00001
00002 #ifndef OBJECT_MANIPULATION_MSGS_MESSAGE_SCENEREGION_H
00003 #define OBJECT_MANIPULATION_MSGS_MESSAGE_SCENEREGION_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012
00013 #include "ros/macros.h"
00014
00015 #include "ros/assert.h"
00016
00017 #include "sensor_msgs/PointCloud2.h"
00018 #include "sensor_msgs/Image.h"
00019 #include "sensor_msgs/Image.h"
00020 #include "sensor_msgs/CameraInfo.h"
00021 #include "geometry_msgs/PoseStamped.h"
00022 #include "geometry_msgs/Vector3.h"
00023
00024 namespace object_manipulation_msgs
00025 {
00026 template <class ContainerAllocator>
00027 struct SceneRegion_ {
00028 typedef SceneRegion_<ContainerAllocator> Type;
00029
00030 SceneRegion_()
00031 : cloud()
00032 , mask()
00033 , image()
00034 , disparity_image()
00035 , cam_info()
00036 , roi_box_pose()
00037 , roi_box_dims()
00038 {
00039 }
00040
00041 SceneRegion_(const ContainerAllocator& _alloc)
00042 : cloud(_alloc)
00043 , mask(_alloc)
00044 , image(_alloc)
00045 , disparity_image(_alloc)
00046 , cam_info(_alloc)
00047 , roi_box_pose(_alloc)
00048 , roi_box_dims(_alloc)
00049 {
00050 }
00051
00052 typedef ::sensor_msgs::PointCloud2_<ContainerAllocator> _cloud_type;
00053 ::sensor_msgs::PointCloud2_<ContainerAllocator> cloud;
00054
00055 typedef std::vector<int32_t, typename ContainerAllocator::template rebind<int32_t>::other > _mask_type;
00056 std::vector<int32_t, typename ContainerAllocator::template rebind<int32_t>::other > mask;
00057
00058 typedef ::sensor_msgs::Image_<ContainerAllocator> _image_type;
00059 ::sensor_msgs::Image_<ContainerAllocator> image;
00060
00061 typedef ::sensor_msgs::Image_<ContainerAllocator> _disparity_image_type;
00062 ::sensor_msgs::Image_<ContainerAllocator> disparity_image;
00063
00064 typedef ::sensor_msgs::CameraInfo_<ContainerAllocator> _cam_info_type;
00065 ::sensor_msgs::CameraInfo_<ContainerAllocator> cam_info;
00066
00067 typedef ::geometry_msgs::PoseStamped_<ContainerAllocator> _roi_box_pose_type;
00068 ::geometry_msgs::PoseStamped_<ContainerAllocator> roi_box_pose;
00069
00070 typedef ::geometry_msgs::Vector3_<ContainerAllocator> _roi_box_dims_type;
00071 ::geometry_msgs::Vector3_<ContainerAllocator> roi_box_dims;
00072
00073
00074 ROS_DEPRECATED uint32_t get_mask_size() const { return (uint32_t)mask.size(); }
00075 ROS_DEPRECATED void set_mask_size(uint32_t size) { mask.resize((size_t)size); }
00076 ROS_DEPRECATED void get_mask_vec(std::vector<int32_t, typename ContainerAllocator::template rebind<int32_t>::other > & vec) const { vec = this->mask; }
00077 ROS_DEPRECATED void set_mask_vec(const std::vector<int32_t, typename ContainerAllocator::template rebind<int32_t>::other > & vec) { this->mask = vec; }
00078 private:
00079 static const char* __s_getDataType_() { return "object_manipulation_msgs/SceneRegion"; }
00080 public:
00081 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); }
00082
00083 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); }
00084
00085 private:
00086 static const char* __s_getMD5Sum_() { return "0a9ab02b19292633619876c9d247690c"; }
00087 public:
00088 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); }
00089
00090 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); }
00091
00092 private:
00093 static const char* __s_getMessageDefinition_() { return "# Point cloud\n\
00094 sensor_msgs/PointCloud2 cloud\n\
00095 \n\
00096 # Indices for the region of interest\n\
00097 int32[] mask\n\
00098 \n\
00099 # One of the corresponding 2D images, if applicable\n\
00100 sensor_msgs/Image image\n\
00101 \n\
00102 # The disparity image, if applicable\n\
00103 sensor_msgs/Image disparity_image\n\
00104 \n\
00105 # Camera info for the camera that took the image\n\
00106 sensor_msgs/CameraInfo cam_info\n\
00107 \n\
00108 # a 3D region of interest for grasp planning\n\
00109 geometry_msgs/PoseStamped roi_box_pose\n\
00110 geometry_msgs/Vector3 roi_box_dims\n\
00111 \n\
00112 ================================================================================\n\
00113 MSG: sensor_msgs/PointCloud2\n\
00114 # This message holds a collection of N-dimensional points, which may\n\
00115 # contain additional information such as normals, intensity, etc. The\n\
00116 # point data is stored as a binary blob, its layout described by the\n\
00117 # contents of the \"fields\" array.\n\
00118 \n\
00119 # The point cloud data may be organized 2d (image-like) or 1d\n\
00120 # (unordered). Point clouds organized as 2d images may be produced by\n\
00121 # camera depth sensors such as stereo or time-of-flight.\n\
00122 \n\
00123 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00124 # points).\n\
00125 Header header\n\
00126 \n\
00127 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00128 # 1 and width is the length of the point cloud.\n\
00129 uint32 height\n\
00130 uint32 width\n\
00131 \n\
00132 # Describes the channels and their layout in the binary data blob.\n\
00133 PointField[] fields\n\
00134 \n\
00135 bool is_bigendian # Is this data bigendian?\n\
00136 uint32 point_step # Length of a point in bytes\n\
00137 uint32 row_step # Length of a row in bytes\n\
00138 uint8[] data # Actual point data, size is (row_step*height)\n\
00139 \n\
00140 bool is_dense # True if there are no invalid points\n\
00141 \n\
00142 ================================================================================\n\
00143 MSG: std_msgs/Header\n\
00144 # Standard metadata for higher-level stamped data types.\n\
00145 # This is generally used to communicate timestamped data \n\
00146 # in a particular coordinate frame.\n\
00147 # \n\
00148 # sequence ID: consecutively increasing ID \n\
00149 uint32 seq\n\
00150 #Two-integer timestamp that is expressed as:\n\
00151 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00152 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00153 # time-handling sugar is provided by the client library\n\
00154 time stamp\n\
00155 #Frame this data is associated with\n\
00156 # 0: no frame\n\
00157 # 1: global frame\n\
00158 string frame_id\n\
00159 \n\
00160 ================================================================================\n\
00161 MSG: sensor_msgs/PointField\n\
00162 # This message holds the description of one point entry in the\n\
00163 # PointCloud2 message format.\n\
00164 uint8 INT8 = 1\n\
00165 uint8 UINT8 = 2\n\
00166 uint8 INT16 = 3\n\
00167 uint8 UINT16 = 4\n\
00168 uint8 INT32 = 5\n\
00169 uint8 UINT32 = 6\n\
00170 uint8 FLOAT32 = 7\n\
00171 uint8 FLOAT64 = 8\n\
00172 \n\
00173 string name # Name of field\n\
00174 uint32 offset # Offset from start of point struct\n\
00175 uint8 datatype # Datatype enumeration, see above\n\
00176 uint32 count # How many elements in the field\n\
00177 \n\
00178 ================================================================================\n\
00179 MSG: sensor_msgs/Image\n\
00180 # This message contains an uncompressed image\n\
00181 # (0, 0) is at top-left corner of image\n\
00182 #\n\
00183 \n\
00184 Header header # Header timestamp should be acquisition time of image\n\
00185 # Header frame_id should be optical frame of camera\n\
00186 # origin of frame should be optical center of cameara\n\
00187 # +x should point to the right in the image\n\
00188 # +y should point down in the image\n\
00189 # +z should point into to plane of the image\n\
00190 # If the frame_id here and the frame_id of the CameraInfo\n\
00191 # message associated with the image conflict\n\
00192 # the behavior is undefined\n\
00193 \n\
00194 uint32 height # image height, that is, number of rows\n\
00195 uint32 width # image width, that is, number of columns\n\
00196 \n\
00197 # The legal values for encoding are in file src/image_encodings.cpp\n\
00198 # If you want to standardize a new string format, join\n\
00199 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00200 \n\
00201 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00202 # taken from the list of strings in src/image_encodings.cpp\n\
00203 \n\
00204 uint8 is_bigendian # is this data bigendian?\n\
00205 uint32 step # Full row length in bytes\n\
00206 uint8[] data # actual matrix data, size is (step * rows)\n\
00207 \n\
00208 ================================================================================\n\
00209 MSG: sensor_msgs/CameraInfo\n\
00210 # This message defines meta information for a camera. It should be in a\n\
00211 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00212 # image topics named:\n\
00213 #\n\
00214 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00215 # image - monochrome, distorted\n\
00216 # image_color - color, distorted\n\
00217 # image_rect - monochrome, rectified\n\
00218 # image_rect_color - color, rectified\n\
00219 #\n\
00220 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00221 # for producing the four processed image topics from image_raw and\n\
00222 # camera_info. The meaning of the camera parameters are described in\n\
00223 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00224 #\n\
00225 # The image_geometry package provides a user-friendly interface to\n\
00226 # common operations using this meta information. If you want to, e.g.,\n\
00227 # project a 3d point into image coordinates, we strongly recommend\n\
00228 # using image_geometry.\n\
00229 #\n\
00230 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00231 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00232 # indicates an uncalibrated camera.\n\
00233 \n\
00234 #######################################################################\n\
00235 # Image acquisition info #\n\
00236 #######################################################################\n\
00237 \n\
00238 # Time of image acquisition, camera coordinate frame ID\n\
00239 Header header # Header timestamp should be acquisition time of image\n\
00240 # Header frame_id should be optical frame of camera\n\
00241 # origin of frame should be optical center of camera\n\
00242 # +x should point to the right in the image\n\
00243 # +y should point down in the image\n\
00244 # +z should point into the plane of the image\n\
00245 \n\
00246 \n\
00247 #######################################################################\n\
00248 # Calibration Parameters #\n\
00249 #######################################################################\n\
00250 # These are fixed during camera calibration. Their values will be the #\n\
00251 # same in all messages until the camera is recalibrated. Note that #\n\
00252 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00253 # #\n\
00254 # The internal parameters can be used to warp a raw (distorted) image #\n\
00255 # to: #\n\
00256 # 1. An undistorted image (requires D and K) #\n\
00257 # 2. A rectified image (requires D, K, R) #\n\
00258 # The projection matrix P projects 3D points into the rectified image.#\n\
00259 #######################################################################\n\
00260 \n\
00261 # The image dimensions with which the camera was calibrated. Normally\n\
00262 # this will be the full camera resolution in pixels.\n\
00263 uint32 height\n\
00264 uint32 width\n\
00265 \n\
00266 # The distortion model used. Supported models are listed in\n\
00267 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00268 # simple model of radial and tangential distortion - is sufficent.\n\
00269 string distortion_model\n\
00270 \n\
00271 # The distortion parameters, size depending on the distortion model.\n\
00272 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00273 float64[] D\n\
00274 \n\
00275 # Intrinsic camera matrix for the raw (distorted) images.\n\
00276 # [fx 0 cx]\n\
00277 # K = [ 0 fy cy]\n\
00278 # [ 0 0 1]\n\
00279 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00280 # coordinates using the focal lengths (fx, fy) and principal point\n\
00281 # (cx, cy).\n\
00282 float64[9] K # 3x3 row-major matrix\n\
00283 \n\
00284 # Rectification matrix (stereo cameras only)\n\
00285 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00286 # stereo image plane so that epipolar lines in both stereo images are\n\
00287 # parallel.\n\
00288 float64[9] R # 3x3 row-major matrix\n\
00289 \n\
00290 # Projection/camera matrix\n\
00291 # [fx' 0 cx' Tx]\n\
00292 # P = [ 0 fy' cy' Ty]\n\
00293 # [ 0 0 1 0]\n\
00294 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00295 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00296 # is the normal camera intrinsic matrix for the rectified image.\n\
00297 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00298 # coordinates using the focal lengths (fx', fy') and principal point\n\
00299 # (cx', cy') - these may differ from the values in K.\n\
00300 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00301 # also have R = the identity and P[1:3,1:3] = K.\n\
00302 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00303 # position of the optical center of the second camera in the first\n\
00304 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00305 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00306 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00307 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00308 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00309 # the rectified image is given by:\n\
00310 # [u v w]' = P * [X Y Z 1]'\n\
00311 # x = u / w\n\
00312 # y = v / w\n\
00313 # This holds for both images of a stereo pair.\n\
00314 float64[12] P # 3x4 row-major matrix\n\
00315 \n\
00316 \n\
00317 #######################################################################\n\
00318 # Operational Parameters #\n\
00319 #######################################################################\n\
00320 # These define the image region actually captured by the camera #\n\
00321 # driver. Although they affect the geometry of the output image, they #\n\
00322 # may be changed freely without recalibrating the camera. #\n\
00323 #######################################################################\n\
00324 \n\
00325 # Binning refers here to any camera setting which combines rectangular\n\
00326 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00327 # resolution of the output image to\n\
00328 # (width / binning_x) x (height / binning_y).\n\
00329 # The default values binning_x = binning_y = 0 is considered the same\n\
00330 # as binning_x = binning_y = 1 (no subsampling).\n\
00331 uint32 binning_x\n\
00332 uint32 binning_y\n\
00333 \n\
00334 # Region of interest (subwindow of full camera resolution), given in\n\
00335 # full resolution (unbinned) image coordinates. A particular ROI\n\
00336 # always denotes the same window of pixels on the camera sensor,\n\
00337 # regardless of binning settings.\n\
00338 # The default setting of roi (all values 0) is considered the same as\n\
00339 # full resolution (roi.width = width, roi.height = height).\n\
00340 RegionOfInterest roi\n\
00341 \n\
00342 ================================================================================\n\
00343 MSG: sensor_msgs/RegionOfInterest\n\
00344 # This message is used to specify a region of interest within an image.\n\
00345 #\n\
00346 # When used to specify the ROI setting of the camera when the image was\n\
00347 # taken, the height and width fields should either match the height and\n\
00348 # width fields for the associated image; or height = width = 0\n\
00349 # indicates that the full resolution image was captured.\n\
00350 \n\
00351 uint32 x_offset # Leftmost pixel of the ROI\n\
00352 # (0 if the ROI includes the left edge of the image)\n\
00353 uint32 y_offset # Topmost pixel of the ROI\n\
00354 # (0 if the ROI includes the top edge of the image)\n\
00355 uint32 height # Height of ROI\n\
00356 uint32 width # Width of ROI\n\
00357 \n\
00358 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00359 # ROI in this message. Typically this should be False if the full image\n\
00360 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00361 # used).\n\
00362 bool do_rectify\n\
00363 \n\
00364 ================================================================================\n\
00365 MSG: geometry_msgs/PoseStamped\n\
00366 # A Pose with reference coordinate frame and timestamp\n\
00367 Header header\n\
00368 Pose pose\n\
00369 \n\
00370 ================================================================================\n\
00371 MSG: geometry_msgs/Pose\n\
00372 # A representation of pose in free space, composed of postion and orientation. \n\
00373 Point position\n\
00374 Quaternion orientation\n\
00375 \n\
00376 ================================================================================\n\
00377 MSG: geometry_msgs/Point\n\
00378 # This contains the position of a point in free space\n\
00379 float64 x\n\
00380 float64 y\n\
00381 float64 z\n\
00382 \n\
00383 ================================================================================\n\
00384 MSG: geometry_msgs/Quaternion\n\
00385 # This represents an orientation in free space in quaternion form.\n\
00386 \n\
00387 float64 x\n\
00388 float64 y\n\
00389 float64 z\n\
00390 float64 w\n\
00391 \n\
00392 ================================================================================\n\
00393 MSG: geometry_msgs/Vector3\n\
00394 # This represents a vector in free space. \n\
00395 \n\
00396 float64 x\n\
00397 float64 y\n\
00398 float64 z\n\
00399 "; }
00400 public:
00401 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); }
00402
00403 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); }
00404
00405 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const
00406 {
00407 ros::serialization::OStream stream(write_ptr, 1000000000);
00408 ros::serialization::serialize(stream, cloud);
00409 ros::serialization::serialize(stream, mask);
00410 ros::serialization::serialize(stream, image);
00411 ros::serialization::serialize(stream, disparity_image);
00412 ros::serialization::serialize(stream, cam_info);
00413 ros::serialization::serialize(stream, roi_box_pose);
00414 ros::serialization::serialize(stream, roi_box_dims);
00415 return stream.getData();
00416 }
00417
00418 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr)
00419 {
00420 ros::serialization::IStream stream(read_ptr, 1000000000);
00421 ros::serialization::deserialize(stream, cloud);
00422 ros::serialization::deserialize(stream, mask);
00423 ros::serialization::deserialize(stream, image);
00424 ros::serialization::deserialize(stream, disparity_image);
00425 ros::serialization::deserialize(stream, cam_info);
00426 ros::serialization::deserialize(stream, roi_box_pose);
00427 ros::serialization::deserialize(stream, roi_box_dims);
00428 return stream.getData();
00429 }
00430
00431 ROS_DEPRECATED virtual uint32_t serializationLength() const
00432 {
00433 uint32_t size = 0;
00434 size += ros::serialization::serializationLength(cloud);
00435 size += ros::serialization::serializationLength(mask);
00436 size += ros::serialization::serializationLength(image);
00437 size += ros::serialization::serializationLength(disparity_image);
00438 size += ros::serialization::serializationLength(cam_info);
00439 size += ros::serialization::serializationLength(roi_box_pose);
00440 size += ros::serialization::serializationLength(roi_box_dims);
00441 return size;
00442 }
00443
00444 typedef boost::shared_ptr< ::object_manipulation_msgs::SceneRegion_<ContainerAllocator> > Ptr;
00445 typedef boost::shared_ptr< ::object_manipulation_msgs::SceneRegion_<ContainerAllocator> const> ConstPtr;
00446 boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00447 };
00448 typedef ::object_manipulation_msgs::SceneRegion_<std::allocator<void> > SceneRegion;
00449
00450 typedef boost::shared_ptr< ::object_manipulation_msgs::SceneRegion> SceneRegionPtr;
00451 typedef boost::shared_ptr< ::object_manipulation_msgs::SceneRegion const> SceneRegionConstPtr;
00452
00453
00454 template<typename ContainerAllocator>
00455 std::ostream& operator<<(std::ostream& s, const ::object_manipulation_msgs::SceneRegion_<ContainerAllocator> & v)
00456 {
00457 ros::message_operations::Printer< ::object_manipulation_msgs::SceneRegion_<ContainerAllocator> >::stream(s, "", v);
00458 return s;}
00459
00460 }
00461
00462 namespace ros
00463 {
00464 namespace message_traits
00465 {
00466 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::SceneRegion_<ContainerAllocator> > : public TrueType {};
00467 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::SceneRegion_<ContainerAllocator> const> : public TrueType {};
00468 template<class ContainerAllocator>
00469 struct MD5Sum< ::object_manipulation_msgs::SceneRegion_<ContainerAllocator> > {
00470 static const char* value()
00471 {
00472 return "0a9ab02b19292633619876c9d247690c";
00473 }
00474
00475 static const char* value(const ::object_manipulation_msgs::SceneRegion_<ContainerAllocator> &) { return value(); }
00476 static const uint64_t static_value1 = 0x0a9ab02b19292633ULL;
00477 static const uint64_t static_value2 = 0x619876c9d247690cULL;
00478 };
00479
00480 template<class ContainerAllocator>
00481 struct DataType< ::object_manipulation_msgs::SceneRegion_<ContainerAllocator> > {
00482 static const char* value()
00483 {
00484 return "object_manipulation_msgs/SceneRegion";
00485 }
00486
00487 static const char* value(const ::object_manipulation_msgs::SceneRegion_<ContainerAllocator> &) { return value(); }
00488 };
00489
00490 template<class ContainerAllocator>
00491 struct Definition< ::object_manipulation_msgs::SceneRegion_<ContainerAllocator> > {
00492 static const char* value()
00493 {
00494 return "# Point cloud\n\
00495 sensor_msgs/PointCloud2 cloud\n\
00496 \n\
00497 # Indices for the region of interest\n\
00498 int32[] mask\n\
00499 \n\
00500 # One of the corresponding 2D images, if applicable\n\
00501 sensor_msgs/Image image\n\
00502 \n\
00503 # The disparity image, if applicable\n\
00504 sensor_msgs/Image disparity_image\n\
00505 \n\
00506 # Camera info for the camera that took the image\n\
00507 sensor_msgs/CameraInfo cam_info\n\
00508 \n\
00509 # a 3D region of interest for grasp planning\n\
00510 geometry_msgs/PoseStamped roi_box_pose\n\
00511 geometry_msgs/Vector3 roi_box_dims\n\
00512 \n\
00513 ================================================================================\n\
00514 MSG: sensor_msgs/PointCloud2\n\
00515 # This message holds a collection of N-dimensional points, which may\n\
00516 # contain additional information such as normals, intensity, etc. The\n\
00517 # point data is stored as a binary blob, its layout described by the\n\
00518 # contents of the \"fields\" array.\n\
00519 \n\
00520 # The point cloud data may be organized 2d (image-like) or 1d\n\
00521 # (unordered). Point clouds organized as 2d images may be produced by\n\
00522 # camera depth sensors such as stereo or time-of-flight.\n\
00523 \n\
00524 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00525 # points).\n\
00526 Header header\n\
00527 \n\
00528 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00529 # 1 and width is the length of the point cloud.\n\
00530 uint32 height\n\
00531 uint32 width\n\
00532 \n\
00533 # Describes the channels and their layout in the binary data blob.\n\
00534 PointField[] fields\n\
00535 \n\
00536 bool is_bigendian # Is this data bigendian?\n\
00537 uint32 point_step # Length of a point in bytes\n\
00538 uint32 row_step # Length of a row in bytes\n\
00539 uint8[] data # Actual point data, size is (row_step*height)\n\
00540 \n\
00541 bool is_dense # True if there are no invalid points\n\
00542 \n\
00543 ================================================================================\n\
00544 MSG: std_msgs/Header\n\
00545 # Standard metadata for higher-level stamped data types.\n\
00546 # This is generally used to communicate timestamped data \n\
00547 # in a particular coordinate frame.\n\
00548 # \n\
00549 # sequence ID: consecutively increasing ID \n\
00550 uint32 seq\n\
00551 #Two-integer timestamp that is expressed as:\n\
00552 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00553 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00554 # time-handling sugar is provided by the client library\n\
00555 time stamp\n\
00556 #Frame this data is associated with\n\
00557 # 0: no frame\n\
00558 # 1: global frame\n\
00559 string frame_id\n\
00560 \n\
00561 ================================================================================\n\
00562 MSG: sensor_msgs/PointField\n\
00563 # This message holds the description of one point entry in the\n\
00564 # PointCloud2 message format.\n\
00565 uint8 INT8 = 1\n\
00566 uint8 UINT8 = 2\n\
00567 uint8 INT16 = 3\n\
00568 uint8 UINT16 = 4\n\
00569 uint8 INT32 = 5\n\
00570 uint8 UINT32 = 6\n\
00571 uint8 FLOAT32 = 7\n\
00572 uint8 FLOAT64 = 8\n\
00573 \n\
00574 string name # Name of field\n\
00575 uint32 offset # Offset from start of point struct\n\
00576 uint8 datatype # Datatype enumeration, see above\n\
00577 uint32 count # How many elements in the field\n\
00578 \n\
00579 ================================================================================\n\
00580 MSG: sensor_msgs/Image\n\
00581 # This message contains an uncompressed image\n\
00582 # (0, 0) is at top-left corner of image\n\
00583 #\n\
00584 \n\
00585 Header header # Header timestamp should be acquisition time of image\n\
00586 # Header frame_id should be optical frame of camera\n\
00587 # origin of frame should be optical center of cameara\n\
00588 # +x should point to the right in the image\n\
00589 # +y should point down in the image\n\
00590 # +z should point into to plane of the image\n\
00591 # If the frame_id here and the frame_id of the CameraInfo\n\
00592 # message associated with the image conflict\n\
00593 # the behavior is undefined\n\
00594 \n\
00595 uint32 height # image height, that is, number of rows\n\
00596 uint32 width # image width, that is, number of columns\n\
00597 \n\
00598 # The legal values for encoding are in file src/image_encodings.cpp\n\
00599 # If you want to standardize a new string format, join\n\
00600 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00601 \n\
00602 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00603 # taken from the list of strings in src/image_encodings.cpp\n\
00604 \n\
00605 uint8 is_bigendian # is this data bigendian?\n\
00606 uint32 step # Full row length in bytes\n\
00607 uint8[] data # actual matrix data, size is (step * rows)\n\
00608 \n\
00609 ================================================================================\n\
00610 MSG: sensor_msgs/CameraInfo\n\
00611 # This message defines meta information for a camera. It should be in a\n\
00612 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00613 # image topics named:\n\
00614 #\n\
00615 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00616 # image - monochrome, distorted\n\
00617 # image_color - color, distorted\n\
00618 # image_rect - monochrome, rectified\n\
00619 # image_rect_color - color, rectified\n\
00620 #\n\
00621 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00622 # for producing the four processed image topics from image_raw and\n\
00623 # camera_info. The meaning of the camera parameters are described in\n\
00624 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00625 #\n\
00626 # The image_geometry package provides a user-friendly interface to\n\
00627 # common operations using this meta information. If you want to, e.g.,\n\
00628 # project a 3d point into image coordinates, we strongly recommend\n\
00629 # using image_geometry.\n\
00630 #\n\
00631 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00632 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00633 # indicates an uncalibrated camera.\n\
00634 \n\
00635 #######################################################################\n\
00636 # Image acquisition info #\n\
00637 #######################################################################\n\
00638 \n\
00639 # Time of image acquisition, camera coordinate frame ID\n\
00640 Header header # Header timestamp should be acquisition time of image\n\
00641 # Header frame_id should be optical frame of camera\n\
00642 # origin of frame should be optical center of camera\n\
00643 # +x should point to the right in the image\n\
00644 # +y should point down in the image\n\
00645 # +z should point into the plane of the image\n\
00646 \n\
00647 \n\
00648 #######################################################################\n\
00649 # Calibration Parameters #\n\
00650 #######################################################################\n\
00651 # These are fixed during camera calibration. Their values will be the #\n\
00652 # same in all messages until the camera is recalibrated. Note that #\n\
00653 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00654 # #\n\
00655 # The internal parameters can be used to warp a raw (distorted) image #\n\
00656 # to: #\n\
00657 # 1. An undistorted image (requires D and K) #\n\
00658 # 2. A rectified image (requires D, K, R) #\n\
00659 # The projection matrix P projects 3D points into the rectified image.#\n\
00660 #######################################################################\n\
00661 \n\
00662 # The image dimensions with which the camera was calibrated. Normally\n\
00663 # this will be the full camera resolution in pixels.\n\
00664 uint32 height\n\
00665 uint32 width\n\
00666 \n\
00667 # The distortion model used. Supported models are listed in\n\
00668 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00669 # simple model of radial and tangential distortion - is sufficent.\n\
00670 string distortion_model\n\
00671 \n\
00672 # The distortion parameters, size depending on the distortion model.\n\
00673 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00674 float64[] D\n\
00675 \n\
00676 # Intrinsic camera matrix for the raw (distorted) images.\n\
00677 # [fx 0 cx]\n\
00678 # K = [ 0 fy cy]\n\
00679 # [ 0 0 1]\n\
00680 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00681 # coordinates using the focal lengths (fx, fy) and principal point\n\
00682 # (cx, cy).\n\
00683 float64[9] K # 3x3 row-major matrix\n\
00684 \n\
00685 # Rectification matrix (stereo cameras only)\n\
00686 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00687 # stereo image plane so that epipolar lines in both stereo images are\n\
00688 # parallel.\n\
00689 float64[9] R # 3x3 row-major matrix\n\
00690 \n\
00691 # Projection/camera matrix\n\
00692 # [fx' 0 cx' Tx]\n\
00693 # P = [ 0 fy' cy' Ty]\n\
00694 # [ 0 0 1 0]\n\
00695 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00696 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00697 # is the normal camera intrinsic matrix for the rectified image.\n\
00698 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00699 # coordinates using the focal lengths (fx', fy') and principal point\n\
00700 # (cx', cy') - these may differ from the values in K.\n\
00701 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00702 # also have R = the identity and P[1:3,1:3] = K.\n\
00703 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00704 # position of the optical center of the second camera in the first\n\
00705 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00706 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00707 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00708 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00709 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00710 # the rectified image is given by:\n\
00711 # [u v w]' = P * [X Y Z 1]'\n\
00712 # x = u / w\n\
00713 # y = v / w\n\
00714 # This holds for both images of a stereo pair.\n\
00715 float64[12] P # 3x4 row-major matrix\n\
00716 \n\
00717 \n\
00718 #######################################################################\n\
00719 # Operational Parameters #\n\
00720 #######################################################################\n\
00721 # These define the image region actually captured by the camera #\n\
00722 # driver. Although they affect the geometry of the output image, they #\n\
00723 # may be changed freely without recalibrating the camera. #\n\
00724 #######################################################################\n\
00725 \n\
00726 # Binning refers here to any camera setting which combines rectangular\n\
00727 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00728 # resolution of the output image to\n\
00729 # (width / binning_x) x (height / binning_y).\n\
00730 # The default values binning_x = binning_y = 0 is considered the same\n\
00731 # as binning_x = binning_y = 1 (no subsampling).\n\
00732 uint32 binning_x\n\
00733 uint32 binning_y\n\
00734 \n\
00735 # Region of interest (subwindow of full camera resolution), given in\n\
00736 # full resolution (unbinned) image coordinates. A particular ROI\n\
00737 # always denotes the same window of pixels on the camera sensor,\n\
00738 # regardless of binning settings.\n\
00739 # The default setting of roi (all values 0) is considered the same as\n\
00740 # full resolution (roi.width = width, roi.height = height).\n\
00741 RegionOfInterest roi\n\
00742 \n\
00743 ================================================================================\n\
00744 MSG: sensor_msgs/RegionOfInterest\n\
00745 # This message is used to specify a region of interest within an image.\n\
00746 #\n\
00747 # When used to specify the ROI setting of the camera when the image was\n\
00748 # taken, the height and width fields should either match the height and\n\
00749 # width fields for the associated image; or height = width = 0\n\
00750 # indicates that the full resolution image was captured.\n\
00751 \n\
00752 uint32 x_offset # Leftmost pixel of the ROI\n\
00753 # (0 if the ROI includes the left edge of the image)\n\
00754 uint32 y_offset # Topmost pixel of the ROI\n\
00755 # (0 if the ROI includes the top edge of the image)\n\
00756 uint32 height # Height of ROI\n\
00757 uint32 width # Width of ROI\n\
00758 \n\
00759 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00760 # ROI in this message. Typically this should be False if the full image\n\
00761 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00762 # used).\n\
00763 bool do_rectify\n\
00764 \n\
00765 ================================================================================\n\
00766 MSG: geometry_msgs/PoseStamped\n\
00767 # A Pose with reference coordinate frame and timestamp\n\
00768 Header header\n\
00769 Pose pose\n\
00770 \n\
00771 ================================================================================\n\
00772 MSG: geometry_msgs/Pose\n\
00773 # A representation of pose in free space, composed of postion and orientation. \n\
00774 Point position\n\
00775 Quaternion orientation\n\
00776 \n\
00777 ================================================================================\n\
00778 MSG: geometry_msgs/Point\n\
00779 # This contains the position of a point in free space\n\
00780 float64 x\n\
00781 float64 y\n\
00782 float64 z\n\
00783 \n\
00784 ================================================================================\n\
00785 MSG: geometry_msgs/Quaternion\n\
00786 # This represents an orientation in free space in quaternion form.\n\
00787 \n\
00788 float64 x\n\
00789 float64 y\n\
00790 float64 z\n\
00791 float64 w\n\
00792 \n\
00793 ================================================================================\n\
00794 MSG: geometry_msgs/Vector3\n\
00795 # This represents a vector in free space. \n\
00796 \n\
00797 float64 x\n\
00798 float64 y\n\
00799 float64 z\n\
00800 ";
00801 }
00802
00803 static const char* value(const ::object_manipulation_msgs::SceneRegion_<ContainerAllocator> &) { return value(); }
00804 };
00805
00806 }
00807 }
00808
00809 namespace ros
00810 {
00811 namespace serialization
00812 {
00813
00814 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::SceneRegion_<ContainerAllocator> >
00815 {
00816 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00817 {
00818 stream.next(m.cloud);
00819 stream.next(m.mask);
00820 stream.next(m.image);
00821 stream.next(m.disparity_image);
00822 stream.next(m.cam_info);
00823 stream.next(m.roi_box_pose);
00824 stream.next(m.roi_box_dims);
00825 }
00826
00827 ROS_DECLARE_ALLINONE_SERIALIZER;
00828 };
00829 }
00830 }
00831
00832 namespace ros
00833 {
00834 namespace message_operations
00835 {
00836
00837 template<class ContainerAllocator>
00838 struct Printer< ::object_manipulation_msgs::SceneRegion_<ContainerAllocator> >
00839 {
00840 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_manipulation_msgs::SceneRegion_<ContainerAllocator> & v)
00841 {
00842 s << indent << "cloud: ";
00843 s << std::endl;
00844 Printer< ::sensor_msgs::PointCloud2_<ContainerAllocator> >::stream(s, indent + " ", v.cloud);
00845 s << indent << "mask[]" << std::endl;
00846 for (size_t i = 0; i < v.mask.size(); ++i)
00847 {
00848 s << indent << " mask[" << i << "]: ";
00849 Printer<int32_t>::stream(s, indent + " ", v.mask[i]);
00850 }
00851 s << indent << "image: ";
00852 s << std::endl;
00853 Printer< ::sensor_msgs::Image_<ContainerAllocator> >::stream(s, indent + " ", v.image);
00854 s << indent << "disparity_image: ";
00855 s << std::endl;
00856 Printer< ::sensor_msgs::Image_<ContainerAllocator> >::stream(s, indent + " ", v.disparity_image);
00857 s << indent << "cam_info: ";
00858 s << std::endl;
00859 Printer< ::sensor_msgs::CameraInfo_<ContainerAllocator> >::stream(s, indent + " ", v.cam_info);
00860 s << indent << "roi_box_pose: ";
00861 s << std::endl;
00862 Printer< ::geometry_msgs::PoseStamped_<ContainerAllocator> >::stream(s, indent + " ", v.roi_box_pose);
00863 s << indent << "roi_box_dims: ";
00864 s << std::endl;
00865 Printer< ::geometry_msgs::Vector3_<ContainerAllocator> >::stream(s, indent + " ", v.roi_box_dims);
00866 }
00867 };
00868
00869
00870 }
00871 }
00872
00873 #endif // OBJECT_MANIPULATION_MSGS_MESSAGE_SCENEREGION_H
00874