00001
00002 #ifndef OBJECT_MANIPULATION_MSGS_MESSAGE_PICKUPACTIONGOAL_H
00003 #define OBJECT_MANIPULATION_MSGS_MESSAGE_PICKUPACTIONGOAL_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012
00013 #include "ros/macros.h"
00014
00015 #include "ros/assert.h"
00016
00017 #include "std_msgs/Header.h"
00018 #include "actionlib_msgs/GoalID.h"
00019 #include "object_manipulation_msgs/PickupGoal.h"
00020
00021 namespace object_manipulation_msgs
00022 {
00023 template <class ContainerAllocator>
00024 struct PickupActionGoal_ {
00025 typedef PickupActionGoal_<ContainerAllocator> Type;
00026
00027 PickupActionGoal_()
00028 : header()
00029 , goal_id()
00030 , goal()
00031 {
00032 }
00033
00034 PickupActionGoal_(const ContainerAllocator& _alloc)
00035 : header(_alloc)
00036 , goal_id(_alloc)
00037 , goal(_alloc)
00038 {
00039 }
00040
00041 typedef ::std_msgs::Header_<ContainerAllocator> _header_type;
00042 ::std_msgs::Header_<ContainerAllocator> header;
00043
00044 typedef ::actionlib_msgs::GoalID_<ContainerAllocator> _goal_id_type;
00045 ::actionlib_msgs::GoalID_<ContainerAllocator> goal_id;
00046
00047 typedef ::object_manipulation_msgs::PickupGoal_<ContainerAllocator> _goal_type;
00048 ::object_manipulation_msgs::PickupGoal_<ContainerAllocator> goal;
00049
00050
00051 private:
00052 static const char* __s_getDataType_() { return "object_manipulation_msgs/PickupActionGoal"; }
00053 public:
00054 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); }
00055
00056 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); }
00057
00058 private:
00059 static const char* __s_getMD5Sum_() { return "c80a8991b5d6a3dabaeb053a18309c62"; }
00060 public:
00061 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); }
00062
00063 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); }
00064
00065 private:
00066 static const char* __s_getMessageDefinition_() { return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00067 \n\
00068 Header header\n\
00069 actionlib_msgs/GoalID goal_id\n\
00070 PickupGoal goal\n\
00071 \n\
00072 ================================================================================\n\
00073 MSG: std_msgs/Header\n\
00074 # Standard metadata for higher-level stamped data types.\n\
00075 # This is generally used to communicate timestamped data \n\
00076 # in a particular coordinate frame.\n\
00077 # \n\
00078 # sequence ID: consecutively increasing ID \n\
00079 uint32 seq\n\
00080 #Two-integer timestamp that is expressed as:\n\
00081 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00082 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00083 # time-handling sugar is provided by the client library\n\
00084 time stamp\n\
00085 #Frame this data is associated with\n\
00086 # 0: no frame\n\
00087 # 1: global frame\n\
00088 string frame_id\n\
00089 \n\
00090 ================================================================================\n\
00091 MSG: actionlib_msgs/GoalID\n\
00092 # The stamp should store the time at which this goal was requested.\n\
00093 # It is used by an action server when it tries to preempt all\n\
00094 # goals that were requested before a certain time\n\
00095 time stamp\n\
00096 \n\
00097 # The id provides a way to associate feedback and\n\
00098 # result message with specific goal requests. The id\n\
00099 # specified must be unique.\n\
00100 string id\n\
00101 \n\
00102 \n\
00103 ================================================================================\n\
00104 MSG: object_manipulation_msgs/PickupGoal\n\
00105 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00106 # An action for picking up an object\n\
00107 \n\
00108 # which arm to be used for grasping\n\
00109 string arm_name\n\
00110 \n\
00111 # the object to be grasped\n\
00112 GraspableObject target\n\
00113 \n\
00114 # a list of grasps to be used\n\
00115 # if empty, the grasp executive will call one of its own planners\n\
00116 Grasp[] desired_grasps\n\
00117 \n\
00118 # how the object should be lifted after the grasp\n\
00119 # the frame_id that this lift is specified in MUST be either the robot_frame \n\
00120 # or the gripper_frame specified in your hand description file\n\
00121 GripperTranslation lift\n\
00122 \n\
00123 # the name that the target object has in the collision map\n\
00124 # can be left empty if no name is available\n\
00125 string collision_object_name\n\
00126 \n\
00127 # the name that the support surface (e.g. table) has in the collision map\n\
00128 # can be left empty if no name is available\n\
00129 string collision_support_surface_name\n\
00130 \n\
00131 # whether collisions between the gripper and the support surface should be acceptable\n\
00132 # during move from pre-grasp to grasp and during lift. Collisions when moving to the\n\
00133 # pre-grasp location are still not allowed even if this is set to true.\n\
00134 bool allow_gripper_support_collision\n\
00135 \n\
00136 # whether reactive grasp execution using tactile sensors should be used\n\
00137 bool use_reactive_execution\n\
00138 \n\
00139 # whether reactive object lifting based on tactile sensors should be used\n\
00140 bool use_reactive_lift\n\
00141 \n\
00142 # set this to true if you only want to query the manipulation pipeline as to what \n\
00143 # grasps it thinks are feasible, without actually executing them. If this is set to \n\
00144 # true, the atempted_grasp_results field of the result will be populated, but no arm \n\
00145 # movement will be attempted\n\
00146 bool only_perform_feasibility_test\n\
00147 \n\
00148 # set this to true if you want to ignore all collisions throughout the pickup \n\
00149 # and also move directly to the pre-grasp using Cartesian controllers\n\
00150 bool ignore_collisions\n\
00151 \n\
00152 # OPTIONAL (These will not have to be filled out most of the time)\n\
00153 # constraints to be imposed on every point in the motion of the arm\n\
00154 arm_navigation_msgs/Constraints path_constraints\n\
00155 \n\
00156 # OPTIONAL (These will not have to be filled out most of the time)\n\
00157 # additional collision operations to be used for every arm movement performed\n\
00158 # during grasping. Note that these will be added on top of (and thus overide) other \n\
00159 # collision operations that the grasping pipeline deems necessary. Should be used\n\
00160 # with care and only if special behaviors are desired\n\
00161 arm_navigation_msgs/OrderedCollisionOperations additional_collision_operations\n\
00162 \n\
00163 # OPTIONAL (These will not have to be filled out most of the time)\n\
00164 # additional link paddings to be used for every arm movement performed\n\
00165 # during grasping. Note that these will be added on top of (and thus overide) other \n\
00166 # link paddings that the grasping pipeline deems necessary. Should be used\n\
00167 # with care and only if special behaviors are desired\n\
00168 arm_navigation_msgs/LinkPadding[] additional_link_padding\n\
00169 \n\
00170 # an optional list of obstacles that we have semantic information about\n\
00171 # and that can be moved in the course of grasping\n\
00172 GraspableObject[] movable_obstacles\n\
00173 \n\
00174 # the maximum contact force to use while grasping (<=0 to disable)\n\
00175 float32 max_contact_force\n\
00176 \n\
00177 \n\
00178 ================================================================================\n\
00179 MSG: object_manipulation_msgs/GraspableObject\n\
00180 # an object that the object_manipulator can work on\n\
00181 \n\
00182 # a graspable object can be represented in multiple ways. This message\n\
00183 # can contain all of them. Which one is actually used is up to the receiver\n\
00184 # of this message. When adding new representations, one must be careful that\n\
00185 # they have reasonable lightweight defaults indicating that that particular\n\
00186 # representation is not available.\n\
00187 \n\
00188 # the tf frame to be used as a reference frame when combining information from\n\
00189 # the different representations below\n\
00190 string reference_frame_id\n\
00191 \n\
00192 # potential recognition results from a database of models\n\
00193 # all poses are relative to the object reference pose\n\
00194 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00195 \n\
00196 # the point cloud itself\n\
00197 sensor_msgs/PointCloud cluster\n\
00198 \n\
00199 # a region of a PointCloud2 of interest\n\
00200 object_manipulation_msgs/SceneRegion region\n\
00201 \n\
00202 # the name that this object has in the collision environment\n\
00203 string collision_name\n\
00204 ================================================================================\n\
00205 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00206 # Informs that a specific model from the Model Database has been \n\
00207 # identified at a certain location\n\
00208 \n\
00209 # the database id of the model\n\
00210 int32 model_id\n\
00211 \n\
00212 # the pose that it can be found in\n\
00213 geometry_msgs/PoseStamped pose\n\
00214 \n\
00215 # a measure of the confidence level in this detection result\n\
00216 float32 confidence\n\
00217 \n\
00218 # the name of the object detector that generated this detection result\n\
00219 string detector_name\n\
00220 \n\
00221 ================================================================================\n\
00222 MSG: geometry_msgs/PoseStamped\n\
00223 # A Pose with reference coordinate frame and timestamp\n\
00224 Header header\n\
00225 Pose pose\n\
00226 \n\
00227 ================================================================================\n\
00228 MSG: geometry_msgs/Pose\n\
00229 # A representation of pose in free space, composed of postion and orientation. \n\
00230 Point position\n\
00231 Quaternion orientation\n\
00232 \n\
00233 ================================================================================\n\
00234 MSG: geometry_msgs/Point\n\
00235 # This contains the position of a point in free space\n\
00236 float64 x\n\
00237 float64 y\n\
00238 float64 z\n\
00239 \n\
00240 ================================================================================\n\
00241 MSG: geometry_msgs/Quaternion\n\
00242 # This represents an orientation in free space in quaternion form.\n\
00243 \n\
00244 float64 x\n\
00245 float64 y\n\
00246 float64 z\n\
00247 float64 w\n\
00248 \n\
00249 ================================================================================\n\
00250 MSG: sensor_msgs/PointCloud\n\
00251 # This message holds a collection of 3d points, plus optional additional\n\
00252 # information about each point.\n\
00253 \n\
00254 # Time of sensor data acquisition, coordinate frame ID.\n\
00255 Header header\n\
00256 \n\
00257 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00258 # in the frame given in the header.\n\
00259 geometry_msgs/Point32[] points\n\
00260 \n\
00261 # Each channel should have the same number of elements as points array,\n\
00262 # and the data in each channel should correspond 1:1 with each point.\n\
00263 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00264 ChannelFloat32[] channels\n\
00265 \n\
00266 ================================================================================\n\
00267 MSG: geometry_msgs/Point32\n\
00268 # This contains the position of a point in free space(with 32 bits of precision).\n\
00269 # It is recommeded to use Point wherever possible instead of Point32. \n\
00270 # \n\
00271 # This recommendation is to promote interoperability. \n\
00272 #\n\
00273 # This message is designed to take up less space when sending\n\
00274 # lots of points at once, as in the case of a PointCloud. \n\
00275 \n\
00276 float32 x\n\
00277 float32 y\n\
00278 float32 z\n\
00279 ================================================================================\n\
00280 MSG: sensor_msgs/ChannelFloat32\n\
00281 # This message is used by the PointCloud message to hold optional data\n\
00282 # associated with each point in the cloud. The length of the values\n\
00283 # array should be the same as the length of the points array in the\n\
00284 # PointCloud, and each value should be associated with the corresponding\n\
00285 # point.\n\
00286 \n\
00287 # Channel names in existing practice include:\n\
00288 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00289 # This is opposite to usual conventions but remains for\n\
00290 # historical reasons. The newer PointCloud2 message has no\n\
00291 # such problem.\n\
00292 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00293 # (R,G,B) values packed into the least significant 24 bits,\n\
00294 # in order.\n\
00295 # \"intensity\" - laser or pixel intensity.\n\
00296 # \"distance\"\n\
00297 \n\
00298 # The channel name should give semantics of the channel (e.g.\n\
00299 # \"intensity\" instead of \"value\").\n\
00300 string name\n\
00301 \n\
00302 # The values array should be 1-1 with the elements of the associated\n\
00303 # PointCloud.\n\
00304 float32[] values\n\
00305 \n\
00306 ================================================================================\n\
00307 MSG: object_manipulation_msgs/SceneRegion\n\
00308 # Point cloud\n\
00309 sensor_msgs/PointCloud2 cloud\n\
00310 \n\
00311 # Indices for the region of interest\n\
00312 int32[] mask\n\
00313 \n\
00314 # One of the corresponding 2D images, if applicable\n\
00315 sensor_msgs/Image image\n\
00316 \n\
00317 # The disparity image, if applicable\n\
00318 sensor_msgs/Image disparity_image\n\
00319 \n\
00320 # Camera info for the camera that took the image\n\
00321 sensor_msgs/CameraInfo cam_info\n\
00322 \n\
00323 # a 3D region of interest for grasp planning\n\
00324 geometry_msgs/PoseStamped roi_box_pose\n\
00325 geometry_msgs/Vector3 roi_box_dims\n\
00326 \n\
00327 ================================================================================\n\
00328 MSG: sensor_msgs/PointCloud2\n\
00329 # This message holds a collection of N-dimensional points, which may\n\
00330 # contain additional information such as normals, intensity, etc. The\n\
00331 # point data is stored as a binary blob, its layout described by the\n\
00332 # contents of the \"fields\" array.\n\
00333 \n\
00334 # The point cloud data may be organized 2d (image-like) or 1d\n\
00335 # (unordered). Point clouds organized as 2d images may be produced by\n\
00336 # camera depth sensors such as stereo or time-of-flight.\n\
00337 \n\
00338 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00339 # points).\n\
00340 Header header\n\
00341 \n\
00342 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00343 # 1 and width is the length of the point cloud.\n\
00344 uint32 height\n\
00345 uint32 width\n\
00346 \n\
00347 # Describes the channels and their layout in the binary data blob.\n\
00348 PointField[] fields\n\
00349 \n\
00350 bool is_bigendian # Is this data bigendian?\n\
00351 uint32 point_step # Length of a point in bytes\n\
00352 uint32 row_step # Length of a row in bytes\n\
00353 uint8[] data # Actual point data, size is (row_step*height)\n\
00354 \n\
00355 bool is_dense # True if there are no invalid points\n\
00356 \n\
00357 ================================================================================\n\
00358 MSG: sensor_msgs/PointField\n\
00359 # This message holds the description of one point entry in the\n\
00360 # PointCloud2 message format.\n\
00361 uint8 INT8 = 1\n\
00362 uint8 UINT8 = 2\n\
00363 uint8 INT16 = 3\n\
00364 uint8 UINT16 = 4\n\
00365 uint8 INT32 = 5\n\
00366 uint8 UINT32 = 6\n\
00367 uint8 FLOAT32 = 7\n\
00368 uint8 FLOAT64 = 8\n\
00369 \n\
00370 string name # Name of field\n\
00371 uint32 offset # Offset from start of point struct\n\
00372 uint8 datatype # Datatype enumeration, see above\n\
00373 uint32 count # How many elements in the field\n\
00374 \n\
00375 ================================================================================\n\
00376 MSG: sensor_msgs/Image\n\
00377 # This message contains an uncompressed image\n\
00378 # (0, 0) is at top-left corner of image\n\
00379 #\n\
00380 \n\
00381 Header header # Header timestamp should be acquisition time of image\n\
00382 # Header frame_id should be optical frame of camera\n\
00383 # origin of frame should be optical center of cameara\n\
00384 # +x should point to the right in the image\n\
00385 # +y should point down in the image\n\
00386 # +z should point into to plane of the image\n\
00387 # If the frame_id here and the frame_id of the CameraInfo\n\
00388 # message associated with the image conflict\n\
00389 # the behavior is undefined\n\
00390 \n\
00391 uint32 height # image height, that is, number of rows\n\
00392 uint32 width # image width, that is, number of columns\n\
00393 \n\
00394 # The legal values for encoding are in file src/image_encodings.cpp\n\
00395 # If you want to standardize a new string format, join\n\
00396 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00397 \n\
00398 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00399 # taken from the list of strings in src/image_encodings.cpp\n\
00400 \n\
00401 uint8 is_bigendian # is this data bigendian?\n\
00402 uint32 step # Full row length in bytes\n\
00403 uint8[] data # actual matrix data, size is (step * rows)\n\
00404 \n\
00405 ================================================================================\n\
00406 MSG: sensor_msgs/CameraInfo\n\
00407 # This message defines meta information for a camera. It should be in a\n\
00408 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00409 # image topics named:\n\
00410 #\n\
00411 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00412 # image - monochrome, distorted\n\
00413 # image_color - color, distorted\n\
00414 # image_rect - monochrome, rectified\n\
00415 # image_rect_color - color, rectified\n\
00416 #\n\
00417 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00418 # for producing the four processed image topics from image_raw and\n\
00419 # camera_info. The meaning of the camera parameters are described in\n\
00420 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00421 #\n\
00422 # The image_geometry package provides a user-friendly interface to\n\
00423 # common operations using this meta information. If you want to, e.g.,\n\
00424 # project a 3d point into image coordinates, we strongly recommend\n\
00425 # using image_geometry.\n\
00426 #\n\
00427 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00428 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00429 # indicates an uncalibrated camera.\n\
00430 \n\
00431 #######################################################################\n\
00432 # Image acquisition info #\n\
00433 #######################################################################\n\
00434 \n\
00435 # Time of image acquisition, camera coordinate frame ID\n\
00436 Header header # Header timestamp should be acquisition time of image\n\
00437 # Header frame_id should be optical frame of camera\n\
00438 # origin of frame should be optical center of camera\n\
00439 # +x should point to the right in the image\n\
00440 # +y should point down in the image\n\
00441 # +z should point into the plane of the image\n\
00442 \n\
00443 \n\
00444 #######################################################################\n\
00445 # Calibration Parameters #\n\
00446 #######################################################################\n\
00447 # These are fixed during camera calibration. Their values will be the #\n\
00448 # same in all messages until the camera is recalibrated. Note that #\n\
00449 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00450 # #\n\
00451 # The internal parameters can be used to warp a raw (distorted) image #\n\
00452 # to: #\n\
00453 # 1. An undistorted image (requires D and K) #\n\
00454 # 2. A rectified image (requires D, K, R) #\n\
00455 # The projection matrix P projects 3D points into the rectified image.#\n\
00456 #######################################################################\n\
00457 \n\
00458 # The image dimensions with which the camera was calibrated. Normally\n\
00459 # this will be the full camera resolution in pixels.\n\
00460 uint32 height\n\
00461 uint32 width\n\
00462 \n\
00463 # The distortion model used. Supported models are listed in\n\
00464 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00465 # simple model of radial and tangential distortion - is sufficent.\n\
00466 string distortion_model\n\
00467 \n\
00468 # The distortion parameters, size depending on the distortion model.\n\
00469 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00470 float64[] D\n\
00471 \n\
00472 # Intrinsic camera matrix for the raw (distorted) images.\n\
00473 # [fx 0 cx]\n\
00474 # K = [ 0 fy cy]\n\
00475 # [ 0 0 1]\n\
00476 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00477 # coordinates using the focal lengths (fx, fy) and principal point\n\
00478 # (cx, cy).\n\
00479 float64[9] K # 3x3 row-major matrix\n\
00480 \n\
00481 # Rectification matrix (stereo cameras only)\n\
00482 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00483 # stereo image plane so that epipolar lines in both stereo images are\n\
00484 # parallel.\n\
00485 float64[9] R # 3x3 row-major matrix\n\
00486 \n\
00487 # Projection/camera matrix\n\
00488 # [fx' 0 cx' Tx]\n\
00489 # P = [ 0 fy' cy' Ty]\n\
00490 # [ 0 0 1 0]\n\
00491 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00492 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00493 # is the normal camera intrinsic matrix for the rectified image.\n\
00494 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00495 # coordinates using the focal lengths (fx', fy') and principal point\n\
00496 # (cx', cy') - these may differ from the values in K.\n\
00497 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00498 # also have R = the identity and P[1:3,1:3] = K.\n\
00499 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00500 # position of the optical center of the second camera in the first\n\
00501 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00502 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00503 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00504 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00505 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00506 # the rectified image is given by:\n\
00507 # [u v w]' = P * [X Y Z 1]'\n\
00508 # x = u / w\n\
00509 # y = v / w\n\
00510 # This holds for both images of a stereo pair.\n\
00511 float64[12] P # 3x4 row-major matrix\n\
00512 \n\
00513 \n\
00514 #######################################################################\n\
00515 # Operational Parameters #\n\
00516 #######################################################################\n\
00517 # These define the image region actually captured by the camera #\n\
00518 # driver. Although they affect the geometry of the output image, they #\n\
00519 # may be changed freely without recalibrating the camera. #\n\
00520 #######################################################################\n\
00521 \n\
00522 # Binning refers here to any camera setting which combines rectangular\n\
00523 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00524 # resolution of the output image to\n\
00525 # (width / binning_x) x (height / binning_y).\n\
00526 # The default values binning_x = binning_y = 0 is considered the same\n\
00527 # as binning_x = binning_y = 1 (no subsampling).\n\
00528 uint32 binning_x\n\
00529 uint32 binning_y\n\
00530 \n\
00531 # Region of interest (subwindow of full camera resolution), given in\n\
00532 # full resolution (unbinned) image coordinates. A particular ROI\n\
00533 # always denotes the same window of pixels on the camera sensor,\n\
00534 # regardless of binning settings.\n\
00535 # The default setting of roi (all values 0) is considered the same as\n\
00536 # full resolution (roi.width = width, roi.height = height).\n\
00537 RegionOfInterest roi\n\
00538 \n\
00539 ================================================================================\n\
00540 MSG: sensor_msgs/RegionOfInterest\n\
00541 # This message is used to specify a region of interest within an image.\n\
00542 #\n\
00543 # When used to specify the ROI setting of the camera when the image was\n\
00544 # taken, the height and width fields should either match the height and\n\
00545 # width fields for the associated image; or height = width = 0\n\
00546 # indicates that the full resolution image was captured.\n\
00547 \n\
00548 uint32 x_offset # Leftmost pixel of the ROI\n\
00549 # (0 if the ROI includes the left edge of the image)\n\
00550 uint32 y_offset # Topmost pixel of the ROI\n\
00551 # (0 if the ROI includes the top edge of the image)\n\
00552 uint32 height # Height of ROI\n\
00553 uint32 width # Width of ROI\n\
00554 \n\
00555 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00556 # ROI in this message. Typically this should be False if the full image\n\
00557 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00558 # used).\n\
00559 bool do_rectify\n\
00560 \n\
00561 ================================================================================\n\
00562 MSG: geometry_msgs/Vector3\n\
00563 # This represents a vector in free space. \n\
00564 \n\
00565 float64 x\n\
00566 float64 y\n\
00567 float64 z\n\
00568 ================================================================================\n\
00569 MSG: object_manipulation_msgs/Grasp\n\
00570 \n\
00571 # The internal posture of the hand for the pre-grasp\n\
00572 # only positions are used\n\
00573 sensor_msgs/JointState pre_grasp_posture\n\
00574 \n\
00575 # The internal posture of the hand for the grasp\n\
00576 # positions and efforts are used\n\
00577 sensor_msgs/JointState grasp_posture\n\
00578 \n\
00579 # The position of the end-effector for the grasp relative to a reference frame \n\
00580 # (that is always specified elsewhere, not in this message)\n\
00581 geometry_msgs/Pose grasp_pose\n\
00582 \n\
00583 # The estimated probability of success for this grasp\n\
00584 float64 success_probability\n\
00585 \n\
00586 # Debug flag to indicate that this grasp would be the best in its cluster\n\
00587 bool cluster_rep\n\
00588 \n\
00589 # how far the pre-grasp should ideally be away from the grasp\n\
00590 float32 desired_approach_distance\n\
00591 \n\
00592 # how much distance between pre-grasp and grasp must actually be feasible \n\
00593 # for the grasp not to be rejected\n\
00594 float32 min_approach_distance\n\
00595 \n\
00596 # an optional list of obstacles that we have semantic information about\n\
00597 # and that we expect might move in the course of executing this grasp\n\
00598 # the grasp planner is expected to make sure they move in an OK way; during\n\
00599 # execution, grasp executors will not check for collisions against these objects\n\
00600 GraspableObject[] moved_obstacles\n\
00601 \n\
00602 ================================================================================\n\
00603 MSG: sensor_msgs/JointState\n\
00604 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
00605 #\n\
00606 # The state of each joint (revolute or prismatic) is defined by:\n\
00607 # * the position of the joint (rad or m),\n\
00608 # * the velocity of the joint (rad/s or m/s) and \n\
00609 # * the effort that is applied in the joint (Nm or N).\n\
00610 #\n\
00611 # Each joint is uniquely identified by its name\n\
00612 # The header specifies the time at which the joint states were recorded. All the joint states\n\
00613 # in one message have to be recorded at the same time.\n\
00614 #\n\
00615 # This message consists of a multiple arrays, one for each part of the joint state. \n\
00616 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
00617 # effort associated with them, you can leave the effort array empty. \n\
00618 #\n\
00619 # All arrays in this message should have the same size, or be empty.\n\
00620 # This is the only way to uniquely associate the joint name with the correct\n\
00621 # states.\n\
00622 \n\
00623 \n\
00624 Header header\n\
00625 \n\
00626 string[] name\n\
00627 float64[] position\n\
00628 float64[] velocity\n\
00629 float64[] effort\n\
00630 \n\
00631 ================================================================================\n\
00632 MSG: object_manipulation_msgs/GripperTranslation\n\
00633 # defines a translation for the gripper, used in pickup or place tasks\n\
00634 # for example for lifting an object off a table or approaching the table for placing\n\
00635 \n\
00636 # the direction of the translation\n\
00637 geometry_msgs/Vector3Stamped direction\n\
00638 \n\
00639 # the desired translation distance\n\
00640 float32 desired_distance\n\
00641 \n\
00642 # the min distance that must be considered feasible before the\n\
00643 # grasp is even attempted\n\
00644 float32 min_distance\n\
00645 ================================================================================\n\
00646 MSG: geometry_msgs/Vector3Stamped\n\
00647 # This represents a Vector3 with reference coordinate frame and timestamp\n\
00648 Header header\n\
00649 Vector3 vector\n\
00650 \n\
00651 ================================================================================\n\
00652 MSG: arm_navigation_msgs/Constraints\n\
00653 # This message contains a list of motion planning constraints.\n\
00654 \n\
00655 arm_navigation_msgs/JointConstraint[] joint_constraints\n\
00656 arm_navigation_msgs/PositionConstraint[] position_constraints\n\
00657 arm_navigation_msgs/OrientationConstraint[] orientation_constraints\n\
00658 arm_navigation_msgs/VisibilityConstraint[] visibility_constraints\n\
00659 \n\
00660 ================================================================================\n\
00661 MSG: arm_navigation_msgs/JointConstraint\n\
00662 # Constrain the position of a joint to be within a certain bound\n\
00663 string joint_name\n\
00664 \n\
00665 # the bound to be achieved is [position - tolerance_below, position + tolerance_above]\n\
00666 float64 position\n\
00667 float64 tolerance_above\n\
00668 float64 tolerance_below\n\
00669 \n\
00670 # A weighting factor for this constraint\n\
00671 float64 weight\n\
00672 ================================================================================\n\
00673 MSG: arm_navigation_msgs/PositionConstraint\n\
00674 # This message contains the definition of a position constraint.\n\
00675 Header header\n\
00676 \n\
00677 # The robot link this constraint refers to\n\
00678 string link_name\n\
00679 \n\
00680 # The offset (in the link frame) for the target point on the link we are planning for\n\
00681 geometry_msgs/Point target_point_offset\n\
00682 \n\
00683 # The nominal/target position for the point we are planning for\n\
00684 geometry_msgs/Point position\n\
00685 \n\
00686 # The shape of the bounded region that constrains the position of the end-effector\n\
00687 # This region is always centered at the position defined above\n\
00688 arm_navigation_msgs/Shape constraint_region_shape\n\
00689 \n\
00690 # The orientation of the bounded region that constrains the position of the end-effector. \n\
00691 # This allows the specification of non-axis aligned constraints\n\
00692 geometry_msgs/Quaternion constraint_region_orientation\n\
00693 \n\
00694 # Constraint weighting factor - a weight for this constraint\n\
00695 float64 weight\n\
00696 \n\
00697 ================================================================================\n\
00698 MSG: arm_navigation_msgs/Shape\n\
00699 byte SPHERE=0\n\
00700 byte BOX=1\n\
00701 byte CYLINDER=2\n\
00702 byte MESH=3\n\
00703 \n\
00704 byte type\n\
00705 \n\
00706 \n\
00707 #### define sphere, box, cylinder ####\n\
00708 # the origin of each shape is considered at the shape's center\n\
00709 \n\
00710 # for sphere\n\
00711 # radius := dimensions[0]\n\
00712 \n\
00713 # for cylinder\n\
00714 # radius := dimensions[0]\n\
00715 # length := dimensions[1]\n\
00716 # the length is along the Z axis\n\
00717 \n\
00718 # for box\n\
00719 # size_x := dimensions[0]\n\
00720 # size_y := dimensions[1]\n\
00721 # size_z := dimensions[2]\n\
00722 float64[] dimensions\n\
00723 \n\
00724 \n\
00725 #### define mesh ####\n\
00726 \n\
00727 # list of triangles; triangle k is defined by tre vertices located\n\
00728 # at indices triangles[3k], triangles[3k+1], triangles[3k+2]\n\
00729 int32[] triangles\n\
00730 geometry_msgs/Point[] vertices\n\
00731 \n\
00732 ================================================================================\n\
00733 MSG: arm_navigation_msgs/OrientationConstraint\n\
00734 # This message contains the definition of an orientation constraint.\n\
00735 Header header\n\
00736 \n\
00737 # The robot link this constraint refers to\n\
00738 string link_name\n\
00739 \n\
00740 # The type of the constraint\n\
00741 int32 type\n\
00742 int32 LINK_FRAME=0\n\
00743 int32 HEADER_FRAME=1\n\
00744 \n\
00745 # The desired orientation of the robot link specified as a quaternion\n\
00746 geometry_msgs/Quaternion orientation\n\
00747 \n\
00748 # optional RPY error tolerances specified if \n\
00749 float64 absolute_roll_tolerance\n\
00750 float64 absolute_pitch_tolerance\n\
00751 float64 absolute_yaw_tolerance\n\
00752 \n\
00753 # Constraint weighting factor - a weight for this constraint\n\
00754 float64 weight\n\
00755 \n\
00756 ================================================================================\n\
00757 MSG: arm_navigation_msgs/VisibilityConstraint\n\
00758 # This message contains the definition of a visibility constraint.\n\
00759 Header header\n\
00760 \n\
00761 # The point stamped target that needs to be kept within view of the sensor\n\
00762 geometry_msgs/PointStamped target\n\
00763 \n\
00764 # The local pose of the frame in which visibility is to be maintained\n\
00765 # The frame id should represent the robot link to which the sensor is attached\n\
00766 # The visual axis of the sensor is assumed to be along the X axis of this frame\n\
00767 geometry_msgs/PoseStamped sensor_pose\n\
00768 \n\
00769 # The deviation (in radians) that will be tolerated\n\
00770 # Constraint error will be measured as the solid angle between the \n\
00771 # X axis of the frame defined above and the vector between the origin \n\
00772 # of the frame defined above and the target location\n\
00773 float64 absolute_tolerance\n\
00774 \n\
00775 \n\
00776 ================================================================================\n\
00777 MSG: geometry_msgs/PointStamped\n\
00778 # This represents a Point with reference coordinate frame and timestamp\n\
00779 Header header\n\
00780 Point point\n\
00781 \n\
00782 ================================================================================\n\
00783 MSG: arm_navigation_msgs/OrderedCollisionOperations\n\
00784 # A set of collision operations that will be performed in the order they are specified\n\
00785 CollisionOperation[] collision_operations\n\
00786 ================================================================================\n\
00787 MSG: arm_navigation_msgs/CollisionOperation\n\
00788 # A definition of a collision operation\n\
00789 # E.g. (\"gripper\",COLLISION_SET_ALL,ENABLE) will enable collisions \n\
00790 # between the gripper and all objects in the collision space\n\
00791 \n\
00792 string object1\n\
00793 string object2\n\
00794 string COLLISION_SET_ALL=\"all\"\n\
00795 string COLLISION_SET_OBJECTS=\"objects\"\n\
00796 string COLLISION_SET_ATTACHED_OBJECTS=\"attached\"\n\
00797 \n\
00798 # The penetration distance to which collisions are allowed. This is 0.0 by default.\n\
00799 float64 penetration_distance\n\
00800 \n\
00801 # Flag that determines whether collisions will be enabled or disabled for the pair of objects specified above\n\
00802 int32 operation\n\
00803 int32 DISABLE=0\n\
00804 int32 ENABLE=1\n\
00805 \n\
00806 ================================================================================\n\
00807 MSG: arm_navigation_msgs/LinkPadding\n\
00808 #name for the link\n\
00809 string link_name\n\
00810 \n\
00811 # padding to apply to the link\n\
00812 float64 padding\n\
00813 \n\
00814 "; }
00815 public:
00816 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); }
00817
00818 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); }
00819
00820 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const
00821 {
00822 ros::serialization::OStream stream(write_ptr, 1000000000);
00823 ros::serialization::serialize(stream, header);
00824 ros::serialization::serialize(stream, goal_id);
00825 ros::serialization::serialize(stream, goal);
00826 return stream.getData();
00827 }
00828
00829 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr)
00830 {
00831 ros::serialization::IStream stream(read_ptr, 1000000000);
00832 ros::serialization::deserialize(stream, header);
00833 ros::serialization::deserialize(stream, goal_id);
00834 ros::serialization::deserialize(stream, goal);
00835 return stream.getData();
00836 }
00837
00838 ROS_DEPRECATED virtual uint32_t serializationLength() const
00839 {
00840 uint32_t size = 0;
00841 size += ros::serialization::serializationLength(header);
00842 size += ros::serialization::serializationLength(goal_id);
00843 size += ros::serialization::serializationLength(goal);
00844 return size;
00845 }
00846
00847 typedef boost::shared_ptr< ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator> > Ptr;
00848 typedef boost::shared_ptr< ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator> const> ConstPtr;
00849 boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00850 };
00851 typedef ::object_manipulation_msgs::PickupActionGoal_<std::allocator<void> > PickupActionGoal;
00852
00853 typedef boost::shared_ptr< ::object_manipulation_msgs::PickupActionGoal> PickupActionGoalPtr;
00854 typedef boost::shared_ptr< ::object_manipulation_msgs::PickupActionGoal const> PickupActionGoalConstPtr;
00855
00856
00857 template<typename ContainerAllocator>
00858 std::ostream& operator<<(std::ostream& s, const ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator> & v)
00859 {
00860 ros::message_operations::Printer< ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator> >::stream(s, "", v);
00861 return s;}
00862
00863 }
00864
00865 namespace ros
00866 {
00867 namespace message_traits
00868 {
00869 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator> > : public TrueType {};
00870 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator> const> : public TrueType {};
00871 template<class ContainerAllocator>
00872 struct MD5Sum< ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator> > {
00873 static const char* value()
00874 {
00875 return "c80a8991b5d6a3dabaeb053a18309c62";
00876 }
00877
00878 static const char* value(const ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator> &) { return value(); }
00879 static const uint64_t static_value1 = 0xc80a8991b5d6a3daULL;
00880 static const uint64_t static_value2 = 0xbaeb053a18309c62ULL;
00881 };
00882
00883 template<class ContainerAllocator>
00884 struct DataType< ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator> > {
00885 static const char* value()
00886 {
00887 return "object_manipulation_msgs/PickupActionGoal";
00888 }
00889
00890 static const char* value(const ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator> &) { return value(); }
00891 };
00892
00893 template<class ContainerAllocator>
00894 struct Definition< ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator> > {
00895 static const char* value()
00896 {
00897 return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00898 \n\
00899 Header header\n\
00900 actionlib_msgs/GoalID goal_id\n\
00901 PickupGoal goal\n\
00902 \n\
00903 ================================================================================\n\
00904 MSG: std_msgs/Header\n\
00905 # Standard metadata for higher-level stamped data types.\n\
00906 # This is generally used to communicate timestamped data \n\
00907 # in a particular coordinate frame.\n\
00908 # \n\
00909 # sequence ID: consecutively increasing ID \n\
00910 uint32 seq\n\
00911 #Two-integer timestamp that is expressed as:\n\
00912 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00913 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00914 # time-handling sugar is provided by the client library\n\
00915 time stamp\n\
00916 #Frame this data is associated with\n\
00917 # 0: no frame\n\
00918 # 1: global frame\n\
00919 string frame_id\n\
00920 \n\
00921 ================================================================================\n\
00922 MSG: actionlib_msgs/GoalID\n\
00923 # The stamp should store the time at which this goal was requested.\n\
00924 # It is used by an action server when it tries to preempt all\n\
00925 # goals that were requested before a certain time\n\
00926 time stamp\n\
00927 \n\
00928 # The id provides a way to associate feedback and\n\
00929 # result message with specific goal requests. The id\n\
00930 # specified must be unique.\n\
00931 string id\n\
00932 \n\
00933 \n\
00934 ================================================================================\n\
00935 MSG: object_manipulation_msgs/PickupGoal\n\
00936 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00937 # An action for picking up an object\n\
00938 \n\
00939 # which arm to be used for grasping\n\
00940 string arm_name\n\
00941 \n\
00942 # the object to be grasped\n\
00943 GraspableObject target\n\
00944 \n\
00945 # a list of grasps to be used\n\
00946 # if empty, the grasp executive will call one of its own planners\n\
00947 Grasp[] desired_grasps\n\
00948 \n\
00949 # how the object should be lifted after the grasp\n\
00950 # the frame_id that this lift is specified in MUST be either the robot_frame \n\
00951 # or the gripper_frame specified in your hand description file\n\
00952 GripperTranslation lift\n\
00953 \n\
00954 # the name that the target object has in the collision map\n\
00955 # can be left empty if no name is available\n\
00956 string collision_object_name\n\
00957 \n\
00958 # the name that the support surface (e.g. table) has in the collision map\n\
00959 # can be left empty if no name is available\n\
00960 string collision_support_surface_name\n\
00961 \n\
00962 # whether collisions between the gripper and the support surface should be acceptable\n\
00963 # during move from pre-grasp to grasp and during lift. Collisions when moving to the\n\
00964 # pre-grasp location are still not allowed even if this is set to true.\n\
00965 bool allow_gripper_support_collision\n\
00966 \n\
00967 # whether reactive grasp execution using tactile sensors should be used\n\
00968 bool use_reactive_execution\n\
00969 \n\
00970 # whether reactive object lifting based on tactile sensors should be used\n\
00971 bool use_reactive_lift\n\
00972 \n\
00973 # set this to true if you only want to query the manipulation pipeline as to what \n\
00974 # grasps it thinks are feasible, without actually executing them. If this is set to \n\
00975 # true, the atempted_grasp_results field of the result will be populated, but no arm \n\
00976 # movement will be attempted\n\
00977 bool only_perform_feasibility_test\n\
00978 \n\
00979 # set this to true if you want to ignore all collisions throughout the pickup \n\
00980 # and also move directly to the pre-grasp using Cartesian controllers\n\
00981 bool ignore_collisions\n\
00982 \n\
00983 # OPTIONAL (These will not have to be filled out most of the time)\n\
00984 # constraints to be imposed on every point in the motion of the arm\n\
00985 arm_navigation_msgs/Constraints path_constraints\n\
00986 \n\
00987 # OPTIONAL (These will not have to be filled out most of the time)\n\
00988 # additional collision operations to be used for every arm movement performed\n\
00989 # during grasping. Note that these will be added on top of (and thus overide) other \n\
00990 # collision operations that the grasping pipeline deems necessary. Should be used\n\
00991 # with care and only if special behaviors are desired\n\
00992 arm_navigation_msgs/OrderedCollisionOperations additional_collision_operations\n\
00993 \n\
00994 # OPTIONAL (These will not have to be filled out most of the time)\n\
00995 # additional link paddings to be used for every arm movement performed\n\
00996 # during grasping. Note that these will be added on top of (and thus overide) other \n\
00997 # link paddings that the grasping pipeline deems necessary. Should be used\n\
00998 # with care and only if special behaviors are desired\n\
00999 arm_navigation_msgs/LinkPadding[] additional_link_padding\n\
01000 \n\
01001 # an optional list of obstacles that we have semantic information about\n\
01002 # and that can be moved in the course of grasping\n\
01003 GraspableObject[] movable_obstacles\n\
01004 \n\
01005 # the maximum contact force to use while grasping (<=0 to disable)\n\
01006 float32 max_contact_force\n\
01007 \n\
01008 \n\
01009 ================================================================================\n\
01010 MSG: object_manipulation_msgs/GraspableObject\n\
01011 # an object that the object_manipulator can work on\n\
01012 \n\
01013 # a graspable object can be represented in multiple ways. This message\n\
01014 # can contain all of them. Which one is actually used is up to the receiver\n\
01015 # of this message. When adding new representations, one must be careful that\n\
01016 # they have reasonable lightweight defaults indicating that that particular\n\
01017 # representation is not available.\n\
01018 \n\
01019 # the tf frame to be used as a reference frame when combining information from\n\
01020 # the different representations below\n\
01021 string reference_frame_id\n\
01022 \n\
01023 # potential recognition results from a database of models\n\
01024 # all poses are relative to the object reference pose\n\
01025 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
01026 \n\
01027 # the point cloud itself\n\
01028 sensor_msgs/PointCloud cluster\n\
01029 \n\
01030 # a region of a PointCloud2 of interest\n\
01031 object_manipulation_msgs/SceneRegion region\n\
01032 \n\
01033 # the name that this object has in the collision environment\n\
01034 string collision_name\n\
01035 ================================================================================\n\
01036 MSG: household_objects_database_msgs/DatabaseModelPose\n\
01037 # Informs that a specific model from the Model Database has been \n\
01038 # identified at a certain location\n\
01039 \n\
01040 # the database id of the model\n\
01041 int32 model_id\n\
01042 \n\
01043 # the pose that it can be found in\n\
01044 geometry_msgs/PoseStamped pose\n\
01045 \n\
01046 # a measure of the confidence level in this detection result\n\
01047 float32 confidence\n\
01048 \n\
01049 # the name of the object detector that generated this detection result\n\
01050 string detector_name\n\
01051 \n\
01052 ================================================================================\n\
01053 MSG: geometry_msgs/PoseStamped\n\
01054 # A Pose with reference coordinate frame and timestamp\n\
01055 Header header\n\
01056 Pose pose\n\
01057 \n\
01058 ================================================================================\n\
01059 MSG: geometry_msgs/Pose\n\
01060 # A representation of pose in free space, composed of postion and orientation. \n\
01061 Point position\n\
01062 Quaternion orientation\n\
01063 \n\
01064 ================================================================================\n\
01065 MSG: geometry_msgs/Point\n\
01066 # This contains the position of a point in free space\n\
01067 float64 x\n\
01068 float64 y\n\
01069 float64 z\n\
01070 \n\
01071 ================================================================================\n\
01072 MSG: geometry_msgs/Quaternion\n\
01073 # This represents an orientation in free space in quaternion form.\n\
01074 \n\
01075 float64 x\n\
01076 float64 y\n\
01077 float64 z\n\
01078 float64 w\n\
01079 \n\
01080 ================================================================================\n\
01081 MSG: sensor_msgs/PointCloud\n\
01082 # This message holds a collection of 3d points, plus optional additional\n\
01083 # information about each point.\n\
01084 \n\
01085 # Time of sensor data acquisition, coordinate frame ID.\n\
01086 Header header\n\
01087 \n\
01088 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
01089 # in the frame given in the header.\n\
01090 geometry_msgs/Point32[] points\n\
01091 \n\
01092 # Each channel should have the same number of elements as points array,\n\
01093 # and the data in each channel should correspond 1:1 with each point.\n\
01094 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
01095 ChannelFloat32[] channels\n\
01096 \n\
01097 ================================================================================\n\
01098 MSG: geometry_msgs/Point32\n\
01099 # This contains the position of a point in free space(with 32 bits of precision).\n\
01100 # It is recommeded to use Point wherever possible instead of Point32. \n\
01101 # \n\
01102 # This recommendation is to promote interoperability. \n\
01103 #\n\
01104 # This message is designed to take up less space when sending\n\
01105 # lots of points at once, as in the case of a PointCloud. \n\
01106 \n\
01107 float32 x\n\
01108 float32 y\n\
01109 float32 z\n\
01110 ================================================================================\n\
01111 MSG: sensor_msgs/ChannelFloat32\n\
01112 # This message is used by the PointCloud message to hold optional data\n\
01113 # associated with each point in the cloud. The length of the values\n\
01114 # array should be the same as the length of the points array in the\n\
01115 # PointCloud, and each value should be associated with the corresponding\n\
01116 # point.\n\
01117 \n\
01118 # Channel names in existing practice include:\n\
01119 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
01120 # This is opposite to usual conventions but remains for\n\
01121 # historical reasons. The newer PointCloud2 message has no\n\
01122 # such problem.\n\
01123 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
01124 # (R,G,B) values packed into the least significant 24 bits,\n\
01125 # in order.\n\
01126 # \"intensity\" - laser or pixel intensity.\n\
01127 # \"distance\"\n\
01128 \n\
01129 # The channel name should give semantics of the channel (e.g.\n\
01130 # \"intensity\" instead of \"value\").\n\
01131 string name\n\
01132 \n\
01133 # The values array should be 1-1 with the elements of the associated\n\
01134 # PointCloud.\n\
01135 float32[] values\n\
01136 \n\
01137 ================================================================================\n\
01138 MSG: object_manipulation_msgs/SceneRegion\n\
01139 # Point cloud\n\
01140 sensor_msgs/PointCloud2 cloud\n\
01141 \n\
01142 # Indices for the region of interest\n\
01143 int32[] mask\n\
01144 \n\
01145 # One of the corresponding 2D images, if applicable\n\
01146 sensor_msgs/Image image\n\
01147 \n\
01148 # The disparity image, if applicable\n\
01149 sensor_msgs/Image disparity_image\n\
01150 \n\
01151 # Camera info for the camera that took the image\n\
01152 sensor_msgs/CameraInfo cam_info\n\
01153 \n\
01154 # a 3D region of interest for grasp planning\n\
01155 geometry_msgs/PoseStamped roi_box_pose\n\
01156 geometry_msgs/Vector3 roi_box_dims\n\
01157 \n\
01158 ================================================================================\n\
01159 MSG: sensor_msgs/PointCloud2\n\
01160 # This message holds a collection of N-dimensional points, which may\n\
01161 # contain additional information such as normals, intensity, etc. The\n\
01162 # point data is stored as a binary blob, its layout described by the\n\
01163 # contents of the \"fields\" array.\n\
01164 \n\
01165 # The point cloud data may be organized 2d (image-like) or 1d\n\
01166 # (unordered). Point clouds organized as 2d images may be produced by\n\
01167 # camera depth sensors such as stereo or time-of-flight.\n\
01168 \n\
01169 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
01170 # points).\n\
01171 Header header\n\
01172 \n\
01173 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
01174 # 1 and width is the length of the point cloud.\n\
01175 uint32 height\n\
01176 uint32 width\n\
01177 \n\
01178 # Describes the channels and their layout in the binary data blob.\n\
01179 PointField[] fields\n\
01180 \n\
01181 bool is_bigendian # Is this data bigendian?\n\
01182 uint32 point_step # Length of a point in bytes\n\
01183 uint32 row_step # Length of a row in bytes\n\
01184 uint8[] data # Actual point data, size is (row_step*height)\n\
01185 \n\
01186 bool is_dense # True if there are no invalid points\n\
01187 \n\
01188 ================================================================================\n\
01189 MSG: sensor_msgs/PointField\n\
01190 # This message holds the description of one point entry in the\n\
01191 # PointCloud2 message format.\n\
01192 uint8 INT8 = 1\n\
01193 uint8 UINT8 = 2\n\
01194 uint8 INT16 = 3\n\
01195 uint8 UINT16 = 4\n\
01196 uint8 INT32 = 5\n\
01197 uint8 UINT32 = 6\n\
01198 uint8 FLOAT32 = 7\n\
01199 uint8 FLOAT64 = 8\n\
01200 \n\
01201 string name # Name of field\n\
01202 uint32 offset # Offset from start of point struct\n\
01203 uint8 datatype # Datatype enumeration, see above\n\
01204 uint32 count # How many elements in the field\n\
01205 \n\
01206 ================================================================================\n\
01207 MSG: sensor_msgs/Image\n\
01208 # This message contains an uncompressed image\n\
01209 # (0, 0) is at top-left corner of image\n\
01210 #\n\
01211 \n\
01212 Header header # Header timestamp should be acquisition time of image\n\
01213 # Header frame_id should be optical frame of camera\n\
01214 # origin of frame should be optical center of cameara\n\
01215 # +x should point to the right in the image\n\
01216 # +y should point down in the image\n\
01217 # +z should point into to plane of the image\n\
01218 # If the frame_id here and the frame_id of the CameraInfo\n\
01219 # message associated with the image conflict\n\
01220 # the behavior is undefined\n\
01221 \n\
01222 uint32 height # image height, that is, number of rows\n\
01223 uint32 width # image width, that is, number of columns\n\
01224 \n\
01225 # The legal values for encoding are in file src/image_encodings.cpp\n\
01226 # If you want to standardize a new string format, join\n\
01227 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
01228 \n\
01229 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
01230 # taken from the list of strings in src/image_encodings.cpp\n\
01231 \n\
01232 uint8 is_bigendian # is this data bigendian?\n\
01233 uint32 step # Full row length in bytes\n\
01234 uint8[] data # actual matrix data, size is (step * rows)\n\
01235 \n\
01236 ================================================================================\n\
01237 MSG: sensor_msgs/CameraInfo\n\
01238 # This message defines meta information for a camera. It should be in a\n\
01239 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
01240 # image topics named:\n\
01241 #\n\
01242 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
01243 # image - monochrome, distorted\n\
01244 # image_color - color, distorted\n\
01245 # image_rect - monochrome, rectified\n\
01246 # image_rect_color - color, rectified\n\
01247 #\n\
01248 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
01249 # for producing the four processed image topics from image_raw and\n\
01250 # camera_info. The meaning of the camera parameters are described in\n\
01251 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
01252 #\n\
01253 # The image_geometry package provides a user-friendly interface to\n\
01254 # common operations using this meta information. If you want to, e.g.,\n\
01255 # project a 3d point into image coordinates, we strongly recommend\n\
01256 # using image_geometry.\n\
01257 #\n\
01258 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
01259 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
01260 # indicates an uncalibrated camera.\n\
01261 \n\
01262 #######################################################################\n\
01263 # Image acquisition info #\n\
01264 #######################################################################\n\
01265 \n\
01266 # Time of image acquisition, camera coordinate frame ID\n\
01267 Header header # Header timestamp should be acquisition time of image\n\
01268 # Header frame_id should be optical frame of camera\n\
01269 # origin of frame should be optical center of camera\n\
01270 # +x should point to the right in the image\n\
01271 # +y should point down in the image\n\
01272 # +z should point into the plane of the image\n\
01273 \n\
01274 \n\
01275 #######################################################################\n\
01276 # Calibration Parameters #\n\
01277 #######################################################################\n\
01278 # These are fixed during camera calibration. Their values will be the #\n\
01279 # same in all messages until the camera is recalibrated. Note that #\n\
01280 # self-calibrating systems may \"recalibrate\" frequently. #\n\
01281 # #\n\
01282 # The internal parameters can be used to warp a raw (distorted) image #\n\
01283 # to: #\n\
01284 # 1. An undistorted image (requires D and K) #\n\
01285 # 2. A rectified image (requires D, K, R) #\n\
01286 # The projection matrix P projects 3D points into the rectified image.#\n\
01287 #######################################################################\n\
01288 \n\
01289 # The image dimensions with which the camera was calibrated. Normally\n\
01290 # this will be the full camera resolution in pixels.\n\
01291 uint32 height\n\
01292 uint32 width\n\
01293 \n\
01294 # The distortion model used. Supported models are listed in\n\
01295 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
01296 # simple model of radial and tangential distortion - is sufficent.\n\
01297 string distortion_model\n\
01298 \n\
01299 # The distortion parameters, size depending on the distortion model.\n\
01300 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
01301 float64[] D\n\
01302 \n\
01303 # Intrinsic camera matrix for the raw (distorted) images.\n\
01304 # [fx 0 cx]\n\
01305 # K = [ 0 fy cy]\n\
01306 # [ 0 0 1]\n\
01307 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
01308 # coordinates using the focal lengths (fx, fy) and principal point\n\
01309 # (cx, cy).\n\
01310 float64[9] K # 3x3 row-major matrix\n\
01311 \n\
01312 # Rectification matrix (stereo cameras only)\n\
01313 # A rotation matrix aligning the camera coordinate system to the ideal\n\
01314 # stereo image plane so that epipolar lines in both stereo images are\n\
01315 # parallel.\n\
01316 float64[9] R # 3x3 row-major matrix\n\
01317 \n\
01318 # Projection/camera matrix\n\
01319 # [fx' 0 cx' Tx]\n\
01320 # P = [ 0 fy' cy' Ty]\n\
01321 # [ 0 0 1 0]\n\
01322 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
01323 # of the processed (rectified) image. That is, the left 3x3 portion\n\
01324 # is the normal camera intrinsic matrix for the rectified image.\n\
01325 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
01326 # coordinates using the focal lengths (fx', fy') and principal point\n\
01327 # (cx', cy') - these may differ from the values in K.\n\
01328 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
01329 # also have R = the identity and P[1:3,1:3] = K.\n\
01330 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
01331 # position of the optical center of the second camera in the first\n\
01332 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
01333 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
01334 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
01335 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
01336 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
01337 # the rectified image is given by:\n\
01338 # [u v w]' = P * [X Y Z 1]'\n\
01339 # x = u / w\n\
01340 # y = v / w\n\
01341 # This holds for both images of a stereo pair.\n\
01342 float64[12] P # 3x4 row-major matrix\n\
01343 \n\
01344 \n\
01345 #######################################################################\n\
01346 # Operational Parameters #\n\
01347 #######################################################################\n\
01348 # These define the image region actually captured by the camera #\n\
01349 # driver. Although they affect the geometry of the output image, they #\n\
01350 # may be changed freely without recalibrating the camera. #\n\
01351 #######################################################################\n\
01352 \n\
01353 # Binning refers here to any camera setting which combines rectangular\n\
01354 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
01355 # resolution of the output image to\n\
01356 # (width / binning_x) x (height / binning_y).\n\
01357 # The default values binning_x = binning_y = 0 is considered the same\n\
01358 # as binning_x = binning_y = 1 (no subsampling).\n\
01359 uint32 binning_x\n\
01360 uint32 binning_y\n\
01361 \n\
01362 # Region of interest (subwindow of full camera resolution), given in\n\
01363 # full resolution (unbinned) image coordinates. A particular ROI\n\
01364 # always denotes the same window of pixels on the camera sensor,\n\
01365 # regardless of binning settings.\n\
01366 # The default setting of roi (all values 0) is considered the same as\n\
01367 # full resolution (roi.width = width, roi.height = height).\n\
01368 RegionOfInterest roi\n\
01369 \n\
01370 ================================================================================\n\
01371 MSG: sensor_msgs/RegionOfInterest\n\
01372 # This message is used to specify a region of interest within an image.\n\
01373 #\n\
01374 # When used to specify the ROI setting of the camera when the image was\n\
01375 # taken, the height and width fields should either match the height and\n\
01376 # width fields for the associated image; or height = width = 0\n\
01377 # indicates that the full resolution image was captured.\n\
01378 \n\
01379 uint32 x_offset # Leftmost pixel of the ROI\n\
01380 # (0 if the ROI includes the left edge of the image)\n\
01381 uint32 y_offset # Topmost pixel of the ROI\n\
01382 # (0 if the ROI includes the top edge of the image)\n\
01383 uint32 height # Height of ROI\n\
01384 uint32 width # Width of ROI\n\
01385 \n\
01386 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
01387 # ROI in this message. Typically this should be False if the full image\n\
01388 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
01389 # used).\n\
01390 bool do_rectify\n\
01391 \n\
01392 ================================================================================\n\
01393 MSG: geometry_msgs/Vector3\n\
01394 # This represents a vector in free space. \n\
01395 \n\
01396 float64 x\n\
01397 float64 y\n\
01398 float64 z\n\
01399 ================================================================================\n\
01400 MSG: object_manipulation_msgs/Grasp\n\
01401 \n\
01402 # The internal posture of the hand for the pre-grasp\n\
01403 # only positions are used\n\
01404 sensor_msgs/JointState pre_grasp_posture\n\
01405 \n\
01406 # The internal posture of the hand for the grasp\n\
01407 # positions and efforts are used\n\
01408 sensor_msgs/JointState grasp_posture\n\
01409 \n\
01410 # The position of the end-effector for the grasp relative to a reference frame \n\
01411 # (that is always specified elsewhere, not in this message)\n\
01412 geometry_msgs/Pose grasp_pose\n\
01413 \n\
01414 # The estimated probability of success for this grasp\n\
01415 float64 success_probability\n\
01416 \n\
01417 # Debug flag to indicate that this grasp would be the best in its cluster\n\
01418 bool cluster_rep\n\
01419 \n\
01420 # how far the pre-grasp should ideally be away from the grasp\n\
01421 float32 desired_approach_distance\n\
01422 \n\
01423 # how much distance between pre-grasp and grasp must actually be feasible \n\
01424 # for the grasp not to be rejected\n\
01425 float32 min_approach_distance\n\
01426 \n\
01427 # an optional list of obstacles that we have semantic information about\n\
01428 # and that we expect might move in the course of executing this grasp\n\
01429 # the grasp planner is expected to make sure they move in an OK way; during\n\
01430 # execution, grasp executors will not check for collisions against these objects\n\
01431 GraspableObject[] moved_obstacles\n\
01432 \n\
01433 ================================================================================\n\
01434 MSG: sensor_msgs/JointState\n\
01435 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
01436 #\n\
01437 # The state of each joint (revolute or prismatic) is defined by:\n\
01438 # * the position of the joint (rad or m),\n\
01439 # * the velocity of the joint (rad/s or m/s) and \n\
01440 # * the effort that is applied in the joint (Nm or N).\n\
01441 #\n\
01442 # Each joint is uniquely identified by its name\n\
01443 # The header specifies the time at which the joint states were recorded. All the joint states\n\
01444 # in one message have to be recorded at the same time.\n\
01445 #\n\
01446 # This message consists of a multiple arrays, one for each part of the joint state. \n\
01447 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
01448 # effort associated with them, you can leave the effort array empty. \n\
01449 #\n\
01450 # All arrays in this message should have the same size, or be empty.\n\
01451 # This is the only way to uniquely associate the joint name with the correct\n\
01452 # states.\n\
01453 \n\
01454 \n\
01455 Header header\n\
01456 \n\
01457 string[] name\n\
01458 float64[] position\n\
01459 float64[] velocity\n\
01460 float64[] effort\n\
01461 \n\
01462 ================================================================================\n\
01463 MSG: object_manipulation_msgs/GripperTranslation\n\
01464 # defines a translation for the gripper, used in pickup or place tasks\n\
01465 # for example for lifting an object off a table or approaching the table for placing\n\
01466 \n\
01467 # the direction of the translation\n\
01468 geometry_msgs/Vector3Stamped direction\n\
01469 \n\
01470 # the desired translation distance\n\
01471 float32 desired_distance\n\
01472 \n\
01473 # the min distance that must be considered feasible before the\n\
01474 # grasp is even attempted\n\
01475 float32 min_distance\n\
01476 ================================================================================\n\
01477 MSG: geometry_msgs/Vector3Stamped\n\
01478 # This represents a Vector3 with reference coordinate frame and timestamp\n\
01479 Header header\n\
01480 Vector3 vector\n\
01481 \n\
01482 ================================================================================\n\
01483 MSG: arm_navigation_msgs/Constraints\n\
01484 # This message contains a list of motion planning constraints.\n\
01485 \n\
01486 arm_navigation_msgs/JointConstraint[] joint_constraints\n\
01487 arm_navigation_msgs/PositionConstraint[] position_constraints\n\
01488 arm_navigation_msgs/OrientationConstraint[] orientation_constraints\n\
01489 arm_navigation_msgs/VisibilityConstraint[] visibility_constraints\n\
01490 \n\
01491 ================================================================================\n\
01492 MSG: arm_navigation_msgs/JointConstraint\n\
01493 # Constrain the position of a joint to be within a certain bound\n\
01494 string joint_name\n\
01495 \n\
01496 # the bound to be achieved is [position - tolerance_below, position + tolerance_above]\n\
01497 float64 position\n\
01498 float64 tolerance_above\n\
01499 float64 tolerance_below\n\
01500 \n\
01501 # A weighting factor for this constraint\n\
01502 float64 weight\n\
01503 ================================================================================\n\
01504 MSG: arm_navigation_msgs/PositionConstraint\n\
01505 # This message contains the definition of a position constraint.\n\
01506 Header header\n\
01507 \n\
01508 # The robot link this constraint refers to\n\
01509 string link_name\n\
01510 \n\
01511 # The offset (in the link frame) for the target point on the link we are planning for\n\
01512 geometry_msgs/Point target_point_offset\n\
01513 \n\
01514 # The nominal/target position for the point we are planning for\n\
01515 geometry_msgs/Point position\n\
01516 \n\
01517 # The shape of the bounded region that constrains the position of the end-effector\n\
01518 # This region is always centered at the position defined above\n\
01519 arm_navigation_msgs/Shape constraint_region_shape\n\
01520 \n\
01521 # The orientation of the bounded region that constrains the position of the end-effector. \n\
01522 # This allows the specification of non-axis aligned constraints\n\
01523 geometry_msgs/Quaternion constraint_region_orientation\n\
01524 \n\
01525 # Constraint weighting factor - a weight for this constraint\n\
01526 float64 weight\n\
01527 \n\
01528 ================================================================================\n\
01529 MSG: arm_navigation_msgs/Shape\n\
01530 byte SPHERE=0\n\
01531 byte BOX=1\n\
01532 byte CYLINDER=2\n\
01533 byte MESH=3\n\
01534 \n\
01535 byte type\n\
01536 \n\
01537 \n\
01538 #### define sphere, box, cylinder ####\n\
01539 # the origin of each shape is considered at the shape's center\n\
01540 \n\
01541 # for sphere\n\
01542 # radius := dimensions[0]\n\
01543 \n\
01544 # for cylinder\n\
01545 # radius := dimensions[0]\n\
01546 # length := dimensions[1]\n\
01547 # the length is along the Z axis\n\
01548 \n\
01549 # for box\n\
01550 # size_x := dimensions[0]\n\
01551 # size_y := dimensions[1]\n\
01552 # size_z := dimensions[2]\n\
01553 float64[] dimensions\n\
01554 \n\
01555 \n\
01556 #### define mesh ####\n\
01557 \n\
01558 # list of triangles; triangle k is defined by tre vertices located\n\
01559 # at indices triangles[3k], triangles[3k+1], triangles[3k+2]\n\
01560 int32[] triangles\n\
01561 geometry_msgs/Point[] vertices\n\
01562 \n\
01563 ================================================================================\n\
01564 MSG: arm_navigation_msgs/OrientationConstraint\n\
01565 # This message contains the definition of an orientation constraint.\n\
01566 Header header\n\
01567 \n\
01568 # The robot link this constraint refers to\n\
01569 string link_name\n\
01570 \n\
01571 # The type of the constraint\n\
01572 int32 type\n\
01573 int32 LINK_FRAME=0\n\
01574 int32 HEADER_FRAME=1\n\
01575 \n\
01576 # The desired orientation of the robot link specified as a quaternion\n\
01577 geometry_msgs/Quaternion orientation\n\
01578 \n\
01579 # optional RPY error tolerances specified if \n\
01580 float64 absolute_roll_tolerance\n\
01581 float64 absolute_pitch_tolerance\n\
01582 float64 absolute_yaw_tolerance\n\
01583 \n\
01584 # Constraint weighting factor - a weight for this constraint\n\
01585 float64 weight\n\
01586 \n\
01587 ================================================================================\n\
01588 MSG: arm_navigation_msgs/VisibilityConstraint\n\
01589 # This message contains the definition of a visibility constraint.\n\
01590 Header header\n\
01591 \n\
01592 # The point stamped target that needs to be kept within view of the sensor\n\
01593 geometry_msgs/PointStamped target\n\
01594 \n\
01595 # The local pose of the frame in which visibility is to be maintained\n\
01596 # The frame id should represent the robot link to which the sensor is attached\n\
01597 # The visual axis of the sensor is assumed to be along the X axis of this frame\n\
01598 geometry_msgs/PoseStamped sensor_pose\n\
01599 \n\
01600 # The deviation (in radians) that will be tolerated\n\
01601 # Constraint error will be measured as the solid angle between the \n\
01602 # X axis of the frame defined above and the vector between the origin \n\
01603 # of the frame defined above and the target location\n\
01604 float64 absolute_tolerance\n\
01605 \n\
01606 \n\
01607 ================================================================================\n\
01608 MSG: geometry_msgs/PointStamped\n\
01609 # This represents a Point with reference coordinate frame and timestamp\n\
01610 Header header\n\
01611 Point point\n\
01612 \n\
01613 ================================================================================\n\
01614 MSG: arm_navigation_msgs/OrderedCollisionOperations\n\
01615 # A set of collision operations that will be performed in the order they are specified\n\
01616 CollisionOperation[] collision_operations\n\
01617 ================================================================================\n\
01618 MSG: arm_navigation_msgs/CollisionOperation\n\
01619 # A definition of a collision operation\n\
01620 # E.g. (\"gripper\",COLLISION_SET_ALL,ENABLE) will enable collisions \n\
01621 # between the gripper and all objects in the collision space\n\
01622 \n\
01623 string object1\n\
01624 string object2\n\
01625 string COLLISION_SET_ALL=\"all\"\n\
01626 string COLLISION_SET_OBJECTS=\"objects\"\n\
01627 string COLLISION_SET_ATTACHED_OBJECTS=\"attached\"\n\
01628 \n\
01629 # The penetration distance to which collisions are allowed. This is 0.0 by default.\n\
01630 float64 penetration_distance\n\
01631 \n\
01632 # Flag that determines whether collisions will be enabled or disabled for the pair of objects specified above\n\
01633 int32 operation\n\
01634 int32 DISABLE=0\n\
01635 int32 ENABLE=1\n\
01636 \n\
01637 ================================================================================\n\
01638 MSG: arm_navigation_msgs/LinkPadding\n\
01639 #name for the link\n\
01640 string link_name\n\
01641 \n\
01642 # padding to apply to the link\n\
01643 float64 padding\n\
01644 \n\
01645 ";
01646 }
01647
01648 static const char* value(const ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator> &) { return value(); }
01649 };
01650
01651 template<class ContainerAllocator> struct HasHeader< ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator> > : public TrueType {};
01652 template<class ContainerAllocator> struct HasHeader< const ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator> > : public TrueType {};
01653 }
01654 }
01655
01656 namespace ros
01657 {
01658 namespace serialization
01659 {
01660
01661 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator> >
01662 {
01663 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
01664 {
01665 stream.next(m.header);
01666 stream.next(m.goal_id);
01667 stream.next(m.goal);
01668 }
01669
01670 ROS_DECLARE_ALLINONE_SERIALIZER;
01671 };
01672 }
01673 }
01674
01675 namespace ros
01676 {
01677 namespace message_operations
01678 {
01679
01680 template<class ContainerAllocator>
01681 struct Printer< ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator> >
01682 {
01683 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator> & v)
01684 {
01685 s << indent << "header: ";
01686 s << std::endl;
01687 Printer< ::std_msgs::Header_<ContainerAllocator> >::stream(s, indent + " ", v.header);
01688 s << indent << "goal_id: ";
01689 s << std::endl;
01690 Printer< ::actionlib_msgs::GoalID_<ContainerAllocator> >::stream(s, indent + " ", v.goal_id);
01691 s << indent << "goal: ";
01692 s << std::endl;
01693 Printer< ::object_manipulation_msgs::PickupGoal_<ContainerAllocator> >::stream(s, indent + " ", v.goal);
01694 }
01695 };
01696
01697
01698 }
01699 }
01700
01701 #endif // OBJECT_MANIPULATION_MSGS_MESSAGE_PICKUPACTIONGOAL_H
01702