$search
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-electric-object_manipulation/doc_stacks/2013-03-01_16-13-18.345538/object_manipulation/object_manipulation_msgs/msg/PickupGoal.msg */ 00002 #ifndef OBJECT_MANIPULATION_MSGS_MESSAGE_PICKUPGOAL_H 00003 #define OBJECT_MANIPULATION_MSGS_MESSAGE_PICKUPGOAL_H 00004 #include <string> 00005 #include <vector> 00006 #include <map> 00007 #include <ostream> 00008 #include "ros/serialization.h" 00009 #include "ros/builtin_message_traits.h" 00010 #include "ros/message_operations.h" 00011 #include "ros/time.h" 00012 00013 #include "ros/macros.h" 00014 00015 #include "ros/assert.h" 00016 00017 #include "object_manipulation_msgs/GraspableObject.h" 00018 #include "object_manipulation_msgs/Grasp.h" 00019 #include "object_manipulation_msgs/GripperTranslation.h" 00020 #include "arm_navigation_msgs/Constraints.h" 00021 #include "arm_navigation_msgs/OrderedCollisionOperations.h" 00022 #include "arm_navigation_msgs/LinkPadding.h" 00023 #include "object_manipulation_msgs/GraspableObject.h" 00024 00025 namespace object_manipulation_msgs 00026 { 00027 template <class ContainerAllocator> 00028 struct PickupGoal_ { 00029 typedef PickupGoal_<ContainerAllocator> Type; 00030 00031 PickupGoal_() 00032 : arm_name() 00033 , target() 00034 , desired_grasps() 00035 , lift() 00036 , collision_object_name() 00037 , collision_support_surface_name() 00038 , allow_gripper_support_collision(false) 00039 , use_reactive_execution(false) 00040 , use_reactive_lift(false) 00041 , only_perform_feasibility_test(false) 00042 , ignore_collisions(false) 00043 , path_constraints() 00044 , additional_collision_operations() 00045 , additional_link_padding() 00046 , movable_obstacles() 00047 , max_contact_force(0.0) 00048 { 00049 } 00050 00051 PickupGoal_(const ContainerAllocator& _alloc) 00052 : arm_name(_alloc) 00053 , target(_alloc) 00054 , desired_grasps(_alloc) 00055 , lift(_alloc) 00056 , collision_object_name(_alloc) 00057 , collision_support_surface_name(_alloc) 00058 , allow_gripper_support_collision(false) 00059 , use_reactive_execution(false) 00060 , use_reactive_lift(false) 00061 , only_perform_feasibility_test(false) 00062 , ignore_collisions(false) 00063 , path_constraints(_alloc) 00064 , additional_collision_operations(_alloc) 00065 , additional_link_padding(_alloc) 00066 , movable_obstacles(_alloc) 00067 , max_contact_force(0.0) 00068 { 00069 } 00070 00071 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _arm_name_type; 00072 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > arm_name; 00073 00074 typedef ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> _target_type; 00075 ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> target; 00076 00077 typedef std::vector< ::object_manipulation_msgs::Grasp_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::other > _desired_grasps_type; 00078 std::vector< ::object_manipulation_msgs::Grasp_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::other > desired_grasps; 00079 00080 typedef ::object_manipulation_msgs::GripperTranslation_<ContainerAllocator> _lift_type; 00081 ::object_manipulation_msgs::GripperTranslation_<ContainerAllocator> lift; 00082 00083 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _collision_object_name_type; 00084 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > collision_object_name; 00085 00086 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _collision_support_surface_name_type; 00087 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > collision_support_surface_name; 00088 00089 typedef uint8_t _allow_gripper_support_collision_type; 00090 uint8_t allow_gripper_support_collision; 00091 00092 typedef uint8_t _use_reactive_execution_type; 00093 uint8_t use_reactive_execution; 00094 00095 typedef uint8_t _use_reactive_lift_type; 00096 uint8_t use_reactive_lift; 00097 00098 typedef uint8_t _only_perform_feasibility_test_type; 00099 uint8_t only_perform_feasibility_test; 00100 00101 typedef uint8_t _ignore_collisions_type; 00102 uint8_t ignore_collisions; 00103 00104 typedef ::arm_navigation_msgs::Constraints_<ContainerAllocator> _path_constraints_type; 00105 ::arm_navigation_msgs::Constraints_<ContainerAllocator> path_constraints; 00106 00107 typedef ::arm_navigation_msgs::OrderedCollisionOperations_<ContainerAllocator> _additional_collision_operations_type; 00108 ::arm_navigation_msgs::OrderedCollisionOperations_<ContainerAllocator> additional_collision_operations; 00109 00110 typedef std::vector< ::arm_navigation_msgs::LinkPadding_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::arm_navigation_msgs::LinkPadding_<ContainerAllocator> >::other > _additional_link_padding_type; 00111 std::vector< ::arm_navigation_msgs::LinkPadding_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::arm_navigation_msgs::LinkPadding_<ContainerAllocator> >::other > additional_link_padding; 00112 00113 typedef std::vector< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::other > _movable_obstacles_type; 00114 std::vector< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::other > movable_obstacles; 00115 00116 typedef float _max_contact_force_type; 00117 float max_contact_force; 00118 00119 00120 ROS_DEPRECATED uint32_t get_desired_grasps_size() const { return (uint32_t)desired_grasps.size(); } 00121 ROS_DEPRECATED void set_desired_grasps_size(uint32_t size) { desired_grasps.resize((size_t)size); } 00122 ROS_DEPRECATED void get_desired_grasps_vec(std::vector< ::object_manipulation_msgs::Grasp_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::other > & vec) const { vec = this->desired_grasps; } 00123 ROS_DEPRECATED void set_desired_grasps_vec(const std::vector< ::object_manipulation_msgs::Grasp_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::other > & vec) { this->desired_grasps = vec; } 00124 ROS_DEPRECATED uint32_t get_additional_link_padding_size() const { return (uint32_t)additional_link_padding.size(); } 00125 ROS_DEPRECATED void set_additional_link_padding_size(uint32_t size) { additional_link_padding.resize((size_t)size); } 00126 ROS_DEPRECATED void get_additional_link_padding_vec(std::vector< ::arm_navigation_msgs::LinkPadding_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::arm_navigation_msgs::LinkPadding_<ContainerAllocator> >::other > & vec) const { vec = this->additional_link_padding; } 00127 ROS_DEPRECATED void set_additional_link_padding_vec(const std::vector< ::arm_navigation_msgs::LinkPadding_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::arm_navigation_msgs::LinkPadding_<ContainerAllocator> >::other > & vec) { this->additional_link_padding = vec; } 00128 ROS_DEPRECATED uint32_t get_movable_obstacles_size() const { return (uint32_t)movable_obstacles.size(); } 00129 ROS_DEPRECATED void set_movable_obstacles_size(uint32_t size) { movable_obstacles.resize((size_t)size); } 00130 ROS_DEPRECATED void get_movable_obstacles_vec(std::vector< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::other > & vec) const { vec = this->movable_obstacles; } 00131 ROS_DEPRECATED void set_movable_obstacles_vec(const std::vector< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::other > & vec) { this->movable_obstacles = vec; } 00132 private: 00133 static const char* __s_getDataType_() { return "object_manipulation_msgs/PickupGoal"; } 00134 public: 00135 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); } 00136 00137 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); } 00138 00139 private: 00140 static const char* __s_getMD5Sum_() { return "49435aa8e5853b02489b00dc68d7fa3b"; } 00141 public: 00142 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); } 00143 00144 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); } 00145 00146 private: 00147 static const char* __s_getMessageDefinition_() { return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00148 # An action for picking up an object\n\ 00149 \n\ 00150 # which arm to be used for grasping\n\ 00151 string arm_name\n\ 00152 \n\ 00153 # the object to be grasped\n\ 00154 GraspableObject target\n\ 00155 \n\ 00156 # a list of grasps to be used\n\ 00157 # if empty, the grasp executive will call one of its own planners\n\ 00158 Grasp[] desired_grasps\n\ 00159 \n\ 00160 # how the object should be lifted after the grasp\n\ 00161 # the frame_id that this lift is specified in MUST be either the robot_frame \n\ 00162 # or the gripper_frame specified in your hand description file\n\ 00163 GripperTranslation lift\n\ 00164 \n\ 00165 # the name that the target object has in the collision map\n\ 00166 # can be left empty if no name is available\n\ 00167 string collision_object_name\n\ 00168 \n\ 00169 # the name that the support surface (e.g. table) has in the collision map\n\ 00170 # can be left empty if no name is available\n\ 00171 string collision_support_surface_name\n\ 00172 \n\ 00173 # whether collisions between the gripper and the support surface should be acceptable\n\ 00174 # during move from pre-grasp to grasp and during lift. Collisions when moving to the\n\ 00175 # pre-grasp location are still not allowed even if this is set to true.\n\ 00176 bool allow_gripper_support_collision\n\ 00177 \n\ 00178 # whether reactive grasp execution using tactile sensors should be used\n\ 00179 bool use_reactive_execution\n\ 00180 \n\ 00181 # whether reactive object lifting based on tactile sensors should be used\n\ 00182 bool use_reactive_lift\n\ 00183 \n\ 00184 # set this to true if you only want to query the manipulation pipeline as to what \n\ 00185 # grasps it thinks are feasible, without actually executing them. If this is set to \n\ 00186 # true, the atempted_grasp_results field of the result will be populated, but no arm \n\ 00187 # movement will be attempted\n\ 00188 bool only_perform_feasibility_test\n\ 00189 \n\ 00190 # set this to true if you want to ignore all collisions throughout the pickup \n\ 00191 # and also move directly to the pre-grasp using Cartesian controllers\n\ 00192 bool ignore_collisions\n\ 00193 \n\ 00194 # OPTIONAL (These will not have to be filled out most of the time)\n\ 00195 # constraints to be imposed on every point in the motion of the arm\n\ 00196 arm_navigation_msgs/Constraints path_constraints\n\ 00197 \n\ 00198 # OPTIONAL (These will not have to be filled out most of the time)\n\ 00199 # additional collision operations to be used for every arm movement performed\n\ 00200 # during grasping. Note that these will be added on top of (and thus overide) other \n\ 00201 # collision operations that the grasping pipeline deems necessary. Should be used\n\ 00202 # with care and only if special behaviors are desired\n\ 00203 arm_navigation_msgs/OrderedCollisionOperations additional_collision_operations\n\ 00204 \n\ 00205 # OPTIONAL (These will not have to be filled out most of the time)\n\ 00206 # additional link paddings to be used for every arm movement performed\n\ 00207 # during grasping. Note that these will be added on top of (and thus overide) other \n\ 00208 # link paddings that the grasping pipeline deems necessary. Should be used\n\ 00209 # with care and only if special behaviors are desired\n\ 00210 arm_navigation_msgs/LinkPadding[] additional_link_padding\n\ 00211 \n\ 00212 # an optional list of obstacles that we have semantic information about\n\ 00213 # and that can be moved in the course of grasping\n\ 00214 GraspableObject[] movable_obstacles\n\ 00215 \n\ 00216 # the maximum contact force to use while grasping (<=0 to disable)\n\ 00217 float32 max_contact_force\n\ 00218 \n\ 00219 \n\ 00220 ================================================================================\n\ 00221 MSG: object_manipulation_msgs/GraspableObject\n\ 00222 # an object that the object_manipulator can work on\n\ 00223 \n\ 00224 # a graspable object can be represented in multiple ways. This message\n\ 00225 # can contain all of them. Which one is actually used is up to the receiver\n\ 00226 # of this message. When adding new representations, one must be careful that\n\ 00227 # they have reasonable lightweight defaults indicating that that particular\n\ 00228 # representation is not available.\n\ 00229 \n\ 00230 # the tf frame to be used as a reference frame when combining information from\n\ 00231 # the different representations below\n\ 00232 string reference_frame_id\n\ 00233 \n\ 00234 # potential recognition results from a database of models\n\ 00235 # all poses are relative to the object reference pose\n\ 00236 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\ 00237 \n\ 00238 # the point cloud itself\n\ 00239 sensor_msgs/PointCloud cluster\n\ 00240 \n\ 00241 # a region of a PointCloud2 of interest\n\ 00242 object_manipulation_msgs/SceneRegion region\n\ 00243 \n\ 00244 # the name that this object has in the collision environment\n\ 00245 string collision_name\n\ 00246 ================================================================================\n\ 00247 MSG: household_objects_database_msgs/DatabaseModelPose\n\ 00248 # Informs that a specific model from the Model Database has been \n\ 00249 # identified at a certain location\n\ 00250 \n\ 00251 # the database id of the model\n\ 00252 int32 model_id\n\ 00253 \n\ 00254 # the pose that it can be found in\n\ 00255 geometry_msgs/PoseStamped pose\n\ 00256 \n\ 00257 # a measure of the confidence level in this detection result\n\ 00258 float32 confidence\n\ 00259 \n\ 00260 # the name of the object detector that generated this detection result\n\ 00261 string detector_name\n\ 00262 \n\ 00263 ================================================================================\n\ 00264 MSG: geometry_msgs/PoseStamped\n\ 00265 # A Pose with reference coordinate frame and timestamp\n\ 00266 Header header\n\ 00267 Pose pose\n\ 00268 \n\ 00269 ================================================================================\n\ 00270 MSG: std_msgs/Header\n\ 00271 # Standard metadata for higher-level stamped data types.\n\ 00272 # This is generally used to communicate timestamped data \n\ 00273 # in a particular coordinate frame.\n\ 00274 # \n\ 00275 # sequence ID: consecutively increasing ID \n\ 00276 uint32 seq\n\ 00277 #Two-integer timestamp that is expressed as:\n\ 00278 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00279 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00280 # time-handling sugar is provided by the client library\n\ 00281 time stamp\n\ 00282 #Frame this data is associated with\n\ 00283 # 0: no frame\n\ 00284 # 1: global frame\n\ 00285 string frame_id\n\ 00286 \n\ 00287 ================================================================================\n\ 00288 MSG: geometry_msgs/Pose\n\ 00289 # A representation of pose in free space, composed of postion and orientation. \n\ 00290 Point position\n\ 00291 Quaternion orientation\n\ 00292 \n\ 00293 ================================================================================\n\ 00294 MSG: geometry_msgs/Point\n\ 00295 # This contains the position of a point in free space\n\ 00296 float64 x\n\ 00297 float64 y\n\ 00298 float64 z\n\ 00299 \n\ 00300 ================================================================================\n\ 00301 MSG: geometry_msgs/Quaternion\n\ 00302 # This represents an orientation in free space in quaternion form.\n\ 00303 \n\ 00304 float64 x\n\ 00305 float64 y\n\ 00306 float64 z\n\ 00307 float64 w\n\ 00308 \n\ 00309 ================================================================================\n\ 00310 MSG: sensor_msgs/PointCloud\n\ 00311 # This message holds a collection of 3d points, plus optional additional\n\ 00312 # information about each point.\n\ 00313 \n\ 00314 # Time of sensor data acquisition, coordinate frame ID.\n\ 00315 Header header\n\ 00316 \n\ 00317 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 00318 # in the frame given in the header.\n\ 00319 geometry_msgs/Point32[] points\n\ 00320 \n\ 00321 # Each channel should have the same number of elements as points array,\n\ 00322 # and the data in each channel should correspond 1:1 with each point.\n\ 00323 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 00324 ChannelFloat32[] channels\n\ 00325 \n\ 00326 ================================================================================\n\ 00327 MSG: geometry_msgs/Point32\n\ 00328 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00329 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00330 # \n\ 00331 # This recommendation is to promote interoperability. \n\ 00332 #\n\ 00333 # This message is designed to take up less space when sending\n\ 00334 # lots of points at once, as in the case of a PointCloud. \n\ 00335 \n\ 00336 float32 x\n\ 00337 float32 y\n\ 00338 float32 z\n\ 00339 ================================================================================\n\ 00340 MSG: sensor_msgs/ChannelFloat32\n\ 00341 # This message is used by the PointCloud message to hold optional data\n\ 00342 # associated with each point in the cloud. The length of the values\n\ 00343 # array should be the same as the length of the points array in the\n\ 00344 # PointCloud, and each value should be associated with the corresponding\n\ 00345 # point.\n\ 00346 \n\ 00347 # Channel names in existing practice include:\n\ 00348 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 00349 # This is opposite to usual conventions but remains for\n\ 00350 # historical reasons. The newer PointCloud2 message has no\n\ 00351 # such problem.\n\ 00352 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 00353 # (R,G,B) values packed into the least significant 24 bits,\n\ 00354 # in order.\n\ 00355 # \"intensity\" - laser or pixel intensity.\n\ 00356 # \"distance\"\n\ 00357 \n\ 00358 # The channel name should give semantics of the channel (e.g.\n\ 00359 # \"intensity\" instead of \"value\").\n\ 00360 string name\n\ 00361 \n\ 00362 # The values array should be 1-1 with the elements of the associated\n\ 00363 # PointCloud.\n\ 00364 float32[] values\n\ 00365 \n\ 00366 ================================================================================\n\ 00367 MSG: object_manipulation_msgs/SceneRegion\n\ 00368 # Point cloud\n\ 00369 sensor_msgs/PointCloud2 cloud\n\ 00370 \n\ 00371 # Indices for the region of interest\n\ 00372 int32[] mask\n\ 00373 \n\ 00374 # One of the corresponding 2D images, if applicable\n\ 00375 sensor_msgs/Image image\n\ 00376 \n\ 00377 # The disparity image, if applicable\n\ 00378 sensor_msgs/Image disparity_image\n\ 00379 \n\ 00380 # Camera info for the camera that took the image\n\ 00381 sensor_msgs/CameraInfo cam_info\n\ 00382 \n\ 00383 # a 3D region of interest for grasp planning\n\ 00384 geometry_msgs/PoseStamped roi_box_pose\n\ 00385 geometry_msgs/Vector3 roi_box_dims\n\ 00386 \n\ 00387 ================================================================================\n\ 00388 MSG: sensor_msgs/PointCloud2\n\ 00389 # This message holds a collection of N-dimensional points, which may\n\ 00390 # contain additional information such as normals, intensity, etc. The\n\ 00391 # point data is stored as a binary blob, its layout described by the\n\ 00392 # contents of the \"fields\" array.\n\ 00393 \n\ 00394 # The point cloud data may be organized 2d (image-like) or 1d\n\ 00395 # (unordered). Point clouds organized as 2d images may be produced by\n\ 00396 # camera depth sensors such as stereo or time-of-flight.\n\ 00397 \n\ 00398 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 00399 # points).\n\ 00400 Header header\n\ 00401 \n\ 00402 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 00403 # 1 and width is the length of the point cloud.\n\ 00404 uint32 height\n\ 00405 uint32 width\n\ 00406 \n\ 00407 # Describes the channels and their layout in the binary data blob.\n\ 00408 PointField[] fields\n\ 00409 \n\ 00410 bool is_bigendian # Is this data bigendian?\n\ 00411 uint32 point_step # Length of a point in bytes\n\ 00412 uint32 row_step # Length of a row in bytes\n\ 00413 uint8[] data # Actual point data, size is (row_step*height)\n\ 00414 \n\ 00415 bool is_dense # True if there are no invalid points\n\ 00416 \n\ 00417 ================================================================================\n\ 00418 MSG: sensor_msgs/PointField\n\ 00419 # This message holds the description of one point entry in the\n\ 00420 # PointCloud2 message format.\n\ 00421 uint8 INT8 = 1\n\ 00422 uint8 UINT8 = 2\n\ 00423 uint8 INT16 = 3\n\ 00424 uint8 UINT16 = 4\n\ 00425 uint8 INT32 = 5\n\ 00426 uint8 UINT32 = 6\n\ 00427 uint8 FLOAT32 = 7\n\ 00428 uint8 FLOAT64 = 8\n\ 00429 \n\ 00430 string name # Name of field\n\ 00431 uint32 offset # Offset from start of point struct\n\ 00432 uint8 datatype # Datatype enumeration, see above\n\ 00433 uint32 count # How many elements in the field\n\ 00434 \n\ 00435 ================================================================================\n\ 00436 MSG: sensor_msgs/Image\n\ 00437 # This message contains an uncompressed image\n\ 00438 # (0, 0) is at top-left corner of image\n\ 00439 #\n\ 00440 \n\ 00441 Header header # Header timestamp should be acquisition time of image\n\ 00442 # Header frame_id should be optical frame of camera\n\ 00443 # origin of frame should be optical center of cameara\n\ 00444 # +x should point to the right in the image\n\ 00445 # +y should point down in the image\n\ 00446 # +z should point into to plane of the image\n\ 00447 # If the frame_id here and the frame_id of the CameraInfo\n\ 00448 # message associated with the image conflict\n\ 00449 # the behavior is undefined\n\ 00450 \n\ 00451 uint32 height # image height, that is, number of rows\n\ 00452 uint32 width # image width, that is, number of columns\n\ 00453 \n\ 00454 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00455 # If you want to standardize a new string format, join\n\ 00456 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00457 \n\ 00458 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00459 # taken from the list of strings in src/image_encodings.cpp\n\ 00460 \n\ 00461 uint8 is_bigendian # is this data bigendian?\n\ 00462 uint32 step # Full row length in bytes\n\ 00463 uint8[] data # actual matrix data, size is (step * rows)\n\ 00464 \n\ 00465 ================================================================================\n\ 00466 MSG: sensor_msgs/CameraInfo\n\ 00467 # This message defines meta information for a camera. It should be in a\n\ 00468 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00469 # image topics named:\n\ 00470 #\n\ 00471 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00472 # image - monochrome, distorted\n\ 00473 # image_color - color, distorted\n\ 00474 # image_rect - monochrome, rectified\n\ 00475 # image_rect_color - color, rectified\n\ 00476 #\n\ 00477 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00478 # for producing the four processed image topics from image_raw and\n\ 00479 # camera_info. The meaning of the camera parameters are described in\n\ 00480 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00481 #\n\ 00482 # The image_geometry package provides a user-friendly interface to\n\ 00483 # common operations using this meta information. If you want to, e.g.,\n\ 00484 # project a 3d point into image coordinates, we strongly recommend\n\ 00485 # using image_geometry.\n\ 00486 #\n\ 00487 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00488 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00489 # indicates an uncalibrated camera.\n\ 00490 \n\ 00491 #######################################################################\n\ 00492 # Image acquisition info #\n\ 00493 #######################################################################\n\ 00494 \n\ 00495 # Time of image acquisition, camera coordinate frame ID\n\ 00496 Header header # Header timestamp should be acquisition time of image\n\ 00497 # Header frame_id should be optical frame of camera\n\ 00498 # origin of frame should be optical center of camera\n\ 00499 # +x should point to the right in the image\n\ 00500 # +y should point down in the image\n\ 00501 # +z should point into the plane of the image\n\ 00502 \n\ 00503 \n\ 00504 #######################################################################\n\ 00505 # Calibration Parameters #\n\ 00506 #######################################################################\n\ 00507 # These are fixed during camera calibration. Their values will be the #\n\ 00508 # same in all messages until the camera is recalibrated. Note that #\n\ 00509 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00510 # #\n\ 00511 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00512 # to: #\n\ 00513 # 1. An undistorted image (requires D and K) #\n\ 00514 # 2. A rectified image (requires D, K, R) #\n\ 00515 # The projection matrix P projects 3D points into the rectified image.#\n\ 00516 #######################################################################\n\ 00517 \n\ 00518 # The image dimensions with which the camera was calibrated. Normally\n\ 00519 # this will be the full camera resolution in pixels.\n\ 00520 uint32 height\n\ 00521 uint32 width\n\ 00522 \n\ 00523 # The distortion model used. Supported models are listed in\n\ 00524 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00525 # simple model of radial and tangential distortion - is sufficent.\n\ 00526 string distortion_model\n\ 00527 \n\ 00528 # The distortion parameters, size depending on the distortion model.\n\ 00529 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00530 float64[] D\n\ 00531 \n\ 00532 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00533 # [fx 0 cx]\n\ 00534 # K = [ 0 fy cy]\n\ 00535 # [ 0 0 1]\n\ 00536 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00537 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00538 # (cx, cy).\n\ 00539 float64[9] K # 3x3 row-major matrix\n\ 00540 \n\ 00541 # Rectification matrix (stereo cameras only)\n\ 00542 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00543 # stereo image plane so that epipolar lines in both stereo images are\n\ 00544 # parallel.\n\ 00545 float64[9] R # 3x3 row-major matrix\n\ 00546 \n\ 00547 # Projection/camera matrix\n\ 00548 # [fx' 0 cx' Tx]\n\ 00549 # P = [ 0 fy' cy' Ty]\n\ 00550 # [ 0 0 1 0]\n\ 00551 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 00552 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 00553 # is the normal camera intrinsic matrix for the rectified image.\n\ 00554 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 00555 # coordinates using the focal lengths (fx', fy') and principal point\n\ 00556 # (cx', cy') - these may differ from the values in K.\n\ 00557 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 00558 # also have R = the identity and P[1:3,1:3] = K.\n\ 00559 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 00560 # position of the optical center of the second camera in the first\n\ 00561 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 00562 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 00563 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 00564 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 00565 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 00566 # the rectified image is given by:\n\ 00567 # [u v w]' = P * [X Y Z 1]'\n\ 00568 # x = u / w\n\ 00569 # y = v / w\n\ 00570 # This holds for both images of a stereo pair.\n\ 00571 float64[12] P # 3x4 row-major matrix\n\ 00572 \n\ 00573 \n\ 00574 #######################################################################\n\ 00575 # Operational Parameters #\n\ 00576 #######################################################################\n\ 00577 # These define the image region actually captured by the camera #\n\ 00578 # driver. Although they affect the geometry of the output image, they #\n\ 00579 # may be changed freely without recalibrating the camera. #\n\ 00580 #######################################################################\n\ 00581 \n\ 00582 # Binning refers here to any camera setting which combines rectangular\n\ 00583 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 00584 # resolution of the output image to\n\ 00585 # (width / binning_x) x (height / binning_y).\n\ 00586 # The default values binning_x = binning_y = 0 is considered the same\n\ 00587 # as binning_x = binning_y = 1 (no subsampling).\n\ 00588 uint32 binning_x\n\ 00589 uint32 binning_y\n\ 00590 \n\ 00591 # Region of interest (subwindow of full camera resolution), given in\n\ 00592 # full resolution (unbinned) image coordinates. A particular ROI\n\ 00593 # always denotes the same window of pixels on the camera sensor,\n\ 00594 # regardless of binning settings.\n\ 00595 # The default setting of roi (all values 0) is considered the same as\n\ 00596 # full resolution (roi.width = width, roi.height = height).\n\ 00597 RegionOfInterest roi\n\ 00598 \n\ 00599 ================================================================================\n\ 00600 MSG: sensor_msgs/RegionOfInterest\n\ 00601 # This message is used to specify a region of interest within an image.\n\ 00602 #\n\ 00603 # When used to specify the ROI setting of the camera when the image was\n\ 00604 # taken, the height and width fields should either match the height and\n\ 00605 # width fields for the associated image; or height = width = 0\n\ 00606 # indicates that the full resolution image was captured.\n\ 00607 \n\ 00608 uint32 x_offset # Leftmost pixel of the ROI\n\ 00609 # (0 if the ROI includes the left edge of the image)\n\ 00610 uint32 y_offset # Topmost pixel of the ROI\n\ 00611 # (0 if the ROI includes the top edge of the image)\n\ 00612 uint32 height # Height of ROI\n\ 00613 uint32 width # Width of ROI\n\ 00614 \n\ 00615 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 00616 # ROI in this message. Typically this should be False if the full image\n\ 00617 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 00618 # used).\n\ 00619 bool do_rectify\n\ 00620 \n\ 00621 ================================================================================\n\ 00622 MSG: geometry_msgs/Vector3\n\ 00623 # This represents a vector in free space. \n\ 00624 \n\ 00625 float64 x\n\ 00626 float64 y\n\ 00627 float64 z\n\ 00628 ================================================================================\n\ 00629 MSG: object_manipulation_msgs/Grasp\n\ 00630 \n\ 00631 # The internal posture of the hand for the pre-grasp\n\ 00632 # only positions are used\n\ 00633 sensor_msgs/JointState pre_grasp_posture\n\ 00634 \n\ 00635 # The internal posture of the hand for the grasp\n\ 00636 # positions and efforts are used\n\ 00637 sensor_msgs/JointState grasp_posture\n\ 00638 \n\ 00639 # The position of the end-effector for the grasp relative to a reference frame \n\ 00640 # (that is always specified elsewhere, not in this message)\n\ 00641 geometry_msgs/Pose grasp_pose\n\ 00642 \n\ 00643 # The estimated probability of success for this grasp\n\ 00644 float64 success_probability\n\ 00645 \n\ 00646 # Debug flag to indicate that this grasp would be the best in its cluster\n\ 00647 bool cluster_rep\n\ 00648 \n\ 00649 # how far the pre-grasp should ideally be away from the grasp\n\ 00650 float32 desired_approach_distance\n\ 00651 \n\ 00652 # how much distance between pre-grasp and grasp must actually be feasible \n\ 00653 # for the grasp not to be rejected\n\ 00654 float32 min_approach_distance\n\ 00655 \n\ 00656 # an optional list of obstacles that we have semantic information about\n\ 00657 # and that we expect might move in the course of executing this grasp\n\ 00658 # the grasp planner is expected to make sure they move in an OK way; during\n\ 00659 # execution, grasp executors will not check for collisions against these objects\n\ 00660 GraspableObject[] moved_obstacles\n\ 00661 \n\ 00662 ================================================================================\n\ 00663 MSG: sensor_msgs/JointState\n\ 00664 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\ 00665 #\n\ 00666 # The state of each joint (revolute or prismatic) is defined by:\n\ 00667 # * the position of the joint (rad or m),\n\ 00668 # * the velocity of the joint (rad/s or m/s) and \n\ 00669 # * the effort that is applied in the joint (Nm or N).\n\ 00670 #\n\ 00671 # Each joint is uniquely identified by its name\n\ 00672 # The header specifies the time at which the joint states were recorded. All the joint states\n\ 00673 # in one message have to be recorded at the same time.\n\ 00674 #\n\ 00675 # This message consists of a multiple arrays, one for each part of the joint state. \n\ 00676 # The goal is to make each of the fields optional. When e.g. your joints have no\n\ 00677 # effort associated with them, you can leave the effort array empty. \n\ 00678 #\n\ 00679 # All arrays in this message should have the same size, or be empty.\n\ 00680 # This is the only way to uniquely associate the joint name with the correct\n\ 00681 # states.\n\ 00682 \n\ 00683 \n\ 00684 Header header\n\ 00685 \n\ 00686 string[] name\n\ 00687 float64[] position\n\ 00688 float64[] velocity\n\ 00689 float64[] effort\n\ 00690 \n\ 00691 ================================================================================\n\ 00692 MSG: object_manipulation_msgs/GripperTranslation\n\ 00693 # defines a translation for the gripper, used in pickup or place tasks\n\ 00694 # for example for lifting an object off a table or approaching the table for placing\n\ 00695 \n\ 00696 # the direction of the translation\n\ 00697 geometry_msgs/Vector3Stamped direction\n\ 00698 \n\ 00699 # the desired translation distance\n\ 00700 float32 desired_distance\n\ 00701 \n\ 00702 # the min distance that must be considered feasible before the\n\ 00703 # grasp is even attempted\n\ 00704 float32 min_distance\n\ 00705 ================================================================================\n\ 00706 MSG: geometry_msgs/Vector3Stamped\n\ 00707 # This represents a Vector3 with reference coordinate frame and timestamp\n\ 00708 Header header\n\ 00709 Vector3 vector\n\ 00710 \n\ 00711 ================================================================================\n\ 00712 MSG: arm_navigation_msgs/Constraints\n\ 00713 # This message contains a list of motion planning constraints.\n\ 00714 \n\ 00715 arm_navigation_msgs/JointConstraint[] joint_constraints\n\ 00716 arm_navigation_msgs/PositionConstraint[] position_constraints\n\ 00717 arm_navigation_msgs/OrientationConstraint[] orientation_constraints\n\ 00718 arm_navigation_msgs/VisibilityConstraint[] visibility_constraints\n\ 00719 \n\ 00720 ================================================================================\n\ 00721 MSG: arm_navigation_msgs/JointConstraint\n\ 00722 # Constrain the position of a joint to be within a certain bound\n\ 00723 string joint_name\n\ 00724 \n\ 00725 # the bound to be achieved is [position - tolerance_below, position + tolerance_above]\n\ 00726 float64 position\n\ 00727 float64 tolerance_above\n\ 00728 float64 tolerance_below\n\ 00729 \n\ 00730 # A weighting factor for this constraint\n\ 00731 float64 weight\n\ 00732 ================================================================================\n\ 00733 MSG: arm_navigation_msgs/PositionConstraint\n\ 00734 # This message contains the definition of a position constraint.\n\ 00735 Header header\n\ 00736 \n\ 00737 # The robot link this constraint refers to\n\ 00738 string link_name\n\ 00739 \n\ 00740 # The offset (in the link frame) for the target point on the link we are planning for\n\ 00741 geometry_msgs/Point target_point_offset\n\ 00742 \n\ 00743 # The nominal/target position for the point we are planning for\n\ 00744 geometry_msgs/Point position\n\ 00745 \n\ 00746 # The shape of the bounded region that constrains the position of the end-effector\n\ 00747 # This region is always centered at the position defined above\n\ 00748 arm_navigation_msgs/Shape constraint_region_shape\n\ 00749 \n\ 00750 # The orientation of the bounded region that constrains the position of the end-effector. \n\ 00751 # This allows the specification of non-axis aligned constraints\n\ 00752 geometry_msgs/Quaternion constraint_region_orientation\n\ 00753 \n\ 00754 # Constraint weighting factor - a weight for this constraint\n\ 00755 float64 weight\n\ 00756 \n\ 00757 ================================================================================\n\ 00758 MSG: arm_navigation_msgs/Shape\n\ 00759 byte SPHERE=0\n\ 00760 byte BOX=1\n\ 00761 byte CYLINDER=2\n\ 00762 byte MESH=3\n\ 00763 \n\ 00764 byte type\n\ 00765 \n\ 00766 \n\ 00767 #### define sphere, box, cylinder ####\n\ 00768 # the origin of each shape is considered at the shape's center\n\ 00769 \n\ 00770 # for sphere\n\ 00771 # radius := dimensions[0]\n\ 00772 \n\ 00773 # for cylinder\n\ 00774 # radius := dimensions[0]\n\ 00775 # length := dimensions[1]\n\ 00776 # the length is along the Z axis\n\ 00777 \n\ 00778 # for box\n\ 00779 # size_x := dimensions[0]\n\ 00780 # size_y := dimensions[1]\n\ 00781 # size_z := dimensions[2]\n\ 00782 float64[] dimensions\n\ 00783 \n\ 00784 \n\ 00785 #### define mesh ####\n\ 00786 \n\ 00787 # list of triangles; triangle k is defined by tre vertices located\n\ 00788 # at indices triangles[3k], triangles[3k+1], triangles[3k+2]\n\ 00789 int32[] triangles\n\ 00790 geometry_msgs/Point[] vertices\n\ 00791 \n\ 00792 ================================================================================\n\ 00793 MSG: arm_navigation_msgs/OrientationConstraint\n\ 00794 # This message contains the definition of an orientation constraint.\n\ 00795 Header header\n\ 00796 \n\ 00797 # The robot link this constraint refers to\n\ 00798 string link_name\n\ 00799 \n\ 00800 # The type of the constraint\n\ 00801 int32 type\n\ 00802 int32 LINK_FRAME=0\n\ 00803 int32 HEADER_FRAME=1\n\ 00804 \n\ 00805 # The desired orientation of the robot link specified as a quaternion\n\ 00806 geometry_msgs/Quaternion orientation\n\ 00807 \n\ 00808 # optional RPY error tolerances specified if \n\ 00809 float64 absolute_roll_tolerance\n\ 00810 float64 absolute_pitch_tolerance\n\ 00811 float64 absolute_yaw_tolerance\n\ 00812 \n\ 00813 # Constraint weighting factor - a weight for this constraint\n\ 00814 float64 weight\n\ 00815 \n\ 00816 ================================================================================\n\ 00817 MSG: arm_navigation_msgs/VisibilityConstraint\n\ 00818 # This message contains the definition of a visibility constraint.\n\ 00819 Header header\n\ 00820 \n\ 00821 # The point stamped target that needs to be kept within view of the sensor\n\ 00822 geometry_msgs/PointStamped target\n\ 00823 \n\ 00824 # The local pose of the frame in which visibility is to be maintained\n\ 00825 # The frame id should represent the robot link to which the sensor is attached\n\ 00826 # The visual axis of the sensor is assumed to be along the X axis of this frame\n\ 00827 geometry_msgs/PoseStamped sensor_pose\n\ 00828 \n\ 00829 # The deviation (in radians) that will be tolerated\n\ 00830 # Constraint error will be measured as the solid angle between the \n\ 00831 # X axis of the frame defined above and the vector between the origin \n\ 00832 # of the frame defined above and the target location\n\ 00833 float64 absolute_tolerance\n\ 00834 \n\ 00835 \n\ 00836 ================================================================================\n\ 00837 MSG: geometry_msgs/PointStamped\n\ 00838 # This represents a Point with reference coordinate frame and timestamp\n\ 00839 Header header\n\ 00840 Point point\n\ 00841 \n\ 00842 ================================================================================\n\ 00843 MSG: arm_navigation_msgs/OrderedCollisionOperations\n\ 00844 # A set of collision operations that will be performed in the order they are specified\n\ 00845 CollisionOperation[] collision_operations\n\ 00846 ================================================================================\n\ 00847 MSG: arm_navigation_msgs/CollisionOperation\n\ 00848 # A definition of a collision operation\n\ 00849 # E.g. (\"gripper\",COLLISION_SET_ALL,ENABLE) will enable collisions \n\ 00850 # between the gripper and all objects in the collision space\n\ 00851 \n\ 00852 string object1\n\ 00853 string object2\n\ 00854 string COLLISION_SET_ALL=\"all\"\n\ 00855 string COLLISION_SET_OBJECTS=\"objects\"\n\ 00856 string COLLISION_SET_ATTACHED_OBJECTS=\"attached\"\n\ 00857 \n\ 00858 # The penetration distance to which collisions are allowed. This is 0.0 by default.\n\ 00859 float64 penetration_distance\n\ 00860 \n\ 00861 # Flag that determines whether collisions will be enabled or disabled for the pair of objects specified above\n\ 00862 int32 operation\n\ 00863 int32 DISABLE=0\n\ 00864 int32 ENABLE=1\n\ 00865 \n\ 00866 ================================================================================\n\ 00867 MSG: arm_navigation_msgs/LinkPadding\n\ 00868 #name for the link\n\ 00869 string link_name\n\ 00870 \n\ 00871 # padding to apply to the link\n\ 00872 float64 padding\n\ 00873 \n\ 00874 "; } 00875 public: 00876 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); } 00877 00878 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); } 00879 00880 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const 00881 { 00882 ros::serialization::OStream stream(write_ptr, 1000000000); 00883 ros::serialization::serialize(stream, arm_name); 00884 ros::serialization::serialize(stream, target); 00885 ros::serialization::serialize(stream, desired_grasps); 00886 ros::serialization::serialize(stream, lift); 00887 ros::serialization::serialize(stream, collision_object_name); 00888 ros::serialization::serialize(stream, collision_support_surface_name); 00889 ros::serialization::serialize(stream, allow_gripper_support_collision); 00890 ros::serialization::serialize(stream, use_reactive_execution); 00891 ros::serialization::serialize(stream, use_reactive_lift); 00892 ros::serialization::serialize(stream, only_perform_feasibility_test); 00893 ros::serialization::serialize(stream, ignore_collisions); 00894 ros::serialization::serialize(stream, path_constraints); 00895 ros::serialization::serialize(stream, additional_collision_operations); 00896 ros::serialization::serialize(stream, additional_link_padding); 00897 ros::serialization::serialize(stream, movable_obstacles); 00898 ros::serialization::serialize(stream, max_contact_force); 00899 return stream.getData(); 00900 } 00901 00902 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr) 00903 { 00904 ros::serialization::IStream stream(read_ptr, 1000000000); 00905 ros::serialization::deserialize(stream, arm_name); 00906 ros::serialization::deserialize(stream, target); 00907 ros::serialization::deserialize(stream, desired_grasps); 00908 ros::serialization::deserialize(stream, lift); 00909 ros::serialization::deserialize(stream, collision_object_name); 00910 ros::serialization::deserialize(stream, collision_support_surface_name); 00911 ros::serialization::deserialize(stream, allow_gripper_support_collision); 00912 ros::serialization::deserialize(stream, use_reactive_execution); 00913 ros::serialization::deserialize(stream, use_reactive_lift); 00914 ros::serialization::deserialize(stream, only_perform_feasibility_test); 00915 ros::serialization::deserialize(stream, ignore_collisions); 00916 ros::serialization::deserialize(stream, path_constraints); 00917 ros::serialization::deserialize(stream, additional_collision_operations); 00918 ros::serialization::deserialize(stream, additional_link_padding); 00919 ros::serialization::deserialize(stream, movable_obstacles); 00920 ros::serialization::deserialize(stream, max_contact_force); 00921 return stream.getData(); 00922 } 00923 00924 ROS_DEPRECATED virtual uint32_t serializationLength() const 00925 { 00926 uint32_t size = 0; 00927 size += ros::serialization::serializationLength(arm_name); 00928 size += ros::serialization::serializationLength(target); 00929 size += ros::serialization::serializationLength(desired_grasps); 00930 size += ros::serialization::serializationLength(lift); 00931 size += ros::serialization::serializationLength(collision_object_name); 00932 size += ros::serialization::serializationLength(collision_support_surface_name); 00933 size += ros::serialization::serializationLength(allow_gripper_support_collision); 00934 size += ros::serialization::serializationLength(use_reactive_execution); 00935 size += ros::serialization::serializationLength(use_reactive_lift); 00936 size += ros::serialization::serializationLength(only_perform_feasibility_test); 00937 size += ros::serialization::serializationLength(ignore_collisions); 00938 size += ros::serialization::serializationLength(path_constraints); 00939 size += ros::serialization::serializationLength(additional_collision_operations); 00940 size += ros::serialization::serializationLength(additional_link_padding); 00941 size += ros::serialization::serializationLength(movable_obstacles); 00942 size += ros::serialization::serializationLength(max_contact_force); 00943 return size; 00944 } 00945 00946 typedef boost::shared_ptr< ::object_manipulation_msgs::PickupGoal_<ContainerAllocator> > Ptr; 00947 typedef boost::shared_ptr< ::object_manipulation_msgs::PickupGoal_<ContainerAllocator> const> ConstPtr; 00948 boost::shared_ptr<std::map<std::string, std::string> > __connection_header; 00949 }; // struct PickupGoal 00950 typedef ::object_manipulation_msgs::PickupGoal_<std::allocator<void> > PickupGoal; 00951 00952 typedef boost::shared_ptr< ::object_manipulation_msgs::PickupGoal> PickupGoalPtr; 00953 typedef boost::shared_ptr< ::object_manipulation_msgs::PickupGoal const> PickupGoalConstPtr; 00954 00955 00956 template<typename ContainerAllocator> 00957 std::ostream& operator<<(std::ostream& s, const ::object_manipulation_msgs::PickupGoal_<ContainerAllocator> & v) 00958 { 00959 ros::message_operations::Printer< ::object_manipulation_msgs::PickupGoal_<ContainerAllocator> >::stream(s, "", v); 00960 return s;} 00961 00962 } // namespace object_manipulation_msgs 00963 00964 namespace ros 00965 { 00966 namespace message_traits 00967 { 00968 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::PickupGoal_<ContainerAllocator> > : public TrueType {}; 00969 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::PickupGoal_<ContainerAllocator> const> : public TrueType {}; 00970 template<class ContainerAllocator> 00971 struct MD5Sum< ::object_manipulation_msgs::PickupGoal_<ContainerAllocator> > { 00972 static const char* value() 00973 { 00974 return "49435aa8e5853b02489b00dc68d7fa3b"; 00975 } 00976 00977 static const char* value(const ::object_manipulation_msgs::PickupGoal_<ContainerAllocator> &) { return value(); } 00978 static const uint64_t static_value1 = 0x49435aa8e5853b02ULL; 00979 static const uint64_t static_value2 = 0x489b00dc68d7fa3bULL; 00980 }; 00981 00982 template<class ContainerAllocator> 00983 struct DataType< ::object_manipulation_msgs::PickupGoal_<ContainerAllocator> > { 00984 static const char* value() 00985 { 00986 return "object_manipulation_msgs/PickupGoal"; 00987 } 00988 00989 static const char* value(const ::object_manipulation_msgs::PickupGoal_<ContainerAllocator> &) { return value(); } 00990 }; 00991 00992 template<class ContainerAllocator> 00993 struct Definition< ::object_manipulation_msgs::PickupGoal_<ContainerAllocator> > { 00994 static const char* value() 00995 { 00996 return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00997 # An action for picking up an object\n\ 00998 \n\ 00999 # which arm to be used for grasping\n\ 01000 string arm_name\n\ 01001 \n\ 01002 # the object to be grasped\n\ 01003 GraspableObject target\n\ 01004 \n\ 01005 # a list of grasps to be used\n\ 01006 # if empty, the grasp executive will call one of its own planners\n\ 01007 Grasp[] desired_grasps\n\ 01008 \n\ 01009 # how the object should be lifted after the grasp\n\ 01010 # the frame_id that this lift is specified in MUST be either the robot_frame \n\ 01011 # or the gripper_frame specified in your hand description file\n\ 01012 GripperTranslation lift\n\ 01013 \n\ 01014 # the name that the target object has in the collision map\n\ 01015 # can be left empty if no name is available\n\ 01016 string collision_object_name\n\ 01017 \n\ 01018 # the name that the support surface (e.g. table) has in the collision map\n\ 01019 # can be left empty if no name is available\n\ 01020 string collision_support_surface_name\n\ 01021 \n\ 01022 # whether collisions between the gripper and the support surface should be acceptable\n\ 01023 # during move from pre-grasp to grasp and during lift. Collisions when moving to the\n\ 01024 # pre-grasp location are still not allowed even if this is set to true.\n\ 01025 bool allow_gripper_support_collision\n\ 01026 \n\ 01027 # whether reactive grasp execution using tactile sensors should be used\n\ 01028 bool use_reactive_execution\n\ 01029 \n\ 01030 # whether reactive object lifting based on tactile sensors should be used\n\ 01031 bool use_reactive_lift\n\ 01032 \n\ 01033 # set this to true if you only want to query the manipulation pipeline as to what \n\ 01034 # grasps it thinks are feasible, without actually executing them. If this is set to \n\ 01035 # true, the atempted_grasp_results field of the result will be populated, but no arm \n\ 01036 # movement will be attempted\n\ 01037 bool only_perform_feasibility_test\n\ 01038 \n\ 01039 # set this to true if you want to ignore all collisions throughout the pickup \n\ 01040 # and also move directly to the pre-grasp using Cartesian controllers\n\ 01041 bool ignore_collisions\n\ 01042 \n\ 01043 # OPTIONAL (These will not have to be filled out most of the time)\n\ 01044 # constraints to be imposed on every point in the motion of the arm\n\ 01045 arm_navigation_msgs/Constraints path_constraints\n\ 01046 \n\ 01047 # OPTIONAL (These will not have to be filled out most of the time)\n\ 01048 # additional collision operations to be used for every arm movement performed\n\ 01049 # during grasping. Note that these will be added on top of (and thus overide) other \n\ 01050 # collision operations that the grasping pipeline deems necessary. Should be used\n\ 01051 # with care and only if special behaviors are desired\n\ 01052 arm_navigation_msgs/OrderedCollisionOperations additional_collision_operations\n\ 01053 \n\ 01054 # OPTIONAL (These will not have to be filled out most of the time)\n\ 01055 # additional link paddings to be used for every arm movement performed\n\ 01056 # during grasping. Note that these will be added on top of (and thus overide) other \n\ 01057 # link paddings that the grasping pipeline deems necessary. Should be used\n\ 01058 # with care and only if special behaviors are desired\n\ 01059 arm_navigation_msgs/LinkPadding[] additional_link_padding\n\ 01060 \n\ 01061 # an optional list of obstacles that we have semantic information about\n\ 01062 # and that can be moved in the course of grasping\n\ 01063 GraspableObject[] movable_obstacles\n\ 01064 \n\ 01065 # the maximum contact force to use while grasping (<=0 to disable)\n\ 01066 float32 max_contact_force\n\ 01067 \n\ 01068 \n\ 01069 ================================================================================\n\ 01070 MSG: object_manipulation_msgs/GraspableObject\n\ 01071 # an object that the object_manipulator can work on\n\ 01072 \n\ 01073 # a graspable object can be represented in multiple ways. This message\n\ 01074 # can contain all of them. Which one is actually used is up to the receiver\n\ 01075 # of this message. When adding new representations, one must be careful that\n\ 01076 # they have reasonable lightweight defaults indicating that that particular\n\ 01077 # representation is not available.\n\ 01078 \n\ 01079 # the tf frame to be used as a reference frame when combining information from\n\ 01080 # the different representations below\n\ 01081 string reference_frame_id\n\ 01082 \n\ 01083 # potential recognition results from a database of models\n\ 01084 # all poses are relative to the object reference pose\n\ 01085 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\ 01086 \n\ 01087 # the point cloud itself\n\ 01088 sensor_msgs/PointCloud cluster\n\ 01089 \n\ 01090 # a region of a PointCloud2 of interest\n\ 01091 object_manipulation_msgs/SceneRegion region\n\ 01092 \n\ 01093 # the name that this object has in the collision environment\n\ 01094 string collision_name\n\ 01095 ================================================================================\n\ 01096 MSG: household_objects_database_msgs/DatabaseModelPose\n\ 01097 # Informs that a specific model from the Model Database has been \n\ 01098 # identified at a certain location\n\ 01099 \n\ 01100 # the database id of the model\n\ 01101 int32 model_id\n\ 01102 \n\ 01103 # the pose that it can be found in\n\ 01104 geometry_msgs/PoseStamped pose\n\ 01105 \n\ 01106 # a measure of the confidence level in this detection result\n\ 01107 float32 confidence\n\ 01108 \n\ 01109 # the name of the object detector that generated this detection result\n\ 01110 string detector_name\n\ 01111 \n\ 01112 ================================================================================\n\ 01113 MSG: geometry_msgs/PoseStamped\n\ 01114 # A Pose with reference coordinate frame and timestamp\n\ 01115 Header header\n\ 01116 Pose pose\n\ 01117 \n\ 01118 ================================================================================\n\ 01119 MSG: std_msgs/Header\n\ 01120 # Standard metadata for higher-level stamped data types.\n\ 01121 # This is generally used to communicate timestamped data \n\ 01122 # in a particular coordinate frame.\n\ 01123 # \n\ 01124 # sequence ID: consecutively increasing ID \n\ 01125 uint32 seq\n\ 01126 #Two-integer timestamp that is expressed as:\n\ 01127 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 01128 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 01129 # time-handling sugar is provided by the client library\n\ 01130 time stamp\n\ 01131 #Frame this data is associated with\n\ 01132 # 0: no frame\n\ 01133 # 1: global frame\n\ 01134 string frame_id\n\ 01135 \n\ 01136 ================================================================================\n\ 01137 MSG: geometry_msgs/Pose\n\ 01138 # A representation of pose in free space, composed of postion and orientation. \n\ 01139 Point position\n\ 01140 Quaternion orientation\n\ 01141 \n\ 01142 ================================================================================\n\ 01143 MSG: geometry_msgs/Point\n\ 01144 # This contains the position of a point in free space\n\ 01145 float64 x\n\ 01146 float64 y\n\ 01147 float64 z\n\ 01148 \n\ 01149 ================================================================================\n\ 01150 MSG: geometry_msgs/Quaternion\n\ 01151 # This represents an orientation in free space in quaternion form.\n\ 01152 \n\ 01153 float64 x\n\ 01154 float64 y\n\ 01155 float64 z\n\ 01156 float64 w\n\ 01157 \n\ 01158 ================================================================================\n\ 01159 MSG: sensor_msgs/PointCloud\n\ 01160 # This message holds a collection of 3d points, plus optional additional\n\ 01161 # information about each point.\n\ 01162 \n\ 01163 # Time of sensor data acquisition, coordinate frame ID.\n\ 01164 Header header\n\ 01165 \n\ 01166 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 01167 # in the frame given in the header.\n\ 01168 geometry_msgs/Point32[] points\n\ 01169 \n\ 01170 # Each channel should have the same number of elements as points array,\n\ 01171 # and the data in each channel should correspond 1:1 with each point.\n\ 01172 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 01173 ChannelFloat32[] channels\n\ 01174 \n\ 01175 ================================================================================\n\ 01176 MSG: geometry_msgs/Point32\n\ 01177 # This contains the position of a point in free space(with 32 bits of precision).\n\ 01178 # It is recommeded to use Point wherever possible instead of Point32. \n\ 01179 # \n\ 01180 # This recommendation is to promote interoperability. \n\ 01181 #\n\ 01182 # This message is designed to take up less space when sending\n\ 01183 # lots of points at once, as in the case of a PointCloud. \n\ 01184 \n\ 01185 float32 x\n\ 01186 float32 y\n\ 01187 float32 z\n\ 01188 ================================================================================\n\ 01189 MSG: sensor_msgs/ChannelFloat32\n\ 01190 # This message is used by the PointCloud message to hold optional data\n\ 01191 # associated with each point in the cloud. The length of the values\n\ 01192 # array should be the same as the length of the points array in the\n\ 01193 # PointCloud, and each value should be associated with the corresponding\n\ 01194 # point.\n\ 01195 \n\ 01196 # Channel names in existing practice include:\n\ 01197 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 01198 # This is opposite to usual conventions but remains for\n\ 01199 # historical reasons. The newer PointCloud2 message has no\n\ 01200 # such problem.\n\ 01201 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 01202 # (R,G,B) values packed into the least significant 24 bits,\n\ 01203 # in order.\n\ 01204 # \"intensity\" - laser or pixel intensity.\n\ 01205 # \"distance\"\n\ 01206 \n\ 01207 # The channel name should give semantics of the channel (e.g.\n\ 01208 # \"intensity\" instead of \"value\").\n\ 01209 string name\n\ 01210 \n\ 01211 # The values array should be 1-1 with the elements of the associated\n\ 01212 # PointCloud.\n\ 01213 float32[] values\n\ 01214 \n\ 01215 ================================================================================\n\ 01216 MSG: object_manipulation_msgs/SceneRegion\n\ 01217 # Point cloud\n\ 01218 sensor_msgs/PointCloud2 cloud\n\ 01219 \n\ 01220 # Indices for the region of interest\n\ 01221 int32[] mask\n\ 01222 \n\ 01223 # One of the corresponding 2D images, if applicable\n\ 01224 sensor_msgs/Image image\n\ 01225 \n\ 01226 # The disparity image, if applicable\n\ 01227 sensor_msgs/Image disparity_image\n\ 01228 \n\ 01229 # Camera info for the camera that took the image\n\ 01230 sensor_msgs/CameraInfo cam_info\n\ 01231 \n\ 01232 # a 3D region of interest for grasp planning\n\ 01233 geometry_msgs/PoseStamped roi_box_pose\n\ 01234 geometry_msgs/Vector3 roi_box_dims\n\ 01235 \n\ 01236 ================================================================================\n\ 01237 MSG: sensor_msgs/PointCloud2\n\ 01238 # This message holds a collection of N-dimensional points, which may\n\ 01239 # contain additional information such as normals, intensity, etc. The\n\ 01240 # point data is stored as a binary blob, its layout described by the\n\ 01241 # contents of the \"fields\" array.\n\ 01242 \n\ 01243 # The point cloud data may be organized 2d (image-like) or 1d\n\ 01244 # (unordered). Point clouds organized as 2d images may be produced by\n\ 01245 # camera depth sensors such as stereo or time-of-flight.\n\ 01246 \n\ 01247 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 01248 # points).\n\ 01249 Header header\n\ 01250 \n\ 01251 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 01252 # 1 and width is the length of the point cloud.\n\ 01253 uint32 height\n\ 01254 uint32 width\n\ 01255 \n\ 01256 # Describes the channels and their layout in the binary data blob.\n\ 01257 PointField[] fields\n\ 01258 \n\ 01259 bool is_bigendian # Is this data bigendian?\n\ 01260 uint32 point_step # Length of a point in bytes\n\ 01261 uint32 row_step # Length of a row in bytes\n\ 01262 uint8[] data # Actual point data, size is (row_step*height)\n\ 01263 \n\ 01264 bool is_dense # True if there are no invalid points\n\ 01265 \n\ 01266 ================================================================================\n\ 01267 MSG: sensor_msgs/PointField\n\ 01268 # This message holds the description of one point entry in the\n\ 01269 # PointCloud2 message format.\n\ 01270 uint8 INT8 = 1\n\ 01271 uint8 UINT8 = 2\n\ 01272 uint8 INT16 = 3\n\ 01273 uint8 UINT16 = 4\n\ 01274 uint8 INT32 = 5\n\ 01275 uint8 UINT32 = 6\n\ 01276 uint8 FLOAT32 = 7\n\ 01277 uint8 FLOAT64 = 8\n\ 01278 \n\ 01279 string name # Name of field\n\ 01280 uint32 offset # Offset from start of point struct\n\ 01281 uint8 datatype # Datatype enumeration, see above\n\ 01282 uint32 count # How many elements in the field\n\ 01283 \n\ 01284 ================================================================================\n\ 01285 MSG: sensor_msgs/Image\n\ 01286 # This message contains an uncompressed image\n\ 01287 # (0, 0) is at top-left corner of image\n\ 01288 #\n\ 01289 \n\ 01290 Header header # Header timestamp should be acquisition time of image\n\ 01291 # Header frame_id should be optical frame of camera\n\ 01292 # origin of frame should be optical center of cameara\n\ 01293 # +x should point to the right in the image\n\ 01294 # +y should point down in the image\n\ 01295 # +z should point into to plane of the image\n\ 01296 # If the frame_id here and the frame_id of the CameraInfo\n\ 01297 # message associated with the image conflict\n\ 01298 # the behavior is undefined\n\ 01299 \n\ 01300 uint32 height # image height, that is, number of rows\n\ 01301 uint32 width # image width, that is, number of columns\n\ 01302 \n\ 01303 # The legal values for encoding are in file src/image_encodings.cpp\n\ 01304 # If you want to standardize a new string format, join\n\ 01305 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 01306 \n\ 01307 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 01308 # taken from the list of strings in src/image_encodings.cpp\n\ 01309 \n\ 01310 uint8 is_bigendian # is this data bigendian?\n\ 01311 uint32 step # Full row length in bytes\n\ 01312 uint8[] data # actual matrix data, size is (step * rows)\n\ 01313 \n\ 01314 ================================================================================\n\ 01315 MSG: sensor_msgs/CameraInfo\n\ 01316 # This message defines meta information for a camera. It should be in a\n\ 01317 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 01318 # image topics named:\n\ 01319 #\n\ 01320 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 01321 # image - monochrome, distorted\n\ 01322 # image_color - color, distorted\n\ 01323 # image_rect - monochrome, rectified\n\ 01324 # image_rect_color - color, rectified\n\ 01325 #\n\ 01326 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 01327 # for producing the four processed image topics from image_raw and\n\ 01328 # camera_info. The meaning of the camera parameters are described in\n\ 01329 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 01330 #\n\ 01331 # The image_geometry package provides a user-friendly interface to\n\ 01332 # common operations using this meta information. If you want to, e.g.,\n\ 01333 # project a 3d point into image coordinates, we strongly recommend\n\ 01334 # using image_geometry.\n\ 01335 #\n\ 01336 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 01337 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 01338 # indicates an uncalibrated camera.\n\ 01339 \n\ 01340 #######################################################################\n\ 01341 # Image acquisition info #\n\ 01342 #######################################################################\n\ 01343 \n\ 01344 # Time of image acquisition, camera coordinate frame ID\n\ 01345 Header header # Header timestamp should be acquisition time of image\n\ 01346 # Header frame_id should be optical frame of camera\n\ 01347 # origin of frame should be optical center of camera\n\ 01348 # +x should point to the right in the image\n\ 01349 # +y should point down in the image\n\ 01350 # +z should point into the plane of the image\n\ 01351 \n\ 01352 \n\ 01353 #######################################################################\n\ 01354 # Calibration Parameters #\n\ 01355 #######################################################################\n\ 01356 # These are fixed during camera calibration. Their values will be the #\n\ 01357 # same in all messages until the camera is recalibrated. Note that #\n\ 01358 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 01359 # #\n\ 01360 # The internal parameters can be used to warp a raw (distorted) image #\n\ 01361 # to: #\n\ 01362 # 1. An undistorted image (requires D and K) #\n\ 01363 # 2. A rectified image (requires D, K, R) #\n\ 01364 # The projection matrix P projects 3D points into the rectified image.#\n\ 01365 #######################################################################\n\ 01366 \n\ 01367 # The image dimensions with which the camera was calibrated. Normally\n\ 01368 # this will be the full camera resolution in pixels.\n\ 01369 uint32 height\n\ 01370 uint32 width\n\ 01371 \n\ 01372 # The distortion model used. Supported models are listed in\n\ 01373 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 01374 # simple model of radial and tangential distortion - is sufficent.\n\ 01375 string distortion_model\n\ 01376 \n\ 01377 # The distortion parameters, size depending on the distortion model.\n\ 01378 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 01379 float64[] D\n\ 01380 \n\ 01381 # Intrinsic camera matrix for the raw (distorted) images.\n\ 01382 # [fx 0 cx]\n\ 01383 # K = [ 0 fy cy]\n\ 01384 # [ 0 0 1]\n\ 01385 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 01386 # coordinates using the focal lengths (fx, fy) and principal point\n\ 01387 # (cx, cy).\n\ 01388 float64[9] K # 3x3 row-major matrix\n\ 01389 \n\ 01390 # Rectification matrix (stereo cameras only)\n\ 01391 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 01392 # stereo image plane so that epipolar lines in both stereo images are\n\ 01393 # parallel.\n\ 01394 float64[9] R # 3x3 row-major matrix\n\ 01395 \n\ 01396 # Projection/camera matrix\n\ 01397 # [fx' 0 cx' Tx]\n\ 01398 # P = [ 0 fy' cy' Ty]\n\ 01399 # [ 0 0 1 0]\n\ 01400 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 01401 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 01402 # is the normal camera intrinsic matrix for the rectified image.\n\ 01403 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 01404 # coordinates using the focal lengths (fx', fy') and principal point\n\ 01405 # (cx', cy') - these may differ from the values in K.\n\ 01406 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 01407 # also have R = the identity and P[1:3,1:3] = K.\n\ 01408 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 01409 # position of the optical center of the second camera in the first\n\ 01410 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 01411 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 01412 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 01413 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 01414 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 01415 # the rectified image is given by:\n\ 01416 # [u v w]' = P * [X Y Z 1]'\n\ 01417 # x = u / w\n\ 01418 # y = v / w\n\ 01419 # This holds for both images of a stereo pair.\n\ 01420 float64[12] P # 3x4 row-major matrix\n\ 01421 \n\ 01422 \n\ 01423 #######################################################################\n\ 01424 # Operational Parameters #\n\ 01425 #######################################################################\n\ 01426 # These define the image region actually captured by the camera #\n\ 01427 # driver. Although they affect the geometry of the output image, they #\n\ 01428 # may be changed freely without recalibrating the camera. #\n\ 01429 #######################################################################\n\ 01430 \n\ 01431 # Binning refers here to any camera setting which combines rectangular\n\ 01432 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 01433 # resolution of the output image to\n\ 01434 # (width / binning_x) x (height / binning_y).\n\ 01435 # The default values binning_x = binning_y = 0 is considered the same\n\ 01436 # as binning_x = binning_y = 1 (no subsampling).\n\ 01437 uint32 binning_x\n\ 01438 uint32 binning_y\n\ 01439 \n\ 01440 # Region of interest (subwindow of full camera resolution), given in\n\ 01441 # full resolution (unbinned) image coordinates. A particular ROI\n\ 01442 # always denotes the same window of pixels on the camera sensor,\n\ 01443 # regardless of binning settings.\n\ 01444 # The default setting of roi (all values 0) is considered the same as\n\ 01445 # full resolution (roi.width = width, roi.height = height).\n\ 01446 RegionOfInterest roi\n\ 01447 \n\ 01448 ================================================================================\n\ 01449 MSG: sensor_msgs/RegionOfInterest\n\ 01450 # This message is used to specify a region of interest within an image.\n\ 01451 #\n\ 01452 # When used to specify the ROI setting of the camera when the image was\n\ 01453 # taken, the height and width fields should either match the height and\n\ 01454 # width fields for the associated image; or height = width = 0\n\ 01455 # indicates that the full resolution image was captured.\n\ 01456 \n\ 01457 uint32 x_offset # Leftmost pixel of the ROI\n\ 01458 # (0 if the ROI includes the left edge of the image)\n\ 01459 uint32 y_offset # Topmost pixel of the ROI\n\ 01460 # (0 if the ROI includes the top edge of the image)\n\ 01461 uint32 height # Height of ROI\n\ 01462 uint32 width # Width of ROI\n\ 01463 \n\ 01464 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 01465 # ROI in this message. Typically this should be False if the full image\n\ 01466 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 01467 # used).\n\ 01468 bool do_rectify\n\ 01469 \n\ 01470 ================================================================================\n\ 01471 MSG: geometry_msgs/Vector3\n\ 01472 # This represents a vector in free space. \n\ 01473 \n\ 01474 float64 x\n\ 01475 float64 y\n\ 01476 float64 z\n\ 01477 ================================================================================\n\ 01478 MSG: object_manipulation_msgs/Grasp\n\ 01479 \n\ 01480 # The internal posture of the hand for the pre-grasp\n\ 01481 # only positions are used\n\ 01482 sensor_msgs/JointState pre_grasp_posture\n\ 01483 \n\ 01484 # The internal posture of the hand for the grasp\n\ 01485 # positions and efforts are used\n\ 01486 sensor_msgs/JointState grasp_posture\n\ 01487 \n\ 01488 # The position of the end-effector for the grasp relative to a reference frame \n\ 01489 # (that is always specified elsewhere, not in this message)\n\ 01490 geometry_msgs/Pose grasp_pose\n\ 01491 \n\ 01492 # The estimated probability of success for this grasp\n\ 01493 float64 success_probability\n\ 01494 \n\ 01495 # Debug flag to indicate that this grasp would be the best in its cluster\n\ 01496 bool cluster_rep\n\ 01497 \n\ 01498 # how far the pre-grasp should ideally be away from the grasp\n\ 01499 float32 desired_approach_distance\n\ 01500 \n\ 01501 # how much distance between pre-grasp and grasp must actually be feasible \n\ 01502 # for the grasp not to be rejected\n\ 01503 float32 min_approach_distance\n\ 01504 \n\ 01505 # an optional list of obstacles that we have semantic information about\n\ 01506 # and that we expect might move in the course of executing this grasp\n\ 01507 # the grasp planner is expected to make sure they move in an OK way; during\n\ 01508 # execution, grasp executors will not check for collisions against these objects\n\ 01509 GraspableObject[] moved_obstacles\n\ 01510 \n\ 01511 ================================================================================\n\ 01512 MSG: sensor_msgs/JointState\n\ 01513 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\ 01514 #\n\ 01515 # The state of each joint (revolute or prismatic) is defined by:\n\ 01516 # * the position of the joint (rad or m),\n\ 01517 # * the velocity of the joint (rad/s or m/s) and \n\ 01518 # * the effort that is applied in the joint (Nm or N).\n\ 01519 #\n\ 01520 # Each joint is uniquely identified by its name\n\ 01521 # The header specifies the time at which the joint states were recorded. All the joint states\n\ 01522 # in one message have to be recorded at the same time.\n\ 01523 #\n\ 01524 # This message consists of a multiple arrays, one for each part of the joint state. \n\ 01525 # The goal is to make each of the fields optional. When e.g. your joints have no\n\ 01526 # effort associated with them, you can leave the effort array empty. \n\ 01527 #\n\ 01528 # All arrays in this message should have the same size, or be empty.\n\ 01529 # This is the only way to uniquely associate the joint name with the correct\n\ 01530 # states.\n\ 01531 \n\ 01532 \n\ 01533 Header header\n\ 01534 \n\ 01535 string[] name\n\ 01536 float64[] position\n\ 01537 float64[] velocity\n\ 01538 float64[] effort\n\ 01539 \n\ 01540 ================================================================================\n\ 01541 MSG: object_manipulation_msgs/GripperTranslation\n\ 01542 # defines a translation for the gripper, used in pickup or place tasks\n\ 01543 # for example for lifting an object off a table or approaching the table for placing\n\ 01544 \n\ 01545 # the direction of the translation\n\ 01546 geometry_msgs/Vector3Stamped direction\n\ 01547 \n\ 01548 # the desired translation distance\n\ 01549 float32 desired_distance\n\ 01550 \n\ 01551 # the min distance that must be considered feasible before the\n\ 01552 # grasp is even attempted\n\ 01553 float32 min_distance\n\ 01554 ================================================================================\n\ 01555 MSG: geometry_msgs/Vector3Stamped\n\ 01556 # This represents a Vector3 with reference coordinate frame and timestamp\n\ 01557 Header header\n\ 01558 Vector3 vector\n\ 01559 \n\ 01560 ================================================================================\n\ 01561 MSG: arm_navigation_msgs/Constraints\n\ 01562 # This message contains a list of motion planning constraints.\n\ 01563 \n\ 01564 arm_navigation_msgs/JointConstraint[] joint_constraints\n\ 01565 arm_navigation_msgs/PositionConstraint[] position_constraints\n\ 01566 arm_navigation_msgs/OrientationConstraint[] orientation_constraints\n\ 01567 arm_navigation_msgs/VisibilityConstraint[] visibility_constraints\n\ 01568 \n\ 01569 ================================================================================\n\ 01570 MSG: arm_navigation_msgs/JointConstraint\n\ 01571 # Constrain the position of a joint to be within a certain bound\n\ 01572 string joint_name\n\ 01573 \n\ 01574 # the bound to be achieved is [position - tolerance_below, position + tolerance_above]\n\ 01575 float64 position\n\ 01576 float64 tolerance_above\n\ 01577 float64 tolerance_below\n\ 01578 \n\ 01579 # A weighting factor for this constraint\n\ 01580 float64 weight\n\ 01581 ================================================================================\n\ 01582 MSG: arm_navigation_msgs/PositionConstraint\n\ 01583 # This message contains the definition of a position constraint.\n\ 01584 Header header\n\ 01585 \n\ 01586 # The robot link this constraint refers to\n\ 01587 string link_name\n\ 01588 \n\ 01589 # The offset (in the link frame) for the target point on the link we are planning for\n\ 01590 geometry_msgs/Point target_point_offset\n\ 01591 \n\ 01592 # The nominal/target position for the point we are planning for\n\ 01593 geometry_msgs/Point position\n\ 01594 \n\ 01595 # The shape of the bounded region that constrains the position of the end-effector\n\ 01596 # This region is always centered at the position defined above\n\ 01597 arm_navigation_msgs/Shape constraint_region_shape\n\ 01598 \n\ 01599 # The orientation of the bounded region that constrains the position of the end-effector. \n\ 01600 # This allows the specification of non-axis aligned constraints\n\ 01601 geometry_msgs/Quaternion constraint_region_orientation\n\ 01602 \n\ 01603 # Constraint weighting factor - a weight for this constraint\n\ 01604 float64 weight\n\ 01605 \n\ 01606 ================================================================================\n\ 01607 MSG: arm_navigation_msgs/Shape\n\ 01608 byte SPHERE=0\n\ 01609 byte BOX=1\n\ 01610 byte CYLINDER=2\n\ 01611 byte MESH=3\n\ 01612 \n\ 01613 byte type\n\ 01614 \n\ 01615 \n\ 01616 #### define sphere, box, cylinder ####\n\ 01617 # the origin of each shape is considered at the shape's center\n\ 01618 \n\ 01619 # for sphere\n\ 01620 # radius := dimensions[0]\n\ 01621 \n\ 01622 # for cylinder\n\ 01623 # radius := dimensions[0]\n\ 01624 # length := dimensions[1]\n\ 01625 # the length is along the Z axis\n\ 01626 \n\ 01627 # for box\n\ 01628 # size_x := dimensions[0]\n\ 01629 # size_y := dimensions[1]\n\ 01630 # size_z := dimensions[2]\n\ 01631 float64[] dimensions\n\ 01632 \n\ 01633 \n\ 01634 #### define mesh ####\n\ 01635 \n\ 01636 # list of triangles; triangle k is defined by tre vertices located\n\ 01637 # at indices triangles[3k], triangles[3k+1], triangles[3k+2]\n\ 01638 int32[] triangles\n\ 01639 geometry_msgs/Point[] vertices\n\ 01640 \n\ 01641 ================================================================================\n\ 01642 MSG: arm_navigation_msgs/OrientationConstraint\n\ 01643 # This message contains the definition of an orientation constraint.\n\ 01644 Header header\n\ 01645 \n\ 01646 # The robot link this constraint refers to\n\ 01647 string link_name\n\ 01648 \n\ 01649 # The type of the constraint\n\ 01650 int32 type\n\ 01651 int32 LINK_FRAME=0\n\ 01652 int32 HEADER_FRAME=1\n\ 01653 \n\ 01654 # The desired orientation of the robot link specified as a quaternion\n\ 01655 geometry_msgs/Quaternion orientation\n\ 01656 \n\ 01657 # optional RPY error tolerances specified if \n\ 01658 float64 absolute_roll_tolerance\n\ 01659 float64 absolute_pitch_tolerance\n\ 01660 float64 absolute_yaw_tolerance\n\ 01661 \n\ 01662 # Constraint weighting factor - a weight for this constraint\n\ 01663 float64 weight\n\ 01664 \n\ 01665 ================================================================================\n\ 01666 MSG: arm_navigation_msgs/VisibilityConstraint\n\ 01667 # This message contains the definition of a visibility constraint.\n\ 01668 Header header\n\ 01669 \n\ 01670 # The point stamped target that needs to be kept within view of the sensor\n\ 01671 geometry_msgs/PointStamped target\n\ 01672 \n\ 01673 # The local pose of the frame in which visibility is to be maintained\n\ 01674 # The frame id should represent the robot link to which the sensor is attached\n\ 01675 # The visual axis of the sensor is assumed to be along the X axis of this frame\n\ 01676 geometry_msgs/PoseStamped sensor_pose\n\ 01677 \n\ 01678 # The deviation (in radians) that will be tolerated\n\ 01679 # Constraint error will be measured as the solid angle between the \n\ 01680 # X axis of the frame defined above and the vector between the origin \n\ 01681 # of the frame defined above and the target location\n\ 01682 float64 absolute_tolerance\n\ 01683 \n\ 01684 \n\ 01685 ================================================================================\n\ 01686 MSG: geometry_msgs/PointStamped\n\ 01687 # This represents a Point with reference coordinate frame and timestamp\n\ 01688 Header header\n\ 01689 Point point\n\ 01690 \n\ 01691 ================================================================================\n\ 01692 MSG: arm_navigation_msgs/OrderedCollisionOperations\n\ 01693 # A set of collision operations that will be performed in the order they are specified\n\ 01694 CollisionOperation[] collision_operations\n\ 01695 ================================================================================\n\ 01696 MSG: arm_navigation_msgs/CollisionOperation\n\ 01697 # A definition of a collision operation\n\ 01698 # E.g. (\"gripper\",COLLISION_SET_ALL,ENABLE) will enable collisions \n\ 01699 # between the gripper and all objects in the collision space\n\ 01700 \n\ 01701 string object1\n\ 01702 string object2\n\ 01703 string COLLISION_SET_ALL=\"all\"\n\ 01704 string COLLISION_SET_OBJECTS=\"objects\"\n\ 01705 string COLLISION_SET_ATTACHED_OBJECTS=\"attached\"\n\ 01706 \n\ 01707 # The penetration distance to which collisions are allowed. This is 0.0 by default.\n\ 01708 float64 penetration_distance\n\ 01709 \n\ 01710 # Flag that determines whether collisions will be enabled or disabled for the pair of objects specified above\n\ 01711 int32 operation\n\ 01712 int32 DISABLE=0\n\ 01713 int32 ENABLE=1\n\ 01714 \n\ 01715 ================================================================================\n\ 01716 MSG: arm_navigation_msgs/LinkPadding\n\ 01717 #name for the link\n\ 01718 string link_name\n\ 01719 \n\ 01720 # padding to apply to the link\n\ 01721 float64 padding\n\ 01722 \n\ 01723 "; 01724 } 01725 01726 static const char* value(const ::object_manipulation_msgs::PickupGoal_<ContainerAllocator> &) { return value(); } 01727 }; 01728 01729 } // namespace message_traits 01730 } // namespace ros 01731 01732 namespace ros 01733 { 01734 namespace serialization 01735 { 01736 01737 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::PickupGoal_<ContainerAllocator> > 01738 { 01739 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m) 01740 { 01741 stream.next(m.arm_name); 01742 stream.next(m.target); 01743 stream.next(m.desired_grasps); 01744 stream.next(m.lift); 01745 stream.next(m.collision_object_name); 01746 stream.next(m.collision_support_surface_name); 01747 stream.next(m.allow_gripper_support_collision); 01748 stream.next(m.use_reactive_execution); 01749 stream.next(m.use_reactive_lift); 01750 stream.next(m.only_perform_feasibility_test); 01751 stream.next(m.ignore_collisions); 01752 stream.next(m.path_constraints); 01753 stream.next(m.additional_collision_operations); 01754 stream.next(m.additional_link_padding); 01755 stream.next(m.movable_obstacles); 01756 stream.next(m.max_contact_force); 01757 } 01758 01759 ROS_DECLARE_ALLINONE_SERIALIZER; 01760 }; // struct PickupGoal_ 01761 } // namespace serialization 01762 } // namespace ros 01763 01764 namespace ros 01765 { 01766 namespace message_operations 01767 { 01768 01769 template<class ContainerAllocator> 01770 struct Printer< ::object_manipulation_msgs::PickupGoal_<ContainerAllocator> > 01771 { 01772 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_manipulation_msgs::PickupGoal_<ContainerAllocator> & v) 01773 { 01774 s << indent << "arm_name: "; 01775 Printer<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::stream(s, indent + " ", v.arm_name); 01776 s << indent << "target: "; 01777 s << std::endl; 01778 Printer< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::stream(s, indent + " ", v.target); 01779 s << indent << "desired_grasps[]" << std::endl; 01780 for (size_t i = 0; i < v.desired_grasps.size(); ++i) 01781 { 01782 s << indent << " desired_grasps[" << i << "]: "; 01783 s << std::endl; 01784 s << indent; 01785 Printer< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::stream(s, indent + " ", v.desired_grasps[i]); 01786 } 01787 s << indent << "lift: "; 01788 s << std::endl; 01789 Printer< ::object_manipulation_msgs::GripperTranslation_<ContainerAllocator> >::stream(s, indent + " ", v.lift); 01790 s << indent << "collision_object_name: "; 01791 Printer<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::stream(s, indent + " ", v.collision_object_name); 01792 s << indent << "collision_support_surface_name: "; 01793 Printer<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::stream(s, indent + " ", v.collision_support_surface_name); 01794 s << indent << "allow_gripper_support_collision: "; 01795 Printer<uint8_t>::stream(s, indent + " ", v.allow_gripper_support_collision); 01796 s << indent << "use_reactive_execution: "; 01797 Printer<uint8_t>::stream(s, indent + " ", v.use_reactive_execution); 01798 s << indent << "use_reactive_lift: "; 01799 Printer<uint8_t>::stream(s, indent + " ", v.use_reactive_lift); 01800 s << indent << "only_perform_feasibility_test: "; 01801 Printer<uint8_t>::stream(s, indent + " ", v.only_perform_feasibility_test); 01802 s << indent << "ignore_collisions: "; 01803 Printer<uint8_t>::stream(s, indent + " ", v.ignore_collisions); 01804 s << indent << "path_constraints: "; 01805 s << std::endl; 01806 Printer< ::arm_navigation_msgs::Constraints_<ContainerAllocator> >::stream(s, indent + " ", v.path_constraints); 01807 s << indent << "additional_collision_operations: "; 01808 s << std::endl; 01809 Printer< ::arm_navigation_msgs::OrderedCollisionOperations_<ContainerAllocator> >::stream(s, indent + " ", v.additional_collision_operations); 01810 s << indent << "additional_link_padding[]" << std::endl; 01811 for (size_t i = 0; i < v.additional_link_padding.size(); ++i) 01812 { 01813 s << indent << " additional_link_padding[" << i << "]: "; 01814 s << std::endl; 01815 s << indent; 01816 Printer< ::arm_navigation_msgs::LinkPadding_<ContainerAllocator> >::stream(s, indent + " ", v.additional_link_padding[i]); 01817 } 01818 s << indent << "movable_obstacles[]" << std::endl; 01819 for (size_t i = 0; i < v.movable_obstacles.size(); ++i) 01820 { 01821 s << indent << " movable_obstacles[" << i << "]: "; 01822 s << std::endl; 01823 s << indent; 01824 Printer< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::stream(s, indent + " ", v.movable_obstacles[i]); 01825 } 01826 s << indent << "max_contact_force: "; 01827 Printer<float>::stream(s, indent + " ", v.max_contact_force); 01828 } 01829 }; 01830 01831 01832 } // namespace message_operations 01833 } // namespace ros 01834 01835 #endif // OBJECT_MANIPULATION_MSGS_MESSAGE_PICKUPGOAL_H 01836