00001
00002 #ifndef OBJECT_MANIPULATION_MSGS_MESSAGE_REACTIVEGRASPACTIONGOAL_H
00003 #define OBJECT_MANIPULATION_MSGS_MESSAGE_REACTIVEGRASPACTIONGOAL_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012
00013 #include "ros/macros.h"
00014
00015 #include "ros/assert.h"
00016
00017 #include "std_msgs/Header.h"
00018 #include "actionlib_msgs/GoalID.h"
00019 #include "object_manipulation_msgs/ReactiveGraspGoal.h"
00020
00021 namespace object_manipulation_msgs
00022 {
00023 template <class ContainerAllocator>
00024 struct ReactiveGraspActionGoal_ {
00025 typedef ReactiveGraspActionGoal_<ContainerAllocator> Type;
00026
00027 ReactiveGraspActionGoal_()
00028 : header()
00029 , goal_id()
00030 , goal()
00031 {
00032 }
00033
00034 ReactiveGraspActionGoal_(const ContainerAllocator& _alloc)
00035 : header(_alloc)
00036 , goal_id(_alloc)
00037 , goal(_alloc)
00038 {
00039 }
00040
00041 typedef ::std_msgs::Header_<ContainerAllocator> _header_type;
00042 ::std_msgs::Header_<ContainerAllocator> header;
00043
00044 typedef ::actionlib_msgs::GoalID_<ContainerAllocator> _goal_id_type;
00045 ::actionlib_msgs::GoalID_<ContainerAllocator> goal_id;
00046
00047 typedef ::object_manipulation_msgs::ReactiveGraspGoal_<ContainerAllocator> _goal_type;
00048 ::object_manipulation_msgs::ReactiveGraspGoal_<ContainerAllocator> goal;
00049
00050
00051 private:
00052 static const char* __s_getDataType_() { return "object_manipulation_msgs/ReactiveGraspActionGoal"; }
00053 public:
00054 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); }
00055
00056 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); }
00057
00058 private:
00059 static const char* __s_getMD5Sum_() { return "2faad20856eb2e502e2f58c3d2df0d28"; }
00060 public:
00061 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); }
00062
00063 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); }
00064
00065 private:
00066 static const char* __s_getMessageDefinition_() { return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00067 \n\
00068 Header header\n\
00069 actionlib_msgs/GoalID goal_id\n\
00070 ReactiveGraspGoal goal\n\
00071 \n\
00072 ================================================================================\n\
00073 MSG: std_msgs/Header\n\
00074 # Standard metadata for higher-level stamped data types.\n\
00075 # This is generally used to communicate timestamped data \n\
00076 # in a particular coordinate frame.\n\
00077 # \n\
00078 # sequence ID: consecutively increasing ID \n\
00079 uint32 seq\n\
00080 #Two-integer timestamp that is expressed as:\n\
00081 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00082 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00083 # time-handling sugar is provided by the client library\n\
00084 time stamp\n\
00085 #Frame this data is associated with\n\
00086 # 0: no frame\n\
00087 # 1: global frame\n\
00088 string frame_id\n\
00089 \n\
00090 ================================================================================\n\
00091 MSG: actionlib_msgs/GoalID\n\
00092 # The stamp should store the time at which this goal was requested.\n\
00093 # It is used by an action server when it tries to preempt all\n\
00094 # goals that were requested before a certain time\n\
00095 time stamp\n\
00096 \n\
00097 # The id provides a way to associate feedback and\n\
00098 # result message with specific goal requests. The id\n\
00099 # specified must be unique.\n\
00100 string id\n\
00101 \n\
00102 \n\
00103 ================================================================================\n\
00104 MSG: object_manipulation_msgs/ReactiveGraspGoal\n\
00105 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00106 # an action for reactive grasping\n\
00107 # a reactive grasp starts from the current pose of the gripper and ends\n\
00108 # at a desired grasp pose, presumably using the touch sensors along the way\n\
00109 \n\
00110 # the name of the arm being used\n\
00111 string arm_name\n\
00112 \n\
00113 # the object to be grasped\n\
00114 GraspableObject target\n\
00115 \n\
00116 # the desired grasp pose for the hand\n\
00117 geometry_msgs/PoseStamped final_grasp_pose\n\
00118 \n\
00119 # the joint trajectory to use for the approach (if available)\n\
00120 # this trajectory is expected to start at the current pose of the gripper\n\
00121 # and end at the desired grasp pose\n\
00122 trajectory_msgs/JointTrajectory trajectory\n\
00123 \n\
00124 # the name of the support surface in the collision environment, if any\n\
00125 string collision_support_surface_name\n\
00126 \n\
00127 # The internal posture of the hand for the pre-grasp\n\
00128 # only positions are used\n\
00129 sensor_msgs/JointState pre_grasp_posture\n\
00130 \n\
00131 # The internal posture of the hand for the grasp\n\
00132 # positions and efforts are used\n\
00133 sensor_msgs/JointState grasp_posture\n\
00134 \n\
00135 # The max contact force to use while grasping (<=0 to disable)\n\
00136 float32 max_contact_force\n\
00137 \n\
00138 \n\
00139 ================================================================================\n\
00140 MSG: object_manipulation_msgs/GraspableObject\n\
00141 # an object that the object_manipulator can work on\n\
00142 \n\
00143 # a graspable object can be represented in multiple ways. This message\n\
00144 # can contain all of them. Which one is actually used is up to the receiver\n\
00145 # of this message. When adding new representations, one must be careful that\n\
00146 # they have reasonable lightweight defaults indicating that that particular\n\
00147 # representation is not available.\n\
00148 \n\
00149 # the tf frame to be used as a reference frame when combining information from\n\
00150 # the different representations below\n\
00151 string reference_frame_id\n\
00152 \n\
00153 # potential recognition results from a database of models\n\
00154 # all poses are relative to the object reference pose\n\
00155 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00156 \n\
00157 # the point cloud itself\n\
00158 sensor_msgs/PointCloud cluster\n\
00159 \n\
00160 # a region of a PointCloud2 of interest\n\
00161 object_manipulation_msgs/SceneRegion region\n\
00162 \n\
00163 # the name that this object has in the collision environment\n\
00164 string collision_name\n\
00165 ================================================================================\n\
00166 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00167 # Informs that a specific model from the Model Database has been \n\
00168 # identified at a certain location\n\
00169 \n\
00170 # the database id of the model\n\
00171 int32 model_id\n\
00172 \n\
00173 # the pose that it can be found in\n\
00174 geometry_msgs/PoseStamped pose\n\
00175 \n\
00176 # a measure of the confidence level in this detection result\n\
00177 float32 confidence\n\
00178 \n\
00179 # the name of the object detector that generated this detection result\n\
00180 string detector_name\n\
00181 \n\
00182 ================================================================================\n\
00183 MSG: geometry_msgs/PoseStamped\n\
00184 # A Pose with reference coordinate frame and timestamp\n\
00185 Header header\n\
00186 Pose pose\n\
00187 \n\
00188 ================================================================================\n\
00189 MSG: geometry_msgs/Pose\n\
00190 # A representation of pose in free space, composed of postion and orientation. \n\
00191 Point position\n\
00192 Quaternion orientation\n\
00193 \n\
00194 ================================================================================\n\
00195 MSG: geometry_msgs/Point\n\
00196 # This contains the position of a point in free space\n\
00197 float64 x\n\
00198 float64 y\n\
00199 float64 z\n\
00200 \n\
00201 ================================================================================\n\
00202 MSG: geometry_msgs/Quaternion\n\
00203 # This represents an orientation in free space in quaternion form.\n\
00204 \n\
00205 float64 x\n\
00206 float64 y\n\
00207 float64 z\n\
00208 float64 w\n\
00209 \n\
00210 ================================================================================\n\
00211 MSG: sensor_msgs/PointCloud\n\
00212 # This message holds a collection of 3d points, plus optional additional\n\
00213 # information about each point.\n\
00214 \n\
00215 # Time of sensor data acquisition, coordinate frame ID.\n\
00216 Header header\n\
00217 \n\
00218 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00219 # in the frame given in the header.\n\
00220 geometry_msgs/Point32[] points\n\
00221 \n\
00222 # Each channel should have the same number of elements as points array,\n\
00223 # and the data in each channel should correspond 1:1 with each point.\n\
00224 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00225 ChannelFloat32[] channels\n\
00226 \n\
00227 ================================================================================\n\
00228 MSG: geometry_msgs/Point32\n\
00229 # This contains the position of a point in free space(with 32 bits of precision).\n\
00230 # It is recommeded to use Point wherever possible instead of Point32. \n\
00231 # \n\
00232 # This recommendation is to promote interoperability. \n\
00233 #\n\
00234 # This message is designed to take up less space when sending\n\
00235 # lots of points at once, as in the case of a PointCloud. \n\
00236 \n\
00237 float32 x\n\
00238 float32 y\n\
00239 float32 z\n\
00240 ================================================================================\n\
00241 MSG: sensor_msgs/ChannelFloat32\n\
00242 # This message is used by the PointCloud message to hold optional data\n\
00243 # associated with each point in the cloud. The length of the values\n\
00244 # array should be the same as the length of the points array in the\n\
00245 # PointCloud, and each value should be associated with the corresponding\n\
00246 # point.\n\
00247 \n\
00248 # Channel names in existing practice include:\n\
00249 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00250 # This is opposite to usual conventions but remains for\n\
00251 # historical reasons. The newer PointCloud2 message has no\n\
00252 # such problem.\n\
00253 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00254 # (R,G,B) values packed into the least significant 24 bits,\n\
00255 # in order.\n\
00256 # \"intensity\" - laser or pixel intensity.\n\
00257 # \"distance\"\n\
00258 \n\
00259 # The channel name should give semantics of the channel (e.g.\n\
00260 # \"intensity\" instead of \"value\").\n\
00261 string name\n\
00262 \n\
00263 # The values array should be 1-1 with the elements of the associated\n\
00264 # PointCloud.\n\
00265 float32[] values\n\
00266 \n\
00267 ================================================================================\n\
00268 MSG: object_manipulation_msgs/SceneRegion\n\
00269 # Point cloud\n\
00270 sensor_msgs/PointCloud2 cloud\n\
00271 \n\
00272 # Indices for the region of interest\n\
00273 int32[] mask\n\
00274 \n\
00275 # One of the corresponding 2D images, if applicable\n\
00276 sensor_msgs/Image image\n\
00277 \n\
00278 # The disparity image, if applicable\n\
00279 sensor_msgs/Image disparity_image\n\
00280 \n\
00281 # Camera info for the camera that took the image\n\
00282 sensor_msgs/CameraInfo cam_info\n\
00283 \n\
00284 # a 3D region of interest for grasp planning\n\
00285 geometry_msgs/PoseStamped roi_box_pose\n\
00286 geometry_msgs/Vector3 roi_box_dims\n\
00287 \n\
00288 ================================================================================\n\
00289 MSG: sensor_msgs/PointCloud2\n\
00290 # This message holds a collection of N-dimensional points, which may\n\
00291 # contain additional information such as normals, intensity, etc. The\n\
00292 # point data is stored as a binary blob, its layout described by the\n\
00293 # contents of the \"fields\" array.\n\
00294 \n\
00295 # The point cloud data may be organized 2d (image-like) or 1d\n\
00296 # (unordered). Point clouds organized as 2d images may be produced by\n\
00297 # camera depth sensors such as stereo or time-of-flight.\n\
00298 \n\
00299 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00300 # points).\n\
00301 Header header\n\
00302 \n\
00303 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00304 # 1 and width is the length of the point cloud.\n\
00305 uint32 height\n\
00306 uint32 width\n\
00307 \n\
00308 # Describes the channels and their layout in the binary data blob.\n\
00309 PointField[] fields\n\
00310 \n\
00311 bool is_bigendian # Is this data bigendian?\n\
00312 uint32 point_step # Length of a point in bytes\n\
00313 uint32 row_step # Length of a row in bytes\n\
00314 uint8[] data # Actual point data, size is (row_step*height)\n\
00315 \n\
00316 bool is_dense # True if there are no invalid points\n\
00317 \n\
00318 ================================================================================\n\
00319 MSG: sensor_msgs/PointField\n\
00320 # This message holds the description of one point entry in the\n\
00321 # PointCloud2 message format.\n\
00322 uint8 INT8 = 1\n\
00323 uint8 UINT8 = 2\n\
00324 uint8 INT16 = 3\n\
00325 uint8 UINT16 = 4\n\
00326 uint8 INT32 = 5\n\
00327 uint8 UINT32 = 6\n\
00328 uint8 FLOAT32 = 7\n\
00329 uint8 FLOAT64 = 8\n\
00330 \n\
00331 string name # Name of field\n\
00332 uint32 offset # Offset from start of point struct\n\
00333 uint8 datatype # Datatype enumeration, see above\n\
00334 uint32 count # How many elements in the field\n\
00335 \n\
00336 ================================================================================\n\
00337 MSG: sensor_msgs/Image\n\
00338 # This message contains an uncompressed image\n\
00339 # (0, 0) is at top-left corner of image\n\
00340 #\n\
00341 \n\
00342 Header header # Header timestamp should be acquisition time of image\n\
00343 # Header frame_id should be optical frame of camera\n\
00344 # origin of frame should be optical center of cameara\n\
00345 # +x should point to the right in the image\n\
00346 # +y should point down in the image\n\
00347 # +z should point into to plane of the image\n\
00348 # If the frame_id here and the frame_id of the CameraInfo\n\
00349 # message associated with the image conflict\n\
00350 # the behavior is undefined\n\
00351 \n\
00352 uint32 height # image height, that is, number of rows\n\
00353 uint32 width # image width, that is, number of columns\n\
00354 \n\
00355 # The legal values for encoding are in file src/image_encodings.cpp\n\
00356 # If you want to standardize a new string format, join\n\
00357 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00358 \n\
00359 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00360 # taken from the list of strings in src/image_encodings.cpp\n\
00361 \n\
00362 uint8 is_bigendian # is this data bigendian?\n\
00363 uint32 step # Full row length in bytes\n\
00364 uint8[] data # actual matrix data, size is (step * rows)\n\
00365 \n\
00366 ================================================================================\n\
00367 MSG: sensor_msgs/CameraInfo\n\
00368 # This message defines meta information for a camera. It should be in a\n\
00369 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00370 # image topics named:\n\
00371 #\n\
00372 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00373 # image - monochrome, distorted\n\
00374 # image_color - color, distorted\n\
00375 # image_rect - monochrome, rectified\n\
00376 # image_rect_color - color, rectified\n\
00377 #\n\
00378 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00379 # for producing the four processed image topics from image_raw and\n\
00380 # camera_info. The meaning of the camera parameters are described in\n\
00381 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00382 #\n\
00383 # The image_geometry package provides a user-friendly interface to\n\
00384 # common operations using this meta information. If you want to, e.g.,\n\
00385 # project a 3d point into image coordinates, we strongly recommend\n\
00386 # using image_geometry.\n\
00387 #\n\
00388 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00389 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00390 # indicates an uncalibrated camera.\n\
00391 \n\
00392 #######################################################################\n\
00393 # Image acquisition info #\n\
00394 #######################################################################\n\
00395 \n\
00396 # Time of image acquisition, camera coordinate frame ID\n\
00397 Header header # Header timestamp should be acquisition time of image\n\
00398 # Header frame_id should be optical frame of camera\n\
00399 # origin of frame should be optical center of camera\n\
00400 # +x should point to the right in the image\n\
00401 # +y should point down in the image\n\
00402 # +z should point into the plane of the image\n\
00403 \n\
00404 \n\
00405 #######################################################################\n\
00406 # Calibration Parameters #\n\
00407 #######################################################################\n\
00408 # These are fixed during camera calibration. Their values will be the #\n\
00409 # same in all messages until the camera is recalibrated. Note that #\n\
00410 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00411 # #\n\
00412 # The internal parameters can be used to warp a raw (distorted) image #\n\
00413 # to: #\n\
00414 # 1. An undistorted image (requires D and K) #\n\
00415 # 2. A rectified image (requires D, K, R) #\n\
00416 # The projection matrix P projects 3D points into the rectified image.#\n\
00417 #######################################################################\n\
00418 \n\
00419 # The image dimensions with which the camera was calibrated. Normally\n\
00420 # this will be the full camera resolution in pixels.\n\
00421 uint32 height\n\
00422 uint32 width\n\
00423 \n\
00424 # The distortion model used. Supported models are listed in\n\
00425 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00426 # simple model of radial and tangential distortion - is sufficent.\n\
00427 string distortion_model\n\
00428 \n\
00429 # The distortion parameters, size depending on the distortion model.\n\
00430 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00431 float64[] D\n\
00432 \n\
00433 # Intrinsic camera matrix for the raw (distorted) images.\n\
00434 # [fx 0 cx]\n\
00435 # K = [ 0 fy cy]\n\
00436 # [ 0 0 1]\n\
00437 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00438 # coordinates using the focal lengths (fx, fy) and principal point\n\
00439 # (cx, cy).\n\
00440 float64[9] K # 3x3 row-major matrix\n\
00441 \n\
00442 # Rectification matrix (stereo cameras only)\n\
00443 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00444 # stereo image plane so that epipolar lines in both stereo images are\n\
00445 # parallel.\n\
00446 float64[9] R # 3x3 row-major matrix\n\
00447 \n\
00448 # Projection/camera matrix\n\
00449 # [fx' 0 cx' Tx]\n\
00450 # P = [ 0 fy' cy' Ty]\n\
00451 # [ 0 0 1 0]\n\
00452 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00453 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00454 # is the normal camera intrinsic matrix for the rectified image.\n\
00455 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00456 # coordinates using the focal lengths (fx', fy') and principal point\n\
00457 # (cx', cy') - these may differ from the values in K.\n\
00458 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00459 # also have R = the identity and P[1:3,1:3] = K.\n\
00460 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00461 # position of the optical center of the second camera in the first\n\
00462 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00463 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00464 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00465 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00466 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00467 # the rectified image is given by:\n\
00468 # [u v w]' = P * [X Y Z 1]'\n\
00469 # x = u / w\n\
00470 # y = v / w\n\
00471 # This holds for both images of a stereo pair.\n\
00472 float64[12] P # 3x4 row-major matrix\n\
00473 \n\
00474 \n\
00475 #######################################################################\n\
00476 # Operational Parameters #\n\
00477 #######################################################################\n\
00478 # These define the image region actually captured by the camera #\n\
00479 # driver. Although they affect the geometry of the output image, they #\n\
00480 # may be changed freely without recalibrating the camera. #\n\
00481 #######################################################################\n\
00482 \n\
00483 # Binning refers here to any camera setting which combines rectangular\n\
00484 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00485 # resolution of the output image to\n\
00486 # (width / binning_x) x (height / binning_y).\n\
00487 # The default values binning_x = binning_y = 0 is considered the same\n\
00488 # as binning_x = binning_y = 1 (no subsampling).\n\
00489 uint32 binning_x\n\
00490 uint32 binning_y\n\
00491 \n\
00492 # Region of interest (subwindow of full camera resolution), given in\n\
00493 # full resolution (unbinned) image coordinates. A particular ROI\n\
00494 # always denotes the same window of pixels on the camera sensor,\n\
00495 # regardless of binning settings.\n\
00496 # The default setting of roi (all values 0) is considered the same as\n\
00497 # full resolution (roi.width = width, roi.height = height).\n\
00498 RegionOfInterest roi\n\
00499 \n\
00500 ================================================================================\n\
00501 MSG: sensor_msgs/RegionOfInterest\n\
00502 # This message is used to specify a region of interest within an image.\n\
00503 #\n\
00504 # When used to specify the ROI setting of the camera when the image was\n\
00505 # taken, the height and width fields should either match the height and\n\
00506 # width fields for the associated image; or height = width = 0\n\
00507 # indicates that the full resolution image was captured.\n\
00508 \n\
00509 uint32 x_offset # Leftmost pixel of the ROI\n\
00510 # (0 if the ROI includes the left edge of the image)\n\
00511 uint32 y_offset # Topmost pixel of the ROI\n\
00512 # (0 if the ROI includes the top edge of the image)\n\
00513 uint32 height # Height of ROI\n\
00514 uint32 width # Width of ROI\n\
00515 \n\
00516 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00517 # ROI in this message. Typically this should be False if the full image\n\
00518 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00519 # used).\n\
00520 bool do_rectify\n\
00521 \n\
00522 ================================================================================\n\
00523 MSG: geometry_msgs/Vector3\n\
00524 # This represents a vector in free space. \n\
00525 \n\
00526 float64 x\n\
00527 float64 y\n\
00528 float64 z\n\
00529 ================================================================================\n\
00530 MSG: trajectory_msgs/JointTrajectory\n\
00531 Header header\n\
00532 string[] joint_names\n\
00533 JointTrajectoryPoint[] points\n\
00534 ================================================================================\n\
00535 MSG: trajectory_msgs/JointTrajectoryPoint\n\
00536 float64[] positions\n\
00537 float64[] velocities\n\
00538 float64[] accelerations\n\
00539 duration time_from_start\n\
00540 ================================================================================\n\
00541 MSG: sensor_msgs/JointState\n\
00542 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
00543 #\n\
00544 # The state of each joint (revolute or prismatic) is defined by:\n\
00545 # * the position of the joint (rad or m),\n\
00546 # * the velocity of the joint (rad/s or m/s) and \n\
00547 # * the effort that is applied in the joint (Nm or N).\n\
00548 #\n\
00549 # Each joint is uniquely identified by its name\n\
00550 # The header specifies the time at which the joint states were recorded. All the joint states\n\
00551 # in one message have to be recorded at the same time.\n\
00552 #\n\
00553 # This message consists of a multiple arrays, one for each part of the joint state. \n\
00554 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
00555 # effort associated with them, you can leave the effort array empty. \n\
00556 #\n\
00557 # All arrays in this message should have the same size, or be empty.\n\
00558 # This is the only way to uniquely associate the joint name with the correct\n\
00559 # states.\n\
00560 \n\
00561 \n\
00562 Header header\n\
00563 \n\
00564 string[] name\n\
00565 float64[] position\n\
00566 float64[] velocity\n\
00567 float64[] effort\n\
00568 \n\
00569 "; }
00570 public:
00571 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); }
00572
00573 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); }
00574
00575 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const
00576 {
00577 ros::serialization::OStream stream(write_ptr, 1000000000);
00578 ros::serialization::serialize(stream, header);
00579 ros::serialization::serialize(stream, goal_id);
00580 ros::serialization::serialize(stream, goal);
00581 return stream.getData();
00582 }
00583
00584 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr)
00585 {
00586 ros::serialization::IStream stream(read_ptr, 1000000000);
00587 ros::serialization::deserialize(stream, header);
00588 ros::serialization::deserialize(stream, goal_id);
00589 ros::serialization::deserialize(stream, goal);
00590 return stream.getData();
00591 }
00592
00593 ROS_DEPRECATED virtual uint32_t serializationLength() const
00594 {
00595 uint32_t size = 0;
00596 size += ros::serialization::serializationLength(header);
00597 size += ros::serialization::serializationLength(goal_id);
00598 size += ros::serialization::serializationLength(goal);
00599 return size;
00600 }
00601
00602 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveGraspActionGoal_<ContainerAllocator> > Ptr;
00603 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveGraspActionGoal_<ContainerAllocator> const> ConstPtr;
00604 boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00605 };
00606 typedef ::object_manipulation_msgs::ReactiveGraspActionGoal_<std::allocator<void> > ReactiveGraspActionGoal;
00607
00608 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveGraspActionGoal> ReactiveGraspActionGoalPtr;
00609 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveGraspActionGoal const> ReactiveGraspActionGoalConstPtr;
00610
00611
00612 template<typename ContainerAllocator>
00613 std::ostream& operator<<(std::ostream& s, const ::object_manipulation_msgs::ReactiveGraspActionGoal_<ContainerAllocator> & v)
00614 {
00615 ros::message_operations::Printer< ::object_manipulation_msgs::ReactiveGraspActionGoal_<ContainerAllocator> >::stream(s, "", v);
00616 return s;}
00617
00618 }
00619
00620 namespace ros
00621 {
00622 namespace message_traits
00623 {
00624 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::ReactiveGraspActionGoal_<ContainerAllocator> > : public TrueType {};
00625 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::ReactiveGraspActionGoal_<ContainerAllocator> const> : public TrueType {};
00626 template<class ContainerAllocator>
00627 struct MD5Sum< ::object_manipulation_msgs::ReactiveGraspActionGoal_<ContainerAllocator> > {
00628 static const char* value()
00629 {
00630 return "2faad20856eb2e502e2f58c3d2df0d28";
00631 }
00632
00633 static const char* value(const ::object_manipulation_msgs::ReactiveGraspActionGoal_<ContainerAllocator> &) { return value(); }
00634 static const uint64_t static_value1 = 0x2faad20856eb2e50ULL;
00635 static const uint64_t static_value2 = 0x2e2f58c3d2df0d28ULL;
00636 };
00637
00638 template<class ContainerAllocator>
00639 struct DataType< ::object_manipulation_msgs::ReactiveGraspActionGoal_<ContainerAllocator> > {
00640 static const char* value()
00641 {
00642 return "object_manipulation_msgs/ReactiveGraspActionGoal";
00643 }
00644
00645 static const char* value(const ::object_manipulation_msgs::ReactiveGraspActionGoal_<ContainerAllocator> &) { return value(); }
00646 };
00647
00648 template<class ContainerAllocator>
00649 struct Definition< ::object_manipulation_msgs::ReactiveGraspActionGoal_<ContainerAllocator> > {
00650 static const char* value()
00651 {
00652 return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00653 \n\
00654 Header header\n\
00655 actionlib_msgs/GoalID goal_id\n\
00656 ReactiveGraspGoal goal\n\
00657 \n\
00658 ================================================================================\n\
00659 MSG: std_msgs/Header\n\
00660 # Standard metadata for higher-level stamped data types.\n\
00661 # This is generally used to communicate timestamped data \n\
00662 # in a particular coordinate frame.\n\
00663 # \n\
00664 # sequence ID: consecutively increasing ID \n\
00665 uint32 seq\n\
00666 #Two-integer timestamp that is expressed as:\n\
00667 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00668 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00669 # time-handling sugar is provided by the client library\n\
00670 time stamp\n\
00671 #Frame this data is associated with\n\
00672 # 0: no frame\n\
00673 # 1: global frame\n\
00674 string frame_id\n\
00675 \n\
00676 ================================================================================\n\
00677 MSG: actionlib_msgs/GoalID\n\
00678 # The stamp should store the time at which this goal was requested.\n\
00679 # It is used by an action server when it tries to preempt all\n\
00680 # goals that were requested before a certain time\n\
00681 time stamp\n\
00682 \n\
00683 # The id provides a way to associate feedback and\n\
00684 # result message with specific goal requests. The id\n\
00685 # specified must be unique.\n\
00686 string id\n\
00687 \n\
00688 \n\
00689 ================================================================================\n\
00690 MSG: object_manipulation_msgs/ReactiveGraspGoal\n\
00691 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00692 # an action for reactive grasping\n\
00693 # a reactive grasp starts from the current pose of the gripper and ends\n\
00694 # at a desired grasp pose, presumably using the touch sensors along the way\n\
00695 \n\
00696 # the name of the arm being used\n\
00697 string arm_name\n\
00698 \n\
00699 # the object to be grasped\n\
00700 GraspableObject target\n\
00701 \n\
00702 # the desired grasp pose for the hand\n\
00703 geometry_msgs/PoseStamped final_grasp_pose\n\
00704 \n\
00705 # the joint trajectory to use for the approach (if available)\n\
00706 # this trajectory is expected to start at the current pose of the gripper\n\
00707 # and end at the desired grasp pose\n\
00708 trajectory_msgs/JointTrajectory trajectory\n\
00709 \n\
00710 # the name of the support surface in the collision environment, if any\n\
00711 string collision_support_surface_name\n\
00712 \n\
00713 # The internal posture of the hand for the pre-grasp\n\
00714 # only positions are used\n\
00715 sensor_msgs/JointState pre_grasp_posture\n\
00716 \n\
00717 # The internal posture of the hand for the grasp\n\
00718 # positions and efforts are used\n\
00719 sensor_msgs/JointState grasp_posture\n\
00720 \n\
00721 # The max contact force to use while grasping (<=0 to disable)\n\
00722 float32 max_contact_force\n\
00723 \n\
00724 \n\
00725 ================================================================================\n\
00726 MSG: object_manipulation_msgs/GraspableObject\n\
00727 # an object that the object_manipulator can work on\n\
00728 \n\
00729 # a graspable object can be represented in multiple ways. This message\n\
00730 # can contain all of them. Which one is actually used is up to the receiver\n\
00731 # of this message. When adding new representations, one must be careful that\n\
00732 # they have reasonable lightweight defaults indicating that that particular\n\
00733 # representation is not available.\n\
00734 \n\
00735 # the tf frame to be used as a reference frame when combining information from\n\
00736 # the different representations below\n\
00737 string reference_frame_id\n\
00738 \n\
00739 # potential recognition results from a database of models\n\
00740 # all poses are relative to the object reference pose\n\
00741 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00742 \n\
00743 # the point cloud itself\n\
00744 sensor_msgs/PointCloud cluster\n\
00745 \n\
00746 # a region of a PointCloud2 of interest\n\
00747 object_manipulation_msgs/SceneRegion region\n\
00748 \n\
00749 # the name that this object has in the collision environment\n\
00750 string collision_name\n\
00751 ================================================================================\n\
00752 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00753 # Informs that a specific model from the Model Database has been \n\
00754 # identified at a certain location\n\
00755 \n\
00756 # the database id of the model\n\
00757 int32 model_id\n\
00758 \n\
00759 # the pose that it can be found in\n\
00760 geometry_msgs/PoseStamped pose\n\
00761 \n\
00762 # a measure of the confidence level in this detection result\n\
00763 float32 confidence\n\
00764 \n\
00765 # the name of the object detector that generated this detection result\n\
00766 string detector_name\n\
00767 \n\
00768 ================================================================================\n\
00769 MSG: geometry_msgs/PoseStamped\n\
00770 # A Pose with reference coordinate frame and timestamp\n\
00771 Header header\n\
00772 Pose pose\n\
00773 \n\
00774 ================================================================================\n\
00775 MSG: geometry_msgs/Pose\n\
00776 # A representation of pose in free space, composed of postion and orientation. \n\
00777 Point position\n\
00778 Quaternion orientation\n\
00779 \n\
00780 ================================================================================\n\
00781 MSG: geometry_msgs/Point\n\
00782 # This contains the position of a point in free space\n\
00783 float64 x\n\
00784 float64 y\n\
00785 float64 z\n\
00786 \n\
00787 ================================================================================\n\
00788 MSG: geometry_msgs/Quaternion\n\
00789 # This represents an orientation in free space in quaternion form.\n\
00790 \n\
00791 float64 x\n\
00792 float64 y\n\
00793 float64 z\n\
00794 float64 w\n\
00795 \n\
00796 ================================================================================\n\
00797 MSG: sensor_msgs/PointCloud\n\
00798 # This message holds a collection of 3d points, plus optional additional\n\
00799 # information about each point.\n\
00800 \n\
00801 # Time of sensor data acquisition, coordinate frame ID.\n\
00802 Header header\n\
00803 \n\
00804 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00805 # in the frame given in the header.\n\
00806 geometry_msgs/Point32[] points\n\
00807 \n\
00808 # Each channel should have the same number of elements as points array,\n\
00809 # and the data in each channel should correspond 1:1 with each point.\n\
00810 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00811 ChannelFloat32[] channels\n\
00812 \n\
00813 ================================================================================\n\
00814 MSG: geometry_msgs/Point32\n\
00815 # This contains the position of a point in free space(with 32 bits of precision).\n\
00816 # It is recommeded to use Point wherever possible instead of Point32. \n\
00817 # \n\
00818 # This recommendation is to promote interoperability. \n\
00819 #\n\
00820 # This message is designed to take up less space when sending\n\
00821 # lots of points at once, as in the case of a PointCloud. \n\
00822 \n\
00823 float32 x\n\
00824 float32 y\n\
00825 float32 z\n\
00826 ================================================================================\n\
00827 MSG: sensor_msgs/ChannelFloat32\n\
00828 # This message is used by the PointCloud message to hold optional data\n\
00829 # associated with each point in the cloud. The length of the values\n\
00830 # array should be the same as the length of the points array in the\n\
00831 # PointCloud, and each value should be associated with the corresponding\n\
00832 # point.\n\
00833 \n\
00834 # Channel names in existing practice include:\n\
00835 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00836 # This is opposite to usual conventions but remains for\n\
00837 # historical reasons. The newer PointCloud2 message has no\n\
00838 # such problem.\n\
00839 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00840 # (R,G,B) values packed into the least significant 24 bits,\n\
00841 # in order.\n\
00842 # \"intensity\" - laser or pixel intensity.\n\
00843 # \"distance\"\n\
00844 \n\
00845 # The channel name should give semantics of the channel (e.g.\n\
00846 # \"intensity\" instead of \"value\").\n\
00847 string name\n\
00848 \n\
00849 # The values array should be 1-1 with the elements of the associated\n\
00850 # PointCloud.\n\
00851 float32[] values\n\
00852 \n\
00853 ================================================================================\n\
00854 MSG: object_manipulation_msgs/SceneRegion\n\
00855 # Point cloud\n\
00856 sensor_msgs/PointCloud2 cloud\n\
00857 \n\
00858 # Indices for the region of interest\n\
00859 int32[] mask\n\
00860 \n\
00861 # One of the corresponding 2D images, if applicable\n\
00862 sensor_msgs/Image image\n\
00863 \n\
00864 # The disparity image, if applicable\n\
00865 sensor_msgs/Image disparity_image\n\
00866 \n\
00867 # Camera info for the camera that took the image\n\
00868 sensor_msgs/CameraInfo cam_info\n\
00869 \n\
00870 # a 3D region of interest for grasp planning\n\
00871 geometry_msgs/PoseStamped roi_box_pose\n\
00872 geometry_msgs/Vector3 roi_box_dims\n\
00873 \n\
00874 ================================================================================\n\
00875 MSG: sensor_msgs/PointCloud2\n\
00876 # This message holds a collection of N-dimensional points, which may\n\
00877 # contain additional information such as normals, intensity, etc. The\n\
00878 # point data is stored as a binary blob, its layout described by the\n\
00879 # contents of the \"fields\" array.\n\
00880 \n\
00881 # The point cloud data may be organized 2d (image-like) or 1d\n\
00882 # (unordered). Point clouds organized as 2d images may be produced by\n\
00883 # camera depth sensors such as stereo or time-of-flight.\n\
00884 \n\
00885 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00886 # points).\n\
00887 Header header\n\
00888 \n\
00889 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00890 # 1 and width is the length of the point cloud.\n\
00891 uint32 height\n\
00892 uint32 width\n\
00893 \n\
00894 # Describes the channels and their layout in the binary data blob.\n\
00895 PointField[] fields\n\
00896 \n\
00897 bool is_bigendian # Is this data bigendian?\n\
00898 uint32 point_step # Length of a point in bytes\n\
00899 uint32 row_step # Length of a row in bytes\n\
00900 uint8[] data # Actual point data, size is (row_step*height)\n\
00901 \n\
00902 bool is_dense # True if there are no invalid points\n\
00903 \n\
00904 ================================================================================\n\
00905 MSG: sensor_msgs/PointField\n\
00906 # This message holds the description of one point entry in the\n\
00907 # PointCloud2 message format.\n\
00908 uint8 INT8 = 1\n\
00909 uint8 UINT8 = 2\n\
00910 uint8 INT16 = 3\n\
00911 uint8 UINT16 = 4\n\
00912 uint8 INT32 = 5\n\
00913 uint8 UINT32 = 6\n\
00914 uint8 FLOAT32 = 7\n\
00915 uint8 FLOAT64 = 8\n\
00916 \n\
00917 string name # Name of field\n\
00918 uint32 offset # Offset from start of point struct\n\
00919 uint8 datatype # Datatype enumeration, see above\n\
00920 uint32 count # How many elements in the field\n\
00921 \n\
00922 ================================================================================\n\
00923 MSG: sensor_msgs/Image\n\
00924 # This message contains an uncompressed image\n\
00925 # (0, 0) is at top-left corner of image\n\
00926 #\n\
00927 \n\
00928 Header header # Header timestamp should be acquisition time of image\n\
00929 # Header frame_id should be optical frame of camera\n\
00930 # origin of frame should be optical center of cameara\n\
00931 # +x should point to the right in the image\n\
00932 # +y should point down in the image\n\
00933 # +z should point into to plane of the image\n\
00934 # If the frame_id here and the frame_id of the CameraInfo\n\
00935 # message associated with the image conflict\n\
00936 # the behavior is undefined\n\
00937 \n\
00938 uint32 height # image height, that is, number of rows\n\
00939 uint32 width # image width, that is, number of columns\n\
00940 \n\
00941 # The legal values for encoding are in file src/image_encodings.cpp\n\
00942 # If you want to standardize a new string format, join\n\
00943 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00944 \n\
00945 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00946 # taken from the list of strings in src/image_encodings.cpp\n\
00947 \n\
00948 uint8 is_bigendian # is this data bigendian?\n\
00949 uint32 step # Full row length in bytes\n\
00950 uint8[] data # actual matrix data, size is (step * rows)\n\
00951 \n\
00952 ================================================================================\n\
00953 MSG: sensor_msgs/CameraInfo\n\
00954 # This message defines meta information for a camera. It should be in a\n\
00955 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00956 # image topics named:\n\
00957 #\n\
00958 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00959 # image - monochrome, distorted\n\
00960 # image_color - color, distorted\n\
00961 # image_rect - monochrome, rectified\n\
00962 # image_rect_color - color, rectified\n\
00963 #\n\
00964 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00965 # for producing the four processed image topics from image_raw and\n\
00966 # camera_info. The meaning of the camera parameters are described in\n\
00967 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00968 #\n\
00969 # The image_geometry package provides a user-friendly interface to\n\
00970 # common operations using this meta information. If you want to, e.g.,\n\
00971 # project a 3d point into image coordinates, we strongly recommend\n\
00972 # using image_geometry.\n\
00973 #\n\
00974 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00975 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00976 # indicates an uncalibrated camera.\n\
00977 \n\
00978 #######################################################################\n\
00979 # Image acquisition info #\n\
00980 #######################################################################\n\
00981 \n\
00982 # Time of image acquisition, camera coordinate frame ID\n\
00983 Header header # Header timestamp should be acquisition time of image\n\
00984 # Header frame_id should be optical frame of camera\n\
00985 # origin of frame should be optical center of camera\n\
00986 # +x should point to the right in the image\n\
00987 # +y should point down in the image\n\
00988 # +z should point into the plane of the image\n\
00989 \n\
00990 \n\
00991 #######################################################################\n\
00992 # Calibration Parameters #\n\
00993 #######################################################################\n\
00994 # These are fixed during camera calibration. Their values will be the #\n\
00995 # same in all messages until the camera is recalibrated. Note that #\n\
00996 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00997 # #\n\
00998 # The internal parameters can be used to warp a raw (distorted) image #\n\
00999 # to: #\n\
01000 # 1. An undistorted image (requires D and K) #\n\
01001 # 2. A rectified image (requires D, K, R) #\n\
01002 # The projection matrix P projects 3D points into the rectified image.#\n\
01003 #######################################################################\n\
01004 \n\
01005 # The image dimensions with which the camera was calibrated. Normally\n\
01006 # this will be the full camera resolution in pixels.\n\
01007 uint32 height\n\
01008 uint32 width\n\
01009 \n\
01010 # The distortion model used. Supported models are listed in\n\
01011 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
01012 # simple model of radial and tangential distortion - is sufficent.\n\
01013 string distortion_model\n\
01014 \n\
01015 # The distortion parameters, size depending on the distortion model.\n\
01016 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
01017 float64[] D\n\
01018 \n\
01019 # Intrinsic camera matrix for the raw (distorted) images.\n\
01020 # [fx 0 cx]\n\
01021 # K = [ 0 fy cy]\n\
01022 # [ 0 0 1]\n\
01023 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
01024 # coordinates using the focal lengths (fx, fy) and principal point\n\
01025 # (cx, cy).\n\
01026 float64[9] K # 3x3 row-major matrix\n\
01027 \n\
01028 # Rectification matrix (stereo cameras only)\n\
01029 # A rotation matrix aligning the camera coordinate system to the ideal\n\
01030 # stereo image plane so that epipolar lines in both stereo images are\n\
01031 # parallel.\n\
01032 float64[9] R # 3x3 row-major matrix\n\
01033 \n\
01034 # Projection/camera matrix\n\
01035 # [fx' 0 cx' Tx]\n\
01036 # P = [ 0 fy' cy' Ty]\n\
01037 # [ 0 0 1 0]\n\
01038 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
01039 # of the processed (rectified) image. That is, the left 3x3 portion\n\
01040 # is the normal camera intrinsic matrix for the rectified image.\n\
01041 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
01042 # coordinates using the focal lengths (fx', fy') and principal point\n\
01043 # (cx', cy') - these may differ from the values in K.\n\
01044 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
01045 # also have R = the identity and P[1:3,1:3] = K.\n\
01046 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
01047 # position of the optical center of the second camera in the first\n\
01048 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
01049 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
01050 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
01051 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
01052 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
01053 # the rectified image is given by:\n\
01054 # [u v w]' = P * [X Y Z 1]'\n\
01055 # x = u / w\n\
01056 # y = v / w\n\
01057 # This holds for both images of a stereo pair.\n\
01058 float64[12] P # 3x4 row-major matrix\n\
01059 \n\
01060 \n\
01061 #######################################################################\n\
01062 # Operational Parameters #\n\
01063 #######################################################################\n\
01064 # These define the image region actually captured by the camera #\n\
01065 # driver. Although they affect the geometry of the output image, they #\n\
01066 # may be changed freely without recalibrating the camera. #\n\
01067 #######################################################################\n\
01068 \n\
01069 # Binning refers here to any camera setting which combines rectangular\n\
01070 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
01071 # resolution of the output image to\n\
01072 # (width / binning_x) x (height / binning_y).\n\
01073 # The default values binning_x = binning_y = 0 is considered the same\n\
01074 # as binning_x = binning_y = 1 (no subsampling).\n\
01075 uint32 binning_x\n\
01076 uint32 binning_y\n\
01077 \n\
01078 # Region of interest (subwindow of full camera resolution), given in\n\
01079 # full resolution (unbinned) image coordinates. A particular ROI\n\
01080 # always denotes the same window of pixels on the camera sensor,\n\
01081 # regardless of binning settings.\n\
01082 # The default setting of roi (all values 0) is considered the same as\n\
01083 # full resolution (roi.width = width, roi.height = height).\n\
01084 RegionOfInterest roi\n\
01085 \n\
01086 ================================================================================\n\
01087 MSG: sensor_msgs/RegionOfInterest\n\
01088 # This message is used to specify a region of interest within an image.\n\
01089 #\n\
01090 # When used to specify the ROI setting of the camera when the image was\n\
01091 # taken, the height and width fields should either match the height and\n\
01092 # width fields for the associated image; or height = width = 0\n\
01093 # indicates that the full resolution image was captured.\n\
01094 \n\
01095 uint32 x_offset # Leftmost pixel of the ROI\n\
01096 # (0 if the ROI includes the left edge of the image)\n\
01097 uint32 y_offset # Topmost pixel of the ROI\n\
01098 # (0 if the ROI includes the top edge of the image)\n\
01099 uint32 height # Height of ROI\n\
01100 uint32 width # Width of ROI\n\
01101 \n\
01102 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
01103 # ROI in this message. Typically this should be False if the full image\n\
01104 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
01105 # used).\n\
01106 bool do_rectify\n\
01107 \n\
01108 ================================================================================\n\
01109 MSG: geometry_msgs/Vector3\n\
01110 # This represents a vector in free space. \n\
01111 \n\
01112 float64 x\n\
01113 float64 y\n\
01114 float64 z\n\
01115 ================================================================================\n\
01116 MSG: trajectory_msgs/JointTrajectory\n\
01117 Header header\n\
01118 string[] joint_names\n\
01119 JointTrajectoryPoint[] points\n\
01120 ================================================================================\n\
01121 MSG: trajectory_msgs/JointTrajectoryPoint\n\
01122 float64[] positions\n\
01123 float64[] velocities\n\
01124 float64[] accelerations\n\
01125 duration time_from_start\n\
01126 ================================================================================\n\
01127 MSG: sensor_msgs/JointState\n\
01128 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
01129 #\n\
01130 # The state of each joint (revolute or prismatic) is defined by:\n\
01131 # * the position of the joint (rad or m),\n\
01132 # * the velocity of the joint (rad/s or m/s) and \n\
01133 # * the effort that is applied in the joint (Nm or N).\n\
01134 #\n\
01135 # Each joint is uniquely identified by its name\n\
01136 # The header specifies the time at which the joint states were recorded. All the joint states\n\
01137 # in one message have to be recorded at the same time.\n\
01138 #\n\
01139 # This message consists of a multiple arrays, one for each part of the joint state. \n\
01140 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
01141 # effort associated with them, you can leave the effort array empty. \n\
01142 #\n\
01143 # All arrays in this message should have the same size, or be empty.\n\
01144 # This is the only way to uniquely associate the joint name with the correct\n\
01145 # states.\n\
01146 \n\
01147 \n\
01148 Header header\n\
01149 \n\
01150 string[] name\n\
01151 float64[] position\n\
01152 float64[] velocity\n\
01153 float64[] effort\n\
01154 \n\
01155 ";
01156 }
01157
01158 static const char* value(const ::object_manipulation_msgs::ReactiveGraspActionGoal_<ContainerAllocator> &) { return value(); }
01159 };
01160
01161 template<class ContainerAllocator> struct HasHeader< ::object_manipulation_msgs::ReactiveGraspActionGoal_<ContainerAllocator> > : public TrueType {};
01162 template<class ContainerAllocator> struct HasHeader< const ::object_manipulation_msgs::ReactiveGraspActionGoal_<ContainerAllocator> > : public TrueType {};
01163 }
01164 }
01165
01166 namespace ros
01167 {
01168 namespace serialization
01169 {
01170
01171 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::ReactiveGraspActionGoal_<ContainerAllocator> >
01172 {
01173 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
01174 {
01175 stream.next(m.header);
01176 stream.next(m.goal_id);
01177 stream.next(m.goal);
01178 }
01179
01180 ROS_DECLARE_ALLINONE_SERIALIZER;
01181 };
01182 }
01183 }
01184
01185 namespace ros
01186 {
01187 namespace message_operations
01188 {
01189
01190 template<class ContainerAllocator>
01191 struct Printer< ::object_manipulation_msgs::ReactiveGraspActionGoal_<ContainerAllocator> >
01192 {
01193 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_manipulation_msgs::ReactiveGraspActionGoal_<ContainerAllocator> & v)
01194 {
01195 s << indent << "header: ";
01196 s << std::endl;
01197 Printer< ::std_msgs::Header_<ContainerAllocator> >::stream(s, indent + " ", v.header);
01198 s << indent << "goal_id: ";
01199 s << std::endl;
01200 Printer< ::actionlib_msgs::GoalID_<ContainerAllocator> >::stream(s, indent + " ", v.goal_id);
01201 s << indent << "goal: ";
01202 s << std::endl;
01203 Printer< ::object_manipulation_msgs::ReactiveGraspGoal_<ContainerAllocator> >::stream(s, indent + " ", v.goal);
01204 }
01205 };
01206
01207
01208 }
01209 }
01210
01211 #endif // OBJECT_MANIPULATION_MSGS_MESSAGE_REACTIVEGRASPACTIONGOAL_H
01212