$search
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-electric-object_manipulation/doc_stacks/2013-03-01_16-13-18.345538/object_manipulation/object_manipulation_msgs/msg/SceneRegion.msg */ 00002 #ifndef OBJECT_MANIPULATION_MSGS_MESSAGE_SCENEREGION_H 00003 #define OBJECT_MANIPULATION_MSGS_MESSAGE_SCENEREGION_H 00004 #include <string> 00005 #include <vector> 00006 #include <map> 00007 #include <ostream> 00008 #include "ros/serialization.h" 00009 #include "ros/builtin_message_traits.h" 00010 #include "ros/message_operations.h" 00011 #include "ros/time.h" 00012 00013 #include "ros/macros.h" 00014 00015 #include "ros/assert.h" 00016 00017 #include "sensor_msgs/PointCloud2.h" 00018 #include "sensor_msgs/Image.h" 00019 #include "sensor_msgs/Image.h" 00020 #include "sensor_msgs/CameraInfo.h" 00021 #include "geometry_msgs/PoseStamped.h" 00022 #include "geometry_msgs/Vector3.h" 00023 00024 namespace object_manipulation_msgs 00025 { 00026 template <class ContainerAllocator> 00027 struct SceneRegion_ { 00028 typedef SceneRegion_<ContainerAllocator> Type; 00029 00030 SceneRegion_() 00031 : cloud() 00032 , mask() 00033 , image() 00034 , disparity_image() 00035 , cam_info() 00036 , roi_box_pose() 00037 , roi_box_dims() 00038 { 00039 } 00040 00041 SceneRegion_(const ContainerAllocator& _alloc) 00042 : cloud(_alloc) 00043 , mask(_alloc) 00044 , image(_alloc) 00045 , disparity_image(_alloc) 00046 , cam_info(_alloc) 00047 , roi_box_pose(_alloc) 00048 , roi_box_dims(_alloc) 00049 { 00050 } 00051 00052 typedef ::sensor_msgs::PointCloud2_<ContainerAllocator> _cloud_type; 00053 ::sensor_msgs::PointCloud2_<ContainerAllocator> cloud; 00054 00055 typedef std::vector<int32_t, typename ContainerAllocator::template rebind<int32_t>::other > _mask_type; 00056 std::vector<int32_t, typename ContainerAllocator::template rebind<int32_t>::other > mask; 00057 00058 typedef ::sensor_msgs::Image_<ContainerAllocator> _image_type; 00059 ::sensor_msgs::Image_<ContainerAllocator> image; 00060 00061 typedef ::sensor_msgs::Image_<ContainerAllocator> _disparity_image_type; 00062 ::sensor_msgs::Image_<ContainerAllocator> disparity_image; 00063 00064 typedef ::sensor_msgs::CameraInfo_<ContainerAllocator> _cam_info_type; 00065 ::sensor_msgs::CameraInfo_<ContainerAllocator> cam_info; 00066 00067 typedef ::geometry_msgs::PoseStamped_<ContainerAllocator> _roi_box_pose_type; 00068 ::geometry_msgs::PoseStamped_<ContainerAllocator> roi_box_pose; 00069 00070 typedef ::geometry_msgs::Vector3_<ContainerAllocator> _roi_box_dims_type; 00071 ::geometry_msgs::Vector3_<ContainerAllocator> roi_box_dims; 00072 00073 00074 ROS_DEPRECATED uint32_t get_mask_size() const { return (uint32_t)mask.size(); } 00075 ROS_DEPRECATED void set_mask_size(uint32_t size) { mask.resize((size_t)size); } 00076 ROS_DEPRECATED void get_mask_vec(std::vector<int32_t, typename ContainerAllocator::template rebind<int32_t>::other > & vec) const { vec = this->mask; } 00077 ROS_DEPRECATED void set_mask_vec(const std::vector<int32_t, typename ContainerAllocator::template rebind<int32_t>::other > & vec) { this->mask = vec; } 00078 private: 00079 static const char* __s_getDataType_() { return "object_manipulation_msgs/SceneRegion"; } 00080 public: 00081 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); } 00082 00083 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); } 00084 00085 private: 00086 static const char* __s_getMD5Sum_() { return "0a9ab02b19292633619876c9d247690c"; } 00087 public: 00088 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); } 00089 00090 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); } 00091 00092 private: 00093 static const char* __s_getMessageDefinition_() { return "# Point cloud\n\ 00094 sensor_msgs/PointCloud2 cloud\n\ 00095 \n\ 00096 # Indices for the region of interest\n\ 00097 int32[] mask\n\ 00098 \n\ 00099 # One of the corresponding 2D images, if applicable\n\ 00100 sensor_msgs/Image image\n\ 00101 \n\ 00102 # The disparity image, if applicable\n\ 00103 sensor_msgs/Image disparity_image\n\ 00104 \n\ 00105 # Camera info for the camera that took the image\n\ 00106 sensor_msgs/CameraInfo cam_info\n\ 00107 \n\ 00108 # a 3D region of interest for grasp planning\n\ 00109 geometry_msgs/PoseStamped roi_box_pose\n\ 00110 geometry_msgs/Vector3 roi_box_dims\n\ 00111 \n\ 00112 ================================================================================\n\ 00113 MSG: sensor_msgs/PointCloud2\n\ 00114 # This message holds a collection of N-dimensional points, which may\n\ 00115 # contain additional information such as normals, intensity, etc. The\n\ 00116 # point data is stored as a binary blob, its layout described by the\n\ 00117 # contents of the \"fields\" array.\n\ 00118 \n\ 00119 # The point cloud data may be organized 2d (image-like) or 1d\n\ 00120 # (unordered). Point clouds organized as 2d images may be produced by\n\ 00121 # camera depth sensors such as stereo or time-of-flight.\n\ 00122 \n\ 00123 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 00124 # points).\n\ 00125 Header header\n\ 00126 \n\ 00127 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 00128 # 1 and width is the length of the point cloud.\n\ 00129 uint32 height\n\ 00130 uint32 width\n\ 00131 \n\ 00132 # Describes the channels and their layout in the binary data blob.\n\ 00133 PointField[] fields\n\ 00134 \n\ 00135 bool is_bigendian # Is this data bigendian?\n\ 00136 uint32 point_step # Length of a point in bytes\n\ 00137 uint32 row_step # Length of a row in bytes\n\ 00138 uint8[] data # Actual point data, size is (row_step*height)\n\ 00139 \n\ 00140 bool is_dense # True if there are no invalid points\n\ 00141 \n\ 00142 ================================================================================\n\ 00143 MSG: std_msgs/Header\n\ 00144 # Standard metadata for higher-level stamped data types.\n\ 00145 # This is generally used to communicate timestamped data \n\ 00146 # in a particular coordinate frame.\n\ 00147 # \n\ 00148 # sequence ID: consecutively increasing ID \n\ 00149 uint32 seq\n\ 00150 #Two-integer timestamp that is expressed as:\n\ 00151 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00152 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00153 # time-handling sugar is provided by the client library\n\ 00154 time stamp\n\ 00155 #Frame this data is associated with\n\ 00156 # 0: no frame\n\ 00157 # 1: global frame\n\ 00158 string frame_id\n\ 00159 \n\ 00160 ================================================================================\n\ 00161 MSG: sensor_msgs/PointField\n\ 00162 # This message holds the description of one point entry in the\n\ 00163 # PointCloud2 message format.\n\ 00164 uint8 INT8 = 1\n\ 00165 uint8 UINT8 = 2\n\ 00166 uint8 INT16 = 3\n\ 00167 uint8 UINT16 = 4\n\ 00168 uint8 INT32 = 5\n\ 00169 uint8 UINT32 = 6\n\ 00170 uint8 FLOAT32 = 7\n\ 00171 uint8 FLOAT64 = 8\n\ 00172 \n\ 00173 string name # Name of field\n\ 00174 uint32 offset # Offset from start of point struct\n\ 00175 uint8 datatype # Datatype enumeration, see above\n\ 00176 uint32 count # How many elements in the field\n\ 00177 \n\ 00178 ================================================================================\n\ 00179 MSG: sensor_msgs/Image\n\ 00180 # This message contains an uncompressed image\n\ 00181 # (0, 0) is at top-left corner of image\n\ 00182 #\n\ 00183 \n\ 00184 Header header # Header timestamp should be acquisition time of image\n\ 00185 # Header frame_id should be optical frame of camera\n\ 00186 # origin of frame should be optical center of cameara\n\ 00187 # +x should point to the right in the image\n\ 00188 # +y should point down in the image\n\ 00189 # +z should point into to plane of the image\n\ 00190 # If the frame_id here and the frame_id of the CameraInfo\n\ 00191 # message associated with the image conflict\n\ 00192 # the behavior is undefined\n\ 00193 \n\ 00194 uint32 height # image height, that is, number of rows\n\ 00195 uint32 width # image width, that is, number of columns\n\ 00196 \n\ 00197 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00198 # If you want to standardize a new string format, join\n\ 00199 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00200 \n\ 00201 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00202 # taken from the list of strings in src/image_encodings.cpp\n\ 00203 \n\ 00204 uint8 is_bigendian # is this data bigendian?\n\ 00205 uint32 step # Full row length in bytes\n\ 00206 uint8[] data # actual matrix data, size is (step * rows)\n\ 00207 \n\ 00208 ================================================================================\n\ 00209 MSG: sensor_msgs/CameraInfo\n\ 00210 # This message defines meta information for a camera. It should be in a\n\ 00211 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00212 # image topics named:\n\ 00213 #\n\ 00214 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00215 # image - monochrome, distorted\n\ 00216 # image_color - color, distorted\n\ 00217 # image_rect - monochrome, rectified\n\ 00218 # image_rect_color - color, rectified\n\ 00219 #\n\ 00220 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00221 # for producing the four processed image topics from image_raw and\n\ 00222 # camera_info. The meaning of the camera parameters are described in\n\ 00223 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00224 #\n\ 00225 # The image_geometry package provides a user-friendly interface to\n\ 00226 # common operations using this meta information. If you want to, e.g.,\n\ 00227 # project a 3d point into image coordinates, we strongly recommend\n\ 00228 # using image_geometry.\n\ 00229 #\n\ 00230 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00231 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00232 # indicates an uncalibrated camera.\n\ 00233 \n\ 00234 #######################################################################\n\ 00235 # Image acquisition info #\n\ 00236 #######################################################################\n\ 00237 \n\ 00238 # Time of image acquisition, camera coordinate frame ID\n\ 00239 Header header # Header timestamp should be acquisition time of image\n\ 00240 # Header frame_id should be optical frame of camera\n\ 00241 # origin of frame should be optical center of camera\n\ 00242 # +x should point to the right in the image\n\ 00243 # +y should point down in the image\n\ 00244 # +z should point into the plane of the image\n\ 00245 \n\ 00246 \n\ 00247 #######################################################################\n\ 00248 # Calibration Parameters #\n\ 00249 #######################################################################\n\ 00250 # These are fixed during camera calibration. Their values will be the #\n\ 00251 # same in all messages until the camera is recalibrated. Note that #\n\ 00252 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00253 # #\n\ 00254 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00255 # to: #\n\ 00256 # 1. An undistorted image (requires D and K) #\n\ 00257 # 2. A rectified image (requires D, K, R) #\n\ 00258 # The projection matrix P projects 3D points into the rectified image.#\n\ 00259 #######################################################################\n\ 00260 \n\ 00261 # The image dimensions with which the camera was calibrated. Normally\n\ 00262 # this will be the full camera resolution in pixels.\n\ 00263 uint32 height\n\ 00264 uint32 width\n\ 00265 \n\ 00266 # The distortion model used. Supported models are listed in\n\ 00267 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00268 # simple model of radial and tangential distortion - is sufficent.\n\ 00269 string distortion_model\n\ 00270 \n\ 00271 # The distortion parameters, size depending on the distortion model.\n\ 00272 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00273 float64[] D\n\ 00274 \n\ 00275 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00276 # [fx 0 cx]\n\ 00277 # K = [ 0 fy cy]\n\ 00278 # [ 0 0 1]\n\ 00279 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00280 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00281 # (cx, cy).\n\ 00282 float64[9] K # 3x3 row-major matrix\n\ 00283 \n\ 00284 # Rectification matrix (stereo cameras only)\n\ 00285 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00286 # stereo image plane so that epipolar lines in both stereo images are\n\ 00287 # parallel.\n\ 00288 float64[9] R # 3x3 row-major matrix\n\ 00289 \n\ 00290 # Projection/camera matrix\n\ 00291 # [fx' 0 cx' Tx]\n\ 00292 # P = [ 0 fy' cy' Ty]\n\ 00293 # [ 0 0 1 0]\n\ 00294 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 00295 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 00296 # is the normal camera intrinsic matrix for the rectified image.\n\ 00297 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 00298 # coordinates using the focal lengths (fx', fy') and principal point\n\ 00299 # (cx', cy') - these may differ from the values in K.\n\ 00300 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 00301 # also have R = the identity and P[1:3,1:3] = K.\n\ 00302 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 00303 # position of the optical center of the second camera in the first\n\ 00304 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 00305 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 00306 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 00307 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 00308 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 00309 # the rectified image is given by:\n\ 00310 # [u v w]' = P * [X Y Z 1]'\n\ 00311 # x = u / w\n\ 00312 # y = v / w\n\ 00313 # This holds for both images of a stereo pair.\n\ 00314 float64[12] P # 3x4 row-major matrix\n\ 00315 \n\ 00316 \n\ 00317 #######################################################################\n\ 00318 # Operational Parameters #\n\ 00319 #######################################################################\n\ 00320 # These define the image region actually captured by the camera #\n\ 00321 # driver. Although they affect the geometry of the output image, they #\n\ 00322 # may be changed freely without recalibrating the camera. #\n\ 00323 #######################################################################\n\ 00324 \n\ 00325 # Binning refers here to any camera setting which combines rectangular\n\ 00326 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 00327 # resolution of the output image to\n\ 00328 # (width / binning_x) x (height / binning_y).\n\ 00329 # The default values binning_x = binning_y = 0 is considered the same\n\ 00330 # as binning_x = binning_y = 1 (no subsampling).\n\ 00331 uint32 binning_x\n\ 00332 uint32 binning_y\n\ 00333 \n\ 00334 # Region of interest (subwindow of full camera resolution), given in\n\ 00335 # full resolution (unbinned) image coordinates. A particular ROI\n\ 00336 # always denotes the same window of pixels on the camera sensor,\n\ 00337 # regardless of binning settings.\n\ 00338 # The default setting of roi (all values 0) is considered the same as\n\ 00339 # full resolution (roi.width = width, roi.height = height).\n\ 00340 RegionOfInterest roi\n\ 00341 \n\ 00342 ================================================================================\n\ 00343 MSG: sensor_msgs/RegionOfInterest\n\ 00344 # This message is used to specify a region of interest within an image.\n\ 00345 #\n\ 00346 # When used to specify the ROI setting of the camera when the image was\n\ 00347 # taken, the height and width fields should either match the height and\n\ 00348 # width fields for the associated image; or height = width = 0\n\ 00349 # indicates that the full resolution image was captured.\n\ 00350 \n\ 00351 uint32 x_offset # Leftmost pixel of the ROI\n\ 00352 # (0 if the ROI includes the left edge of the image)\n\ 00353 uint32 y_offset # Topmost pixel of the ROI\n\ 00354 # (0 if the ROI includes the top edge of the image)\n\ 00355 uint32 height # Height of ROI\n\ 00356 uint32 width # Width of ROI\n\ 00357 \n\ 00358 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 00359 # ROI in this message. Typically this should be False if the full image\n\ 00360 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 00361 # used).\n\ 00362 bool do_rectify\n\ 00363 \n\ 00364 ================================================================================\n\ 00365 MSG: geometry_msgs/PoseStamped\n\ 00366 # A Pose with reference coordinate frame and timestamp\n\ 00367 Header header\n\ 00368 Pose pose\n\ 00369 \n\ 00370 ================================================================================\n\ 00371 MSG: geometry_msgs/Pose\n\ 00372 # A representation of pose in free space, composed of postion and orientation. \n\ 00373 Point position\n\ 00374 Quaternion orientation\n\ 00375 \n\ 00376 ================================================================================\n\ 00377 MSG: geometry_msgs/Point\n\ 00378 # This contains the position of a point in free space\n\ 00379 float64 x\n\ 00380 float64 y\n\ 00381 float64 z\n\ 00382 \n\ 00383 ================================================================================\n\ 00384 MSG: geometry_msgs/Quaternion\n\ 00385 # This represents an orientation in free space in quaternion form.\n\ 00386 \n\ 00387 float64 x\n\ 00388 float64 y\n\ 00389 float64 z\n\ 00390 float64 w\n\ 00391 \n\ 00392 ================================================================================\n\ 00393 MSG: geometry_msgs/Vector3\n\ 00394 # This represents a vector in free space. \n\ 00395 \n\ 00396 float64 x\n\ 00397 float64 y\n\ 00398 float64 z\n\ 00399 "; } 00400 public: 00401 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); } 00402 00403 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); } 00404 00405 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const 00406 { 00407 ros::serialization::OStream stream(write_ptr, 1000000000); 00408 ros::serialization::serialize(stream, cloud); 00409 ros::serialization::serialize(stream, mask); 00410 ros::serialization::serialize(stream, image); 00411 ros::serialization::serialize(stream, disparity_image); 00412 ros::serialization::serialize(stream, cam_info); 00413 ros::serialization::serialize(stream, roi_box_pose); 00414 ros::serialization::serialize(stream, roi_box_dims); 00415 return stream.getData(); 00416 } 00417 00418 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr) 00419 { 00420 ros::serialization::IStream stream(read_ptr, 1000000000); 00421 ros::serialization::deserialize(stream, cloud); 00422 ros::serialization::deserialize(stream, mask); 00423 ros::serialization::deserialize(stream, image); 00424 ros::serialization::deserialize(stream, disparity_image); 00425 ros::serialization::deserialize(stream, cam_info); 00426 ros::serialization::deserialize(stream, roi_box_pose); 00427 ros::serialization::deserialize(stream, roi_box_dims); 00428 return stream.getData(); 00429 } 00430 00431 ROS_DEPRECATED virtual uint32_t serializationLength() const 00432 { 00433 uint32_t size = 0; 00434 size += ros::serialization::serializationLength(cloud); 00435 size += ros::serialization::serializationLength(mask); 00436 size += ros::serialization::serializationLength(image); 00437 size += ros::serialization::serializationLength(disparity_image); 00438 size += ros::serialization::serializationLength(cam_info); 00439 size += ros::serialization::serializationLength(roi_box_pose); 00440 size += ros::serialization::serializationLength(roi_box_dims); 00441 return size; 00442 } 00443 00444 typedef boost::shared_ptr< ::object_manipulation_msgs::SceneRegion_<ContainerAllocator> > Ptr; 00445 typedef boost::shared_ptr< ::object_manipulation_msgs::SceneRegion_<ContainerAllocator> const> ConstPtr; 00446 boost::shared_ptr<std::map<std::string, std::string> > __connection_header; 00447 }; // struct SceneRegion 00448 typedef ::object_manipulation_msgs::SceneRegion_<std::allocator<void> > SceneRegion; 00449 00450 typedef boost::shared_ptr< ::object_manipulation_msgs::SceneRegion> SceneRegionPtr; 00451 typedef boost::shared_ptr< ::object_manipulation_msgs::SceneRegion const> SceneRegionConstPtr; 00452 00453 00454 template<typename ContainerAllocator> 00455 std::ostream& operator<<(std::ostream& s, const ::object_manipulation_msgs::SceneRegion_<ContainerAllocator> & v) 00456 { 00457 ros::message_operations::Printer< ::object_manipulation_msgs::SceneRegion_<ContainerAllocator> >::stream(s, "", v); 00458 return s;} 00459 00460 } // namespace object_manipulation_msgs 00461 00462 namespace ros 00463 { 00464 namespace message_traits 00465 { 00466 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::SceneRegion_<ContainerAllocator> > : public TrueType {}; 00467 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::SceneRegion_<ContainerAllocator> const> : public TrueType {}; 00468 template<class ContainerAllocator> 00469 struct MD5Sum< ::object_manipulation_msgs::SceneRegion_<ContainerAllocator> > { 00470 static const char* value() 00471 { 00472 return "0a9ab02b19292633619876c9d247690c"; 00473 } 00474 00475 static const char* value(const ::object_manipulation_msgs::SceneRegion_<ContainerAllocator> &) { return value(); } 00476 static const uint64_t static_value1 = 0x0a9ab02b19292633ULL; 00477 static const uint64_t static_value2 = 0x619876c9d247690cULL; 00478 }; 00479 00480 template<class ContainerAllocator> 00481 struct DataType< ::object_manipulation_msgs::SceneRegion_<ContainerAllocator> > { 00482 static const char* value() 00483 { 00484 return "object_manipulation_msgs/SceneRegion"; 00485 } 00486 00487 static const char* value(const ::object_manipulation_msgs::SceneRegion_<ContainerAllocator> &) { return value(); } 00488 }; 00489 00490 template<class ContainerAllocator> 00491 struct Definition< ::object_manipulation_msgs::SceneRegion_<ContainerAllocator> > { 00492 static const char* value() 00493 { 00494 return "# Point cloud\n\ 00495 sensor_msgs/PointCloud2 cloud\n\ 00496 \n\ 00497 # Indices for the region of interest\n\ 00498 int32[] mask\n\ 00499 \n\ 00500 # One of the corresponding 2D images, if applicable\n\ 00501 sensor_msgs/Image image\n\ 00502 \n\ 00503 # The disparity image, if applicable\n\ 00504 sensor_msgs/Image disparity_image\n\ 00505 \n\ 00506 # Camera info for the camera that took the image\n\ 00507 sensor_msgs/CameraInfo cam_info\n\ 00508 \n\ 00509 # a 3D region of interest for grasp planning\n\ 00510 geometry_msgs/PoseStamped roi_box_pose\n\ 00511 geometry_msgs/Vector3 roi_box_dims\n\ 00512 \n\ 00513 ================================================================================\n\ 00514 MSG: sensor_msgs/PointCloud2\n\ 00515 # This message holds a collection of N-dimensional points, which may\n\ 00516 # contain additional information such as normals, intensity, etc. The\n\ 00517 # point data is stored as a binary blob, its layout described by the\n\ 00518 # contents of the \"fields\" array.\n\ 00519 \n\ 00520 # The point cloud data may be organized 2d (image-like) or 1d\n\ 00521 # (unordered). Point clouds organized as 2d images may be produced by\n\ 00522 # camera depth sensors such as stereo or time-of-flight.\n\ 00523 \n\ 00524 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 00525 # points).\n\ 00526 Header header\n\ 00527 \n\ 00528 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 00529 # 1 and width is the length of the point cloud.\n\ 00530 uint32 height\n\ 00531 uint32 width\n\ 00532 \n\ 00533 # Describes the channels and their layout in the binary data blob.\n\ 00534 PointField[] fields\n\ 00535 \n\ 00536 bool is_bigendian # Is this data bigendian?\n\ 00537 uint32 point_step # Length of a point in bytes\n\ 00538 uint32 row_step # Length of a row in bytes\n\ 00539 uint8[] data # Actual point data, size is (row_step*height)\n\ 00540 \n\ 00541 bool is_dense # True if there are no invalid points\n\ 00542 \n\ 00543 ================================================================================\n\ 00544 MSG: std_msgs/Header\n\ 00545 # Standard metadata for higher-level stamped data types.\n\ 00546 # This is generally used to communicate timestamped data \n\ 00547 # in a particular coordinate frame.\n\ 00548 # \n\ 00549 # sequence ID: consecutively increasing ID \n\ 00550 uint32 seq\n\ 00551 #Two-integer timestamp that is expressed as:\n\ 00552 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00553 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00554 # time-handling sugar is provided by the client library\n\ 00555 time stamp\n\ 00556 #Frame this data is associated with\n\ 00557 # 0: no frame\n\ 00558 # 1: global frame\n\ 00559 string frame_id\n\ 00560 \n\ 00561 ================================================================================\n\ 00562 MSG: sensor_msgs/PointField\n\ 00563 # This message holds the description of one point entry in the\n\ 00564 # PointCloud2 message format.\n\ 00565 uint8 INT8 = 1\n\ 00566 uint8 UINT8 = 2\n\ 00567 uint8 INT16 = 3\n\ 00568 uint8 UINT16 = 4\n\ 00569 uint8 INT32 = 5\n\ 00570 uint8 UINT32 = 6\n\ 00571 uint8 FLOAT32 = 7\n\ 00572 uint8 FLOAT64 = 8\n\ 00573 \n\ 00574 string name # Name of field\n\ 00575 uint32 offset # Offset from start of point struct\n\ 00576 uint8 datatype # Datatype enumeration, see above\n\ 00577 uint32 count # How many elements in the field\n\ 00578 \n\ 00579 ================================================================================\n\ 00580 MSG: sensor_msgs/Image\n\ 00581 # This message contains an uncompressed image\n\ 00582 # (0, 0) is at top-left corner of image\n\ 00583 #\n\ 00584 \n\ 00585 Header header # Header timestamp should be acquisition time of image\n\ 00586 # Header frame_id should be optical frame of camera\n\ 00587 # origin of frame should be optical center of cameara\n\ 00588 # +x should point to the right in the image\n\ 00589 # +y should point down in the image\n\ 00590 # +z should point into to plane of the image\n\ 00591 # If the frame_id here and the frame_id of the CameraInfo\n\ 00592 # message associated with the image conflict\n\ 00593 # the behavior is undefined\n\ 00594 \n\ 00595 uint32 height # image height, that is, number of rows\n\ 00596 uint32 width # image width, that is, number of columns\n\ 00597 \n\ 00598 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00599 # If you want to standardize a new string format, join\n\ 00600 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00601 \n\ 00602 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00603 # taken from the list of strings in src/image_encodings.cpp\n\ 00604 \n\ 00605 uint8 is_bigendian # is this data bigendian?\n\ 00606 uint32 step # Full row length in bytes\n\ 00607 uint8[] data # actual matrix data, size is (step * rows)\n\ 00608 \n\ 00609 ================================================================================\n\ 00610 MSG: sensor_msgs/CameraInfo\n\ 00611 # This message defines meta information for a camera. It should be in a\n\ 00612 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00613 # image topics named:\n\ 00614 #\n\ 00615 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00616 # image - monochrome, distorted\n\ 00617 # image_color - color, distorted\n\ 00618 # image_rect - monochrome, rectified\n\ 00619 # image_rect_color - color, rectified\n\ 00620 #\n\ 00621 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00622 # for producing the four processed image topics from image_raw and\n\ 00623 # camera_info. The meaning of the camera parameters are described in\n\ 00624 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00625 #\n\ 00626 # The image_geometry package provides a user-friendly interface to\n\ 00627 # common operations using this meta information. If you want to, e.g.,\n\ 00628 # project a 3d point into image coordinates, we strongly recommend\n\ 00629 # using image_geometry.\n\ 00630 #\n\ 00631 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00632 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00633 # indicates an uncalibrated camera.\n\ 00634 \n\ 00635 #######################################################################\n\ 00636 # Image acquisition info #\n\ 00637 #######################################################################\n\ 00638 \n\ 00639 # Time of image acquisition, camera coordinate frame ID\n\ 00640 Header header # Header timestamp should be acquisition time of image\n\ 00641 # Header frame_id should be optical frame of camera\n\ 00642 # origin of frame should be optical center of camera\n\ 00643 # +x should point to the right in the image\n\ 00644 # +y should point down in the image\n\ 00645 # +z should point into the plane of the image\n\ 00646 \n\ 00647 \n\ 00648 #######################################################################\n\ 00649 # Calibration Parameters #\n\ 00650 #######################################################################\n\ 00651 # These are fixed during camera calibration. Their values will be the #\n\ 00652 # same in all messages until the camera is recalibrated. Note that #\n\ 00653 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00654 # #\n\ 00655 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00656 # to: #\n\ 00657 # 1. An undistorted image (requires D and K) #\n\ 00658 # 2. A rectified image (requires D, K, R) #\n\ 00659 # The projection matrix P projects 3D points into the rectified image.#\n\ 00660 #######################################################################\n\ 00661 \n\ 00662 # The image dimensions with which the camera was calibrated. Normally\n\ 00663 # this will be the full camera resolution in pixels.\n\ 00664 uint32 height\n\ 00665 uint32 width\n\ 00666 \n\ 00667 # The distortion model used. Supported models are listed in\n\ 00668 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00669 # simple model of radial and tangential distortion - is sufficent.\n\ 00670 string distortion_model\n\ 00671 \n\ 00672 # The distortion parameters, size depending on the distortion model.\n\ 00673 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00674 float64[] D\n\ 00675 \n\ 00676 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00677 # [fx 0 cx]\n\ 00678 # K = [ 0 fy cy]\n\ 00679 # [ 0 0 1]\n\ 00680 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00681 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00682 # (cx, cy).\n\ 00683 float64[9] K # 3x3 row-major matrix\n\ 00684 \n\ 00685 # Rectification matrix (stereo cameras only)\n\ 00686 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00687 # stereo image plane so that epipolar lines in both stereo images are\n\ 00688 # parallel.\n\ 00689 float64[9] R # 3x3 row-major matrix\n\ 00690 \n\ 00691 # Projection/camera matrix\n\ 00692 # [fx' 0 cx' Tx]\n\ 00693 # P = [ 0 fy' cy' Ty]\n\ 00694 # [ 0 0 1 0]\n\ 00695 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 00696 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 00697 # is the normal camera intrinsic matrix for the rectified image.\n\ 00698 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 00699 # coordinates using the focal lengths (fx', fy') and principal point\n\ 00700 # (cx', cy') - these may differ from the values in K.\n\ 00701 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 00702 # also have R = the identity and P[1:3,1:3] = K.\n\ 00703 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 00704 # position of the optical center of the second camera in the first\n\ 00705 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 00706 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 00707 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 00708 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 00709 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 00710 # the rectified image is given by:\n\ 00711 # [u v w]' = P * [X Y Z 1]'\n\ 00712 # x = u / w\n\ 00713 # y = v / w\n\ 00714 # This holds for both images of a stereo pair.\n\ 00715 float64[12] P # 3x4 row-major matrix\n\ 00716 \n\ 00717 \n\ 00718 #######################################################################\n\ 00719 # Operational Parameters #\n\ 00720 #######################################################################\n\ 00721 # These define the image region actually captured by the camera #\n\ 00722 # driver. Although they affect the geometry of the output image, they #\n\ 00723 # may be changed freely without recalibrating the camera. #\n\ 00724 #######################################################################\n\ 00725 \n\ 00726 # Binning refers here to any camera setting which combines rectangular\n\ 00727 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 00728 # resolution of the output image to\n\ 00729 # (width / binning_x) x (height / binning_y).\n\ 00730 # The default values binning_x = binning_y = 0 is considered the same\n\ 00731 # as binning_x = binning_y = 1 (no subsampling).\n\ 00732 uint32 binning_x\n\ 00733 uint32 binning_y\n\ 00734 \n\ 00735 # Region of interest (subwindow of full camera resolution), given in\n\ 00736 # full resolution (unbinned) image coordinates. A particular ROI\n\ 00737 # always denotes the same window of pixels on the camera sensor,\n\ 00738 # regardless of binning settings.\n\ 00739 # The default setting of roi (all values 0) is considered the same as\n\ 00740 # full resolution (roi.width = width, roi.height = height).\n\ 00741 RegionOfInterest roi\n\ 00742 \n\ 00743 ================================================================================\n\ 00744 MSG: sensor_msgs/RegionOfInterest\n\ 00745 # This message is used to specify a region of interest within an image.\n\ 00746 #\n\ 00747 # When used to specify the ROI setting of the camera when the image was\n\ 00748 # taken, the height and width fields should either match the height and\n\ 00749 # width fields for the associated image; or height = width = 0\n\ 00750 # indicates that the full resolution image was captured.\n\ 00751 \n\ 00752 uint32 x_offset # Leftmost pixel of the ROI\n\ 00753 # (0 if the ROI includes the left edge of the image)\n\ 00754 uint32 y_offset # Topmost pixel of the ROI\n\ 00755 # (0 if the ROI includes the top edge of the image)\n\ 00756 uint32 height # Height of ROI\n\ 00757 uint32 width # Width of ROI\n\ 00758 \n\ 00759 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 00760 # ROI in this message. Typically this should be False if the full image\n\ 00761 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 00762 # used).\n\ 00763 bool do_rectify\n\ 00764 \n\ 00765 ================================================================================\n\ 00766 MSG: geometry_msgs/PoseStamped\n\ 00767 # A Pose with reference coordinate frame and timestamp\n\ 00768 Header header\n\ 00769 Pose pose\n\ 00770 \n\ 00771 ================================================================================\n\ 00772 MSG: geometry_msgs/Pose\n\ 00773 # A representation of pose in free space, composed of postion and orientation. \n\ 00774 Point position\n\ 00775 Quaternion orientation\n\ 00776 \n\ 00777 ================================================================================\n\ 00778 MSG: geometry_msgs/Point\n\ 00779 # This contains the position of a point in free space\n\ 00780 float64 x\n\ 00781 float64 y\n\ 00782 float64 z\n\ 00783 \n\ 00784 ================================================================================\n\ 00785 MSG: geometry_msgs/Quaternion\n\ 00786 # This represents an orientation in free space in quaternion form.\n\ 00787 \n\ 00788 float64 x\n\ 00789 float64 y\n\ 00790 float64 z\n\ 00791 float64 w\n\ 00792 \n\ 00793 ================================================================================\n\ 00794 MSG: geometry_msgs/Vector3\n\ 00795 # This represents a vector in free space. \n\ 00796 \n\ 00797 float64 x\n\ 00798 float64 y\n\ 00799 float64 z\n\ 00800 "; 00801 } 00802 00803 static const char* value(const ::object_manipulation_msgs::SceneRegion_<ContainerAllocator> &) { return value(); } 00804 }; 00805 00806 } // namespace message_traits 00807 } // namespace ros 00808 00809 namespace ros 00810 { 00811 namespace serialization 00812 { 00813 00814 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::SceneRegion_<ContainerAllocator> > 00815 { 00816 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m) 00817 { 00818 stream.next(m.cloud); 00819 stream.next(m.mask); 00820 stream.next(m.image); 00821 stream.next(m.disparity_image); 00822 stream.next(m.cam_info); 00823 stream.next(m.roi_box_pose); 00824 stream.next(m.roi_box_dims); 00825 } 00826 00827 ROS_DECLARE_ALLINONE_SERIALIZER; 00828 }; // struct SceneRegion_ 00829 } // namespace serialization 00830 } // namespace ros 00831 00832 namespace ros 00833 { 00834 namespace message_operations 00835 { 00836 00837 template<class ContainerAllocator> 00838 struct Printer< ::object_manipulation_msgs::SceneRegion_<ContainerAllocator> > 00839 { 00840 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_manipulation_msgs::SceneRegion_<ContainerAllocator> & v) 00841 { 00842 s << indent << "cloud: "; 00843 s << std::endl; 00844 Printer< ::sensor_msgs::PointCloud2_<ContainerAllocator> >::stream(s, indent + " ", v.cloud); 00845 s << indent << "mask[]" << std::endl; 00846 for (size_t i = 0; i < v.mask.size(); ++i) 00847 { 00848 s << indent << " mask[" << i << "]: "; 00849 Printer<int32_t>::stream(s, indent + " ", v.mask[i]); 00850 } 00851 s << indent << "image: "; 00852 s << std::endl; 00853 Printer< ::sensor_msgs::Image_<ContainerAllocator> >::stream(s, indent + " ", v.image); 00854 s << indent << "disparity_image: "; 00855 s << std::endl; 00856 Printer< ::sensor_msgs::Image_<ContainerAllocator> >::stream(s, indent + " ", v.disparity_image); 00857 s << indent << "cam_info: "; 00858 s << std::endl; 00859 Printer< ::sensor_msgs::CameraInfo_<ContainerAllocator> >::stream(s, indent + " ", v.cam_info); 00860 s << indent << "roi_box_pose: "; 00861 s << std::endl; 00862 Printer< ::geometry_msgs::PoseStamped_<ContainerAllocator> >::stream(s, indent + " ", v.roi_box_pose); 00863 s << indent << "roi_box_dims: "; 00864 s << std::endl; 00865 Printer< ::geometry_msgs::Vector3_<ContainerAllocator> >::stream(s, indent + " ", v.roi_box_dims); 00866 } 00867 }; 00868 00869 00870 } // namespace message_operations 00871 } // namespace ros 00872 00873 #endif // OBJECT_MANIPULATION_MSGS_MESSAGE_SCENEREGION_H 00874