent + " ", v.table); 00553 s << indent << "clusters[]" << std::endl; 00554 for (size_t i = 0; i < v.clusters.size(); ++i) 00555 { 00556 s << indent << " clusters[" << i << "]: "; 00557 s << std::endl; 00558 s << indent; 00559 Printer< ::sensor_msgs::PointCloud_<ContainerAllocator> >::stream(s, indent + " ", v.clusters[i]); 00560 } 00561 s << indent << "result: "; 00562 Printer<int32_t>::stream(s, indent + " ", v.result); 00563 } 00564 }; 00565 00566 00567 } // namespace message_operations 00568 } // namespace ros 00569 00570 #endif // OBJECT_SEGMENTATION_GUI_MESSAGE_OBJECTSEGMENTATIONGUIRESULT_H 00571