00001
00002 #ifndef OBJECT_MANIPULATION_MSGS_MESSAGE_GRASP_H
00003 #define OBJECT_MANIPULATION_MSGS_MESSAGE_GRASP_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012
00013 #include "ros/macros.h"
00014
00015 #include "ros/assert.h"
00016
00017 #include "sensor_msgs/JointState.h"
00018 #include "sensor_msgs/JointState.h"
00019 #include "geometry_msgs/Pose.h"
00020 #include "object_manipulation_msgs/GraspableObject.h"
00021
00022 namespace object_manipulation_msgs
00023 {
00024 template <class ContainerAllocator>
00025 struct Grasp_ {
00026 typedef Grasp_<ContainerAllocator> Type;
00027
00028 Grasp_()
00029 : pre_grasp_posture()
00030 , grasp_posture()
00031 , grasp_pose()
00032 , success_probability(0.0)
00033 , cluster_rep(false)
00034 , desired_approach_distance(0.0)
00035 , min_approach_distance(0.0)
00036 , moved_obstacles()
00037 {
00038 }
00039
00040 Grasp_(const ContainerAllocator& _alloc)
00041 : pre_grasp_posture(_alloc)
00042 , grasp_posture(_alloc)
00043 , grasp_pose(_alloc)
00044 , success_probability(0.0)
00045 , cluster_rep(false)
00046 , desired_approach_distance(0.0)
00047 , min_approach_distance(0.0)
00048 , moved_obstacles(_alloc)
00049 {
00050 }
00051
00052 typedef ::sensor_msgs::JointState_<ContainerAllocator> _pre_grasp_posture_type;
00053 ::sensor_msgs::JointState_<ContainerAllocator> pre_grasp_posture;
00054
00055 typedef ::sensor_msgs::JointState_<ContainerAllocator> _grasp_posture_type;
00056 ::sensor_msgs::JointState_<ContainerAllocator> grasp_posture;
00057
00058 typedef ::geometry_msgs::Pose_<ContainerAllocator> _grasp_pose_type;
00059 ::geometry_msgs::Pose_<ContainerAllocator> grasp_pose;
00060
00061 typedef double _success_probability_type;
00062 double success_probability;
00063
00064 typedef uint8_t _cluster_rep_type;
00065 uint8_t cluster_rep;
00066
00067 typedef float _desired_approach_distance_type;
00068 float desired_approach_distance;
00069
00070 typedef float _min_approach_distance_type;
00071 float min_approach_distance;
00072
00073 typedef std::vector< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::other > _moved_obstacles_type;
00074 std::vector< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::other > moved_obstacles;
00075
00076
00077 ROS_DEPRECATED uint32_t get_moved_obstacles_size() const { return (uint32_t)moved_obstacles.size(); }
00078 ROS_DEPRECATED void set_moved_obstacles_size(uint32_t size) { moved_obstacles.resize((size_t)size); }
00079 ROS_DEPRECATED void get_moved_obstacles_vec(std::vector< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::other > & vec) const { vec = this->moved_obstacles; }
00080 ROS_DEPRECATED void set_moved_obstacles_vec(const std::vector< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::other > & vec) { this->moved_obstacles = vec; }
00081 private:
00082 static const char* __s_getDataType_() { return "object_manipulation_msgs/Grasp"; }
00083 public:
00084 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); }
00085
00086 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); }
00087
00088 private:
00089 static const char* __s_getMD5Sum_() { return "4e72917bb6dbc7207581a7124a26ba32"; }
00090 public:
00091 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); }
00092
00093 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); }
00094
00095 private:
00096 static const char* __s_getMessageDefinition_() { return "\n\
00097 # The internal posture of the hand for the pre-grasp\n\
00098 # only positions are used\n\
00099 sensor_msgs/JointState pre_grasp_posture\n\
00100 \n\
00101 # The internal posture of the hand for the grasp\n\
00102 # positions and efforts are used\n\
00103 sensor_msgs/JointState grasp_posture\n\
00104 \n\
00105 # The position of the end-effector for the grasp relative to a reference frame \n\
00106 # (that is always specified elsewhere, not in this message)\n\
00107 geometry_msgs/Pose grasp_pose\n\
00108 \n\
00109 # The estimated probability of success for this grasp\n\
00110 float64 success_probability\n\
00111 \n\
00112 # Debug flag to indicate that this grasp would be the best in its cluster\n\
00113 bool cluster_rep\n\
00114 \n\
00115 # how far the pre-grasp should ideally be away from the grasp\n\
00116 float32 desired_approach_distance\n\
00117 \n\
00118 # how much distance between pre-grasp and grasp must actually be feasible \n\
00119 # for the grasp not to be rejected\n\
00120 float32 min_approach_distance\n\
00121 \n\
00122 # an optional list of obstacles that we have semantic information about\n\
00123 # and that we expect might move in the course of executing this grasp\n\
00124 # the grasp planner is expected to make sure they move in an OK way; during\n\
00125 # execution, grasp executors will not check for collisions against these objects\n\
00126 GraspableObject[] moved_obstacles\n\
00127 \n\
00128 ================================================================================\n\
00129 MSG: sensor_msgs/JointState\n\
00130 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
00131 #\n\
00132 # The state of each joint (revolute or prismatic) is defined by:\n\
00133 # * the position of the joint (rad or m),\n\
00134 # * the velocity of the joint (rad/s or m/s) and \n\
00135 # * the effort that is applied in the joint (Nm or N).\n\
00136 #\n\
00137 # Each joint is uniquely identified by its name\n\
00138 # The header specifies the time at which the joint states were recorded. All the joint states\n\
00139 # in one message have to be recorded at the same time.\n\
00140 #\n\
00141 # This message consists of a multiple arrays, one for each part of the joint state. \n\
00142 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
00143 # effort associated with them, you can leave the effort array empty. \n\
00144 #\n\
00145 # All arrays in this message should have the same size, or be empty.\n\
00146 # This is the only way to uniquely associate the joint name with the correct\n\
00147 # states.\n\
00148 \n\
00149 \n\
00150 Header header\n\
00151 \n\
00152 string[] name\n\
00153 float64[] position\n\
00154 float64[] velocity\n\
00155 float64[] effort\n\
00156 \n\
00157 ================================================================================\n\
00158 MSG: std_msgs/Header\n\
00159 # Standard metadata for higher-level stamped data types.\n\
00160 # This is generally used to communicate timestamped data \n\
00161 # in a particular coordinate frame.\n\
00162 # \n\
00163 # sequence ID: consecutively increasing ID \n\
00164 uint32 seq\n\
00165 #Two-integer timestamp that is expressed as:\n\
00166 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00167 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00168 # time-handling sugar is provided by the client library\n\
00169 time stamp\n\
00170 #Frame this data is associated with\n\
00171 # 0: no frame\n\
00172 # 1: global frame\n\
00173 string frame_id\n\
00174 \n\
00175 ================================================================================\n\
00176 MSG: geometry_msgs/Pose\n\
00177 # A representation of pose in free space, composed of postion and orientation. \n\
00178 Point position\n\
00179 Quaternion orientation\n\
00180 \n\
00181 ================================================================================\n\
00182 MSG: geometry_msgs/Point\n\
00183 # This contains the position of a point in free space\n\
00184 float64 x\n\
00185 float64 y\n\
00186 float64 z\n\
00187 \n\
00188 ================================================================================\n\
00189 MSG: geometry_msgs/Quaternion\n\
00190 # This represents an orientation in free space in quaternion form.\n\
00191 \n\
00192 float64 x\n\
00193 float64 y\n\
00194 float64 z\n\
00195 float64 w\n\
00196 \n\
00197 ================================================================================\n\
00198 MSG: object_manipulation_msgs/GraspableObject\n\
00199 # an object that the object_manipulator can work on\n\
00200 \n\
00201 # a graspable object can be represented in multiple ways. This message\n\
00202 # can contain all of them. Which one is actually used is up to the receiver\n\
00203 # of this message. When adding new representations, one must be careful that\n\
00204 # they have reasonable lightweight defaults indicating that that particular\n\
00205 # representation is not available.\n\
00206 \n\
00207 # the tf frame to be used as a reference frame when combining information from\n\
00208 # the different representations below\n\
00209 string reference_frame_id\n\
00210 \n\
00211 # potential recognition results from a database of models\n\
00212 # all poses are relative to the object reference pose\n\
00213 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00214 \n\
00215 # the point cloud itself\n\
00216 sensor_msgs/PointCloud cluster\n\
00217 \n\
00218 # a region of a PointCloud2 of interest\n\
00219 object_manipulation_msgs/SceneRegion region\n\
00220 \n\
00221 # the name that this object has in the collision environment\n\
00222 string collision_name\n\
00223 ================================================================================\n\
00224 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00225 # Informs that a specific model from the Model Database has been \n\
00226 # identified at a certain location\n\
00227 \n\
00228 # the database id of the model\n\
00229 int32 model_id\n\
00230 \n\
00231 # the pose that it can be found in\n\
00232 geometry_msgs/PoseStamped pose\n\
00233 \n\
00234 # a measure of the confidence level in this detection result\n\
00235 float32 confidence\n\
00236 \n\
00237 # the name of the object detector that generated this detection result\n\
00238 string detector_name\n\
00239 \n\
00240 ================================================================================\n\
00241 MSG: geometry_msgs/PoseStamped\n\
00242 # A Pose with reference coordinate frame and timestamp\n\
00243 Header header\n\
00244 Pose pose\n\
00245 \n\
00246 ================================================================================\n\
00247 MSG: sensor_msgs/PointCloud\n\
00248 # This message holds a collection of 3d points, plus optional additional\n\
00249 # information about each point.\n\
00250 \n\
00251 # Time of sensor data acquisition, coordinate frame ID.\n\
00252 Header header\n\
00253 \n\
00254 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00255 # in the frame given in the header.\n\
00256 geometry_msgs/Point32[] points\n\
00257 \n\
00258 # Each channel should have the same number of elements as points array,\n\
00259 # and the data in each channel should correspond 1:1 with each point.\n\
00260 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00261 ChannelFloat32[] channels\n\
00262 \n\
00263 ================================================================================\n\
00264 MSG: geometry_msgs/Point32\n\
00265 # This contains the position of a point in free space(with 32 bits of precision).\n\
00266 # It is recommeded to use Point wherever possible instead of Point32. \n\
00267 # \n\
00268 # This recommendation is to promote interoperability. \n\
00269 #\n\
00270 # This message is designed to take up less space when sending\n\
00271 # lots of points at once, as in the case of a PointCloud. \n\
00272 \n\
00273 float32 x\n\
00274 float32 y\n\
00275 float32 z\n\
00276 ================================================================================\n\
00277 MSG: sensor_msgs/ChannelFloat32\n\
00278 # This message is used by the PointCloud message to hold optional data\n\
00279 # associated with each point in the cloud. The length of the values\n\
00280 # array should be the same as the length of the points array in the\n\
00281 # PointCloud, and each value should be associated with the corresponding\n\
00282 # point.\n\
00283 \n\
00284 # Channel names in existing practice include:\n\
00285 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00286 # This is opposite to usual conventions but remains for\n\
00287 # historical reasons. The newer PointCloud2 message has no\n\
00288 # such problem.\n\
00289 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00290 # (R,G,B) values packed into the least significant 24 bits,\n\
00291 # in order.\n\
00292 # \"intensity\" - laser or pixel intensity.\n\
00293 # \"distance\"\n\
00294 \n\
00295 # The channel name should give semantics of the channel (e.g.\n\
00296 # \"intensity\" instead of \"value\").\n\
00297 string name\n\
00298 \n\
00299 # The values array should be 1-1 with the elements of the associated\n\
00300 # PointCloud.\n\
00301 float32[] values\n\
00302 \n\
00303 ================================================================================\n\
00304 MSG: object_manipulation_msgs/SceneRegion\n\
00305 # Point cloud\n\
00306 sensor_msgs/PointCloud2 cloud\n\
00307 \n\
00308 # Indices for the region of interest\n\
00309 int32[] mask\n\
00310 \n\
00311 # One of the corresponding 2D images, if applicable\n\
00312 sensor_msgs/Image image\n\
00313 \n\
00314 # The disparity image, if applicable\n\
00315 sensor_msgs/Image disparity_image\n\
00316 \n\
00317 # Camera info for the camera that took the image\n\
00318 sensor_msgs/CameraInfo cam_info\n\
00319 \n\
00320 # a 3D region of interest for grasp planning\n\
00321 geometry_msgs/PoseStamped roi_box_pose\n\
00322 geometry_msgs/Vector3 roi_box_dims\n\
00323 \n\
00324 ================================================================================\n\
00325 MSG: sensor_msgs/PointCloud2\n\
00326 # This message holds a collection of N-dimensional points, which may\n\
00327 # contain additional information such as normals, intensity, etc. The\n\
00328 # point data is stored as a binary blob, its layout described by the\n\
00329 # contents of the \"fields\" array.\n\
00330 \n\
00331 # The point cloud data may be organized 2d (image-like) or 1d\n\
00332 # (unordered). Point clouds organized as 2d images may be produced by\n\
00333 # camera depth sensors such as stereo or time-of-flight.\n\
00334 \n\
00335 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00336 # points).\n\
00337 Header header\n\
00338 \n\
00339 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00340 # 1 and width is the length of the point cloud.\n\
00341 uint32 height\n\
00342 uint32 width\n\
00343 \n\
00344 # Describes the channels and their layout in the binary data blob.\n\
00345 PointField[] fields\n\
00346 \n\
00347 bool is_bigendian # Is this data bigendian?\n\
00348 uint32 point_step # Length of a point in bytes\n\
00349 uint32 row_step # Length of a row in bytes\n\
00350 uint8[] data # Actual point data, size is (row_step*height)\n\
00351 \n\
00352 bool is_dense # True if there are no invalid points\n\
00353 \n\
00354 ================================================================================\n\
00355 MSG: sensor_msgs/PointField\n\
00356 # This message holds the description of one point entry in the\n\
00357 # PointCloud2 message format.\n\
00358 uint8 INT8 = 1\n\
00359 uint8 UINT8 = 2\n\
00360 uint8 INT16 = 3\n\
00361 uint8 UINT16 = 4\n\
00362 uint8 INT32 = 5\n\
00363 uint8 UINT32 = 6\n\
00364 uint8 FLOAT32 = 7\n\
00365 uint8 FLOAT64 = 8\n\
00366 \n\
00367 string name # Name of field\n\
00368 uint32 offset # Offset from start of point struct\n\
00369 uint8 datatype # Datatype enumeration, see above\n\
00370 uint32 count # How many elements in the field\n\
00371 \n\
00372 ================================================================================\n\
00373 MSG: sensor_msgs/Image\n\
00374 # This message contains an uncompressed image\n\
00375 # (0, 0) is at top-left corner of image\n\
00376 #\n\
00377 \n\
00378 Header header # Header timestamp should be acquisition time of image\n\
00379 # Header frame_id should be optical frame of camera\n\
00380 # origin of frame should be optical center of cameara\n\
00381 # +x should point to the right in the image\n\
00382 # +y should point down in the image\n\
00383 # +z should point into to plane of the image\n\
00384 # If the frame_id here and the frame_id of the CameraInfo\n\
00385 # message associated with the image conflict\n\
00386 # the behavior is undefined\n\
00387 \n\
00388 uint32 height # image height, that is, number of rows\n\
00389 uint32 width # image width, that is, number of columns\n\
00390 \n\
00391 # The legal values for encoding are in file src/image_encodings.cpp\n\
00392 # If you want to standardize a new string format, join\n\
00393 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00394 \n\
00395 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00396 # taken from the list of strings in src/image_encodings.cpp\n\
00397 \n\
00398 uint8 is_bigendian # is this data bigendian?\n\
00399 uint32 step # Full row length in bytes\n\
00400 uint8[] data # actual matrix data, size is (step * rows)\n\
00401 \n\
00402 ================================================================================\n\
00403 MSG: sensor_msgs/CameraInfo\n\
00404 # This message defines meta information for a camera. It should be in a\n\
00405 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00406 # image topics named:\n\
00407 #\n\
00408 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00409 # image - monochrome, distorted\n\
00410 # image_color - color, distorted\n\
00411 # image_rect - monochrome, rectified\n\
00412 # image_rect_color - color, rectified\n\
00413 #\n\
00414 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00415 # for producing the four processed image topics from image_raw and\n\
00416 # camera_info. The meaning of the camera parameters are described in\n\
00417 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00418 #\n\
00419 # The image_geometry package provides a user-friendly interface to\n\
00420 # common operations using this meta information. If you want to, e.g.,\n\
00421 # project a 3d point into image coordinates, we strongly recommend\n\
00422 # using image_geometry.\n\
00423 #\n\
00424 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00425 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00426 # indicates an uncalibrated camera.\n\
00427 \n\
00428 #######################################################################\n\
00429 # Image acquisition info #\n\
00430 #######################################################################\n\
00431 \n\
00432 # Time of image acquisition, camera coordinate frame ID\n\
00433 Header header # Header timestamp should be acquisition time of image\n\
00434 # Header frame_id should be optical frame of camera\n\
00435 # origin of frame should be optical center of camera\n\
00436 # +x should point to the right in the image\n\
00437 # +y should point down in the image\n\
00438 # +z should point into the plane of the image\n\
00439 \n\
00440 \n\
00441 #######################################################################\n\
00442 # Calibration Parameters #\n\
00443 #######################################################################\n\
00444 # These are fixed during camera calibration. Their values will be the #\n\
00445 # same in all messages until the camera is recalibrated. Note that #\n\
00446 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00447 # #\n\
00448 # The internal parameters can be used to warp a raw (distorted) image #\n\
00449 # to: #\n\
00450 # 1. An undistorted image (requires D and K) #\n\
00451 # 2. A rectified image (requires D, K, R) #\n\
00452 # The projection matrix P projects 3D points into the rectified image.#\n\
00453 #######################################################################\n\
00454 \n\
00455 # The image dimensions with which the camera was calibrated. Normally\n\
00456 # this will be the full camera resolution in pixels.\n\
00457 uint32 height\n\
00458 uint32 width\n\
00459 \n\
00460 # The distortion model used. Supported models are listed in\n\
00461 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00462 # simple model of radial and tangential distortion - is sufficent.\n\
00463 string distortion_model\n\
00464 \n\
00465 # The distortion parameters, size depending on the distortion model.\n\
00466 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00467 float64[] D\n\
00468 \n\
00469 # Intrinsic camera matrix for the raw (distorted) images.\n\
00470 # [fx 0 cx]\n\
00471 # K = [ 0 fy cy]\n\
00472 # [ 0 0 1]\n\
00473 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00474 # coordinates using the focal lengths (fx, fy) and principal point\n\
00475 # (cx, cy).\n\
00476 float64[9] K # 3x3 row-major matrix\n\
00477 \n\
00478 # Rectification matrix (stereo cameras only)\n\
00479 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00480 # stereo image plane so that epipolar lines in both stereo images are\n\
00481 # parallel.\n\
00482 float64[9] R # 3x3 row-major matrix\n\
00483 \n\
00484 # Projection/camera matrix\n\
00485 # [fx' 0 cx' Tx]\n\
00486 # P = [ 0 fy' cy' Ty]\n\
00487 # [ 0 0 1 0]\n\
00488 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00489 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00490 # is the normal camera intrinsic matrix for the rectified image.\n\
00491 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00492 # coordinates using the focal lengths (fx', fy') and principal point\n\
00493 # (cx', cy') - these may differ from the values in K.\n\
00494 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00495 # also have R = the identity and P[1:3,1:3] = K.\n\
00496 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00497 # position of the optical center of the second camera in the first\n\
00498 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00499 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00500 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00501 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00502 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00503 # the rectified image is given by:\n\
00504 # [u v w]' = P * [X Y Z 1]'\n\
00505 # x = u / w\n\
00506 # y = v / w\n\
00507 # This holds for both images of a stereo pair.\n\
00508 float64[12] P # 3x4 row-major matrix\n\
00509 \n\
00510 \n\
00511 #######################################################################\n\
00512 # Operational Parameters #\n\
00513 #######################################################################\n\
00514 # These define the image region actually captured by the camera #\n\
00515 # driver. Although they affect the geometry of the output image, they #\n\
00516 # may be changed freely without recalibrating the camera. #\n\
00517 #######################################################################\n\
00518 \n\
00519 # Binning refers here to any camera setting which combines rectangular\n\
00520 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00521 # resolution of the output image to\n\
00522 # (width / binning_x) x (height / binning_y).\n\
00523 # The default values binning_x = binning_y = 0 is considered the same\n\
00524 # as binning_x = binning_y = 1 (no subsampling).\n\
00525 uint32 binning_x\n\
00526 uint32 binning_y\n\
00527 \n\
00528 # Region of interest (subwindow of full camera resolution), given in\n\
00529 # full resolution (unbinned) image coordinates. A particular ROI\n\
00530 # always denotes the same window of pixels on the camera sensor,\n\
00531 # regardless of binning settings.\n\
00532 # The default setting of roi (all values 0) is considered the same as\n\
00533 # full resolution (roi.width = width, roi.height = height).\n\
00534 RegionOfInterest roi\n\
00535 \n\
00536 ================================================================================\n\
00537 MSG: sensor_msgs/RegionOfInterest\n\
00538 # This message is used to specify a region of interest within an image.\n\
00539 #\n\
00540 # When used to specify the ROI setting of the camera when the image was\n\
00541 # taken, the height and width fields should either match the height and\n\
00542 # width fields for the associated image; or height = width = 0\n\
00543 # indicates that the full resolution image was captured.\n\
00544 \n\
00545 uint32 x_offset # Leftmost pixel of the ROI\n\
00546 # (0 if the ROI includes the left edge of the image)\n\
00547 uint32 y_offset # Topmost pixel of the ROI\n\
00548 # (0 if the ROI includes the top edge of the image)\n\
00549 uint32 height # Height of ROI\n\
00550 uint32 width # Width of ROI\n\
00551 \n\
00552 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00553 # ROI in this message. Typically this should be False if the full image\n\
00554 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00555 # used).\n\
00556 bool do_rectify\n\
00557 \n\
00558 ================================================================================\n\
00559 MSG: geometry_msgs/Vector3\n\
00560 # This represents a vector in free space. \n\
00561 \n\
00562 float64 x\n\
00563 float64 y\n\
00564 float64 z\n\
00565 "; }
00566 public:
00567 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); }
00568
00569 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); }
00570
00571 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const
00572 {
00573 ros::serialization::OStream stream(write_ptr, 1000000000);
00574 ros::serialization::serialize(stream, pre_grasp_posture);
00575 ros::serialization::serialize(stream, grasp_posture);
00576 ros::serialization::serialize(stream, grasp_pose);
00577 ros::serialization::serialize(stream, success_probability);
00578 ros::serialization::serialize(stream, cluster_rep);
00579 ros::serialization::serialize(stream, desired_approach_distance);
00580 ros::serialization::serialize(stream, min_approach_distance);
00581 ros::serialization::serialize(stream, moved_obstacles);
00582 return stream.getData();
00583 }
00584
00585 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr)
00586 {
00587 ros::serialization::IStream stream(read_ptr, 1000000000);
00588 ros::serialization::deserialize(stream, pre_grasp_posture);
00589 ros::serialization::deserialize(stream, grasp_posture);
00590 ros::serialization::deserialize(stream, grasp_pose);
00591 ros::serialization::deserialize(stream, success_probability);
00592 ros::serialization::deserialize(stream, cluster_rep);
00593 ros::serialization::deserialize(stream, desired_approach_distance);
00594 ros::serialization::deserialize(stream, min_approach_distance);
00595 ros::serialization::deserialize(stream, moved_obstacles);
00596 return stream.getData();
00597 }
00598
00599 ROS_DEPRECATED virtual uint32_t serializationLength() const
00600 {
00601 uint32_t size = 0;
00602 size += ros::serialization::serializationLength(pre_grasp_posture);
00603 size += ros::serialization::serializationLength(grasp_posture);
00604 size += ros::serialization::serializationLength(grasp_pose);
00605 size += ros::serialization::serializationLength(success_probability);
00606 size += ros::serialization::serializationLength(cluster_rep);
00607 size += ros::serialization::serializationLength(desired_approach_distance);
00608 size += ros::serialization::serializationLength(min_approach_distance);
00609 size += ros::serialization::serializationLength(moved_obstacles);
00610 return size;
00611 }
00612
00613 typedef boost::shared_ptr< ::object_manipulation_msgs::Grasp_<ContainerAllocator> > Ptr;
00614 typedef boost::shared_ptr< ::object_manipulation_msgs::Grasp_<ContainerAllocator> const> ConstPtr;
00615 boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00616 };
00617 typedef ::object_manipulation_msgs::Grasp_<std::allocator<void> > Grasp;
00618
00619 typedef boost::shared_ptr< ::object_manipulation_msgs::Grasp> GraspPtr;
00620 typedef boost::shared_ptr< ::object_manipulation_msgs::Grasp const> GraspConstPtr;
00621
00622
00623 template<typename ContainerAllocator>
00624 std::ostream& operator<<(std::ostream& s, const ::object_manipulation_msgs::Grasp_<ContainerAllocator> & v)
00625 {
00626 ros::message_operations::Printer< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::stream(s, "", v);
00627 return s;}
00628
00629 }
00630
00631 namespace ros
00632 {
00633 namespace message_traits
00634 {
00635 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::Grasp_<ContainerAllocator> > : public TrueType {};
00636 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::Grasp_<ContainerAllocator> const> : public TrueType {};
00637 template<class ContainerAllocator>
00638 struct MD5Sum< ::object_manipulation_msgs::Grasp_<ContainerAllocator> > {
00639 static const char* value()
00640 {
00641 return "4e72917bb6dbc7207581a7124a26ba32";
00642 }
00643
00644 static const char* value(const ::object_manipulation_msgs::Grasp_<ContainerAllocator> &) { return value(); }
00645 static const uint64_t static_value1 = 0x4e72917bb6dbc720ULL;
00646 static const uint64_t static_value2 = 0x7581a7124a26ba32ULL;
00647 };
00648
00649 template<class ContainerAllocator>
00650 struct DataType< ::object_manipulation_msgs::Grasp_<ContainerAllocator> > {
00651 static const char* value()
00652 {
00653 return "object_manipulation_msgs/Grasp";
00654 }
00655
00656 static const char* value(const ::object_manipulation_msgs::Grasp_<ContainerAllocator> &) { return value(); }
00657 };
00658
00659 template<class ContainerAllocator>
00660 struct Definition< ::object_manipulation_msgs::Grasp_<ContainerAllocator> > {
00661 static const char* value()
00662 {
00663 return "\n\
00664 # The internal posture of the hand for the pre-grasp\n\
00665 # only positions are used\n\
00666 sensor_msgs/JointState pre_grasp_posture\n\
00667 \n\
00668 # The internal posture of the hand for the grasp\n\
00669 # positions and efforts are used\n\
00670 sensor_msgs/JointState grasp_posture\n\
00671 \n\
00672 # The position of the end-effector for the grasp relative to a reference frame \n\
00673 # (that is always specified elsewhere, not in this message)\n\
00674 geometry_msgs/Pose grasp_pose\n\
00675 \n\
00676 # The estimated probability of success for this grasp\n\
00677 float64 success_probability\n\
00678 \n\
00679 # Debug flag to indicate that this grasp would be the best in its cluster\n\
00680 bool cluster_rep\n\
00681 \n\
00682 # how far the pre-grasp should ideally be away from the grasp\n\
00683 float32 desired_approach_distance\n\
00684 \n\
00685 # how much distance between pre-grasp and grasp must actually be feasible \n\
00686 # for the grasp not to be rejected\n\
00687 float32 min_approach_distance\n\
00688 \n\
00689 # an optional list of obstacles that we have semantic information about\n\
00690 # and that we expect might move in the course of executing this grasp\n\
00691 # the grasp planner is expected to make sure they move in an OK way; during\n\
00692 # execution, grasp executors will not check for collisions against these objects\n\
00693 GraspableObject[] moved_obstacles\n\
00694 \n\
00695 ================================================================================\n\
00696 MSG: sensor_msgs/JointState\n\
00697 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
00698 #\n\
00699 # The state of each joint (revolute or prismatic) is defined by:\n\
00700 # * the position of the joint (rad or m),\n\
00701 # * the velocity of the joint (rad/s or m/s) and \n\
00702 # * the effort that is applied in the joint (Nm or N).\n\
00703 #\n\
00704 # Each joint is uniquely identified by its name\n\
00705 # The header specifies the time at which the joint states were recorded. All the joint states\n\
00706 # in one message have to be recorded at the same time.\n\
00707 #\n\
00708 # This message consists of a multiple arrays, one for each part of the joint state. \n\
00709 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
00710 # effort associated with them, you can leave the effort array empty. \n\
00711 #\n\
00712 # All arrays in this message should have the same size, or be empty.\n\
00713 # This is the only way to uniquely associate the joint name with the correct\n\
00714 # states.\n\
00715 \n\
00716 \n\
00717 Header header\n\
00718 \n\
00719 string[] name\n\
00720 float64[] position\n\
00721 float64[] velocity\n\
00722 float64[] effort\n\
00723 \n\
00724 ================================================================================\n\
00725 MSG: std_msgs/Header\n\
00726 # Standard metadata for higher-level stamped data types.\n\
00727 # This is generally used to communicate timestamped data \n\
00728 # in a particular coordinate frame.\n\
00729 # \n\
00730 # sequence ID: consecutively increasing ID \n\
00731 uint32 seq\n\
00732 #Two-integer timestamp that is expressed as:\n\
00733 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00734 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00735 # time-handling sugar is provided by the client library\n\
00736 time stamp\n\
00737 #Frame this data is associated with\n\
00738 # 0: no frame\n\
00739 # 1: global frame\n\
00740 string frame_id\n\
00741 \n\
00742 ================================================================================\n\
00743 MSG: geometry_msgs/Pose\n\
00744 # A representation of pose in free space, composed of postion and orientation. \n\
00745 Point position\n\
00746 Quaternion orientation\n\
00747 \n\
00748 ================================================================================\n\
00749 MSG: geometry_msgs/Point\n\
00750 # This contains the position of a point in free space\n\
00751 float64 x\n\
00752 float64 y\n\
00753 float64 z\n\
00754 \n\
00755 ================================================================================\n\
00756 MSG: geometry_msgs/Quaternion\n\
00757 # This represents an orientation in free space in quaternion form.\n\
00758 \n\
00759 float64 x\n\
00760 float64 y\n\
00761 float64 z\n\
00762 float64 w\n\
00763 \n\
00764 ================================================================================\n\
00765 MSG: object_manipulation_msgs/GraspableObject\n\
00766 # an object that the object_manipulator can work on\n\
00767 \n\
00768 # a graspable object can be represented in multiple ways. This message\n\
00769 # can contain all of them. Which one is actually used is up to the receiver\n\
00770 # of this message. When adding new representations, one must be careful that\n\
00771 # they have reasonable lightweight defaults indicating that that particular\n\
00772 # representation is not available.\n\
00773 \n\
00774 # the tf frame to be used as a reference frame when combining information from\n\
00775 # the different representations below\n\
00776 string reference_frame_id\n\
00777 \n\
00778 # potential recognition results from a database of models\n\
00779 # all poses are relative to the object reference pose\n\
00780 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00781 \n\
00782 # the point cloud itself\n\
00783 sensor_msgs/PointCloud cluster\n\
00784 \n\
00785 # a region of a PointCloud2 of interest\n\
00786 object_manipulation_msgs/SceneRegion region\n\
00787 \n\
00788 # the name that this object has in the collision environment\n\
00789 string collision_name\n\
00790 ================================================================================\n\
00791 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00792 # Informs that a specific model from the Model Database has been \n\
00793 # identified at a certain location\n\
00794 \n\
00795 # the database id of the model\n\
00796 int32 model_id\n\
00797 \n\
00798 # the pose that it can be found in\n\
00799 geometry_msgs/PoseStamped pose\n\
00800 \n\
00801 # a measure of the confidence level in this detection result\n\
00802 float32 confidence\n\
00803 \n\
00804 # the name of the object detector that generated this detection result\n\
00805 string detector_name\n\
00806 \n\
00807 ================================================================================\n\
00808 MSG: geometry_msgs/PoseStamped\n\
00809 # A Pose with reference coordinate frame and timestamp\n\
00810 Header header\n\
00811 Pose pose\n\
00812 \n\
00813 ================================================================================\n\
00814 MSG: sensor_msgs/PointCloud\n\
00815 # This message holds a collection of 3d points, plus optional additional\n\
00816 # information about each point.\n\
00817 \n\
00818 # Time of sensor data acquisition, coordinate frame ID.\n\
00819 Header header\n\
00820 \n\
00821 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00822 # in the frame given in the header.\n\
00823 geometry_msgs/Point32[] points\n\
00824 \n\
00825 # Each channel should have the same number of elements as points array,\n\
00826 # and the data in each channel should correspond 1:1 with each point.\n\
00827 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00828 ChannelFloat32[] channels\n\
00829 \n\
00830 ================================================================================\n\
00831 MSG: geometry_msgs/Point32\n\
00832 # This contains the position of a point in free space(with 32 bits of precision).\n\
00833 # It is recommeded to use Point wherever possible instead of Point32. \n\
00834 # \n\
00835 # This recommendation is to promote interoperability. \n\
00836 #\n\
00837 # This message is designed to take up less space when sending\n\
00838 # lots of points at once, as in the case of a PointCloud. \n\
00839 \n\
00840 float32 x\n\
00841 float32 y\n\
00842 float32 z\n\
00843 ================================================================================\n\
00844 MSG: sensor_msgs/ChannelFloat32\n\
00845 # This message is used by the PointCloud message to hold optional data\n\
00846 # associated with each point in the cloud. The length of the values\n\
00847 # array should be the same as the length of the points array in the\n\
00848 # PointCloud, and each value should be associated with the corresponding\n\
00849 # point.\n\
00850 \n\
00851 # Channel names in existing practice include:\n\
00852 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00853 # This is opposite to usual conventions but remains for\n\
00854 # historical reasons. The newer PointCloud2 message has no\n\
00855 # such problem.\n\
00856 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00857 # (R,G,B) values packed into the least significant 24 bits,\n\
00858 # in order.\n\
00859 # \"intensity\" - laser or pixel intensity.\n\
00860 # \"distance\"\n\
00861 \n\
00862 # The channel name should give semantics of the channel (e.g.\n\
00863 # \"intensity\" instead of \"value\").\n\
00864 string name\n\
00865 \n\
00866 # The values array should be 1-1 with the elements of the associated\n\
00867 # PointCloud.\n\
00868 float32[] values\n\
00869 \n\
00870 ================================================================================\n\
00871 MSG: object_manipulation_msgs/SceneRegion\n\
00872 # Point cloud\n\
00873 sensor_msgs/PointCloud2 cloud\n\
00874 \n\
00875 # Indices for the region of interest\n\
00876 int32[] mask\n\
00877 \n\
00878 # One of the corresponding 2D images, if applicable\n\
00879 sensor_msgs/Image image\n\
00880 \n\
00881 # The disparity image, if applicable\n\
00882 sensor_msgs/Image disparity_image\n\
00883 \n\
00884 # Camera info for the camera that took the image\n\
00885 sensor_msgs/CameraInfo cam_info\n\
00886 \n\
00887 # a 3D region of interest for grasp planning\n\
00888 geometry_msgs/PoseStamped roi_box_pose\n\
00889 geometry_msgs/Vector3 roi_box_dims\n\
00890 \n\
00891 ================================================================================\n\
00892 MSG: sensor_msgs/PointCloud2\n\
00893 # This message holds a collection of N-dimensional points, which may\n\
00894 # contain additional information such as normals, intensity, etc. The\n\
00895 # point data is stored as a binary blob, its layout described by the\n\
00896 # contents of the \"fields\" array.\n\
00897 \n\
00898 # The point cloud data may be organized 2d (image-like) or 1d\n\
00899 # (unordered). Point clouds organized as 2d images may be produced by\n\
00900 # camera depth sensors such as stereo or time-of-flight.\n\
00901 \n\
00902 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00903 # points).\n\
00904 Header header\n\
00905 \n\
00906 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00907 # 1 and width is the length of the point cloud.\n\
00908 uint32 height\n\
00909 uint32 width\n\
00910 \n\
00911 # Describes the channels and their layout in the binary data blob.\n\
00912 PointField[] fields\n\
00913 \n\
00914 bool is_bigendian # Is this data bigendian?\n\
00915 uint32 point_step # Length of a point in bytes\n\
00916 uint32 row_step # Length of a row in bytes\n\
00917 uint8[] data # Actual point data, size is (row_step*height)\n\
00918 \n\
00919 bool is_dense # True if there are no invalid points\n\
00920 \n\
00921 ================================================================================\n\
00922 MSG: sensor_msgs/PointField\n\
00923 # This message holds the description of one point entry in the\n\
00924 # PointCloud2 message format.\n\
00925 uint8 INT8 = 1\n\
00926 uint8 UINT8 = 2\n\
00927 uint8 INT16 = 3\n\
00928 uint8 UINT16 = 4\n\
00929 uint8 INT32 = 5\n\
00930 uint8 UINT32 = 6\n\
00931 uint8 FLOAT32 = 7\n\
00932 uint8 FLOAT64 = 8\n\
00933 \n\
00934 string name # Name of field\n\
00935 uint32 offset # Offset from start of point struct\n\
00936 uint8 datatype # Datatype enumeration, see above\n\
00937 uint32 count # How many elements in the field\n\
00938 \n\
00939 ================================================================================\n\
00940 MSG: sensor_msgs/Image\n\
00941 # This message contains an uncompressed image\n\
00942 # (0, 0) is at top-left corner of image\n\
00943 #\n\
00944 \n\
00945 Header header # Header timestamp should be acquisition time of image\n\
00946 # Header frame_id should be optical frame of camera\n\
00947 # origin of frame should be optical center of cameara\n\
00948 # +x should point to the right in the image\n\
00949 # +y should point down in the image\n\
00950 # +z should point into to plane of the image\n\
00951 # If the frame_id here and the frame_id of the CameraInfo\n\
00952 # message associated with the image conflict\n\
00953 # the behavior is undefined\n\
00954 \n\
00955 uint32 height # image height, that is, number of rows\n\
00956 uint32 width # image width, that is, number of columns\n\
00957 \n\
00958 # The legal values for encoding are in file src/image_encodings.cpp\n\
00959 # If you want to standardize a new string format, join\n\
00960 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00961 \n\
00962 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00963 # taken from the list of strings in src/image_encodings.cpp\n\
00964 \n\
00965 uint8 is_bigendian # is this data bigendian?\n\
00966 uint32 step # Full row length in bytes\n\
00967 uint8[] data # actual matrix data, size is (step * rows)\n\
00968 \n\
00969 ================================================================================\n\
00970 MSG: sensor_msgs/CameraInfo\n\
00971 # This message defines meta information for a camera. It should be in a\n\
00972 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00973 # image topics named:\n\
00974 #\n\
00975 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00976 # image - monochrome, distorted\n\
00977 # image_color - color, distorted\n\
00978 # image_rect - monochrome, rectified\n\
00979 # image_rect_color - color, rectified\n\
00980 #\n\
00981 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00982 # for producing the four processed image topics from image_raw and\n\
00983 # camera_info. The meaning of the camera parameters are described in\n\
00984 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00985 #\n\
00986 # The image_geometry package provides a user-friendly interface to\n\
00987 # common operations using this meta information. If you want to, e.g.,\n\
00988 # project a 3d point into image coordinates, we strongly recommend\n\
00989 # using image_geometry.\n\
00990 #\n\
00991 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00992 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00993 # indicates an uncalibrated camera.\n\
00994 \n\
00995 #######################################################################\n\
00996 # Image acquisition info #\n\
00997 #######################################################################\n\
00998 \n\
00999 # Time of image acquisition, camera coordinate frame ID\n\
01000 Header header # Header timestamp should be acquisition time of image\n\
01001 # Header frame_id should be optical frame of camera\n\
01002 # origin of frame should be optical center of camera\n\
01003 # +x should point to the right in the image\n\
01004 # +y should point down in the image\n\
01005 # +z should point into the plane of the image\n\
01006 \n\
01007 \n\
01008 #######################################################################\n\
01009 # Calibration Parameters #\n\
01010 #######################################################################\n\
01011 # These are fixed during camera calibration. Their values will be the #\n\
01012 # same in all messages until the camera is recalibrated. Note that #\n\
01013 # self-calibrating systems may \"recalibrate\" frequently. #\n\
01014 # #\n\
01015 # The internal parameters can be used to warp a raw (distorted) image #\n\
01016 # to: #\n\
01017 # 1. An undistorted image (requires D and K) #\n\
01018 # 2. A rectified image (requires D, K, R) #\n\
01019 # The projection matrix P projects 3D points into the rectified image.#\n\
01020 #######################################################################\n\
01021 \n\
01022 # The image dimensions with which the camera was calibrated. Normally\n\
01023 # this will be the full camera resolution in pixels.\n\
01024 uint32 height\n\
01025 uint32 width\n\
01026 \n\
01027 # The distortion model used. Supported models are listed in\n\
01028 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
01029 # simple model of radial and tangential distortion - is sufficent.\n\
01030 string distortion_model\n\
01031 \n\
01032 # The distortion parameters, size depending on the distortion model.\n\
01033 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
01034 float64[] D\n\
01035 \n\
01036 # Intrinsic camera matrix for the raw (distorted) images.\n\
01037 # [fx 0 cx]\n\
01038 # K = [ 0 fy cy]\n\
01039 # [ 0 0 1]\n\
01040 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
01041 # coordinates using the focal lengths (fx, fy) and principal point\n\
01042 # (cx, cy).\n\
01043 float64[9] K # 3x3 row-major matrix\n\
01044 \n\
01045 # Rectification matrix (stereo cameras only)\n\
01046 # A rotation matrix aligning the camera coordinate system to the ideal\n\
01047 # stereo image plane so that epipolar lines in both stereo images are\n\
01048 # parallel.\n\
01049 float64[9] R # 3x3 row-major matrix\n\
01050 \n\
01051 # Projection/camera matrix\n\
01052 # [fx' 0 cx' Tx]\n\
01053 # P = [ 0 fy' cy' Ty]\n\
01054 # [ 0 0 1 0]\n\
01055 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
01056 # of the processed (rectified) image. That is, the left 3x3 portion\n\
01057 # is the normal camera intrinsic matrix for the rectified image.\n\
01058 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
01059 # coordinates using the focal lengths (fx', fy') and principal point\n\
01060 # (cx', cy') - these may differ from the values in K.\n\
01061 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
01062 # also have R = the identity and P[1:3,1:3] = K.\n\
01063 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
01064 # position of the optical center of the second camera in the first\n\
01065 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
01066 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
01067 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
01068 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
01069 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
01070 # the rectified image is given by:\n\
01071 # [u v w]' = P * [X Y Z 1]'\n\
01072 # x = u / w\n\
01073 # y = v / w\n\
01074 # This holds for both images of a stereo pair.\n\
01075 float64[12] P # 3x4 row-major matrix\n\
01076 \n\
01077 \n\
01078 #######################################################################\n\
01079 # Operational Parameters #\n\
01080 #######################################################################\n\
01081 # These define the image region actually captured by the camera #\n\
01082 # driver. Although they affect the geometry of the output image, they #\n\
01083 # may be changed freely without recalibrating the camera. #\n\
01084 #######################################################################\n\
01085 \n\
01086 # Binning refers here to any camera setting which combines rectangular\n\
01087 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
01088 # resolution of the output image to\n\
01089 # (width / binning_x) x (height / binning_y).\n\
01090 # The default values binning_x = binning_y = 0 is considered the same\n\
01091 # as binning_x = binning_y = 1 (no subsampling).\n\
01092 uint32 binning_x\n\
01093 uint32 binning_y\n\
01094 \n\
01095 # Region of interest (subwindow of full camera resolution), given in\n\
01096 # full resolution (unbinned) image coordinates. A particular ROI\n\
01097 # always denotes the same window of pixels on the camera sensor,\n\
01098 # regardless of binning settings.\n\
01099 # The default setting of roi (all values 0) is considered the same as\n\
01100 # full resolution (roi.width = width, roi.height = height).\n\
01101 RegionOfInterest roi\n\
01102 \n\
01103 ================================================================================\n\
01104 MSG: sensor_msgs/RegionOfInterest\n\
01105 # This message is used to specify a region of interest within an image.\n\
01106 #\n\
01107 # When used to specify the ROI setting of the camera when the image was\n\
01108 # taken, the height and width fields should either match the height and\n\
01109 # width fields for the associated image; or height = width = 0\n\
01110 # indicates that the full resolution image was captured.\n\
01111 \n\
01112 uint32 x_offset # Leftmost pixel of the ROI\n\
01113 # (0 if the ROI includes the left edge of the image)\n\
01114 uint32 y_offset # Topmost pixel of the ROI\n\
01115 # (0 if the ROI includes the top edge of the image)\n\
01116 uint32 height # Height of ROI\n\
01117 uint32 width # Width of ROI\n\
01118 \n\
01119 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
01120 # ROI in this message. Typically this should be False if the full image\n\
01121 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
01122 # used).\n\
01123 bool do_rectify\n\
01124 \n\
01125 ================================================================================\n\
01126 MSG: geometry_msgs/Vector3\n\
01127 # This represents a vector in free space. \n\
01128 \n\
01129 float64 x\n\
01130 float64 y\n\
01131 float64 z\n\
01132 ";
01133 }
01134
01135 static const char* value(const ::object_manipulation_msgs::Grasp_<ContainerAllocator> &) { return value(); }
01136 };
01137
01138 }
01139 }
01140
01141 namespace ros
01142 {
01143 namespace serialization
01144 {
01145
01146 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >
01147 {
01148 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
01149 {
01150 stream.next(m.pre_grasp_posture);
01151 stream.next(m.grasp_posture);
01152 stream.next(m.grasp_pose);
01153 stream.next(m.success_probability);
01154 stream.next(m.cluster_rep);
01155 stream.next(m.desired_approach_distance);
01156 stream.next(m.min_approach_distance);
01157 stream.next(m.moved_obstacles);
01158 }
01159
01160 ROS_DECLARE_ALLINONE_SERIALIZER;
01161 };
01162 }
01163 }
01164
01165 namespace ros
01166 {
01167 namespace message_operations
01168 {
01169
01170 template<class ContainerAllocator>
01171 struct Printer< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >
01172 {
01173 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_manipulation_msgs::Grasp_<ContainerAllocator> & v)
01174 {
01175 s << indent << "pre_grasp_posture: ";
01176 s << std::endl;
01177 Printer< ::sensor_msgs::JointState_<ContainerAllocator> >::stream(s, indent + " ", v.pre_grasp_posture);
01178 s << indent << "grasp_posture: ";
01179 s << std::endl;
01180 Printer< ::sensor_msgs::JointState_<ContainerAllocator> >::stream(s, indent + " ", v.grasp_posture);
01181 s << indent << "grasp_pose: ";
01182 s << std::endl;
01183 Printer< ::geometry_msgs::Pose_<ContainerAllocator> >::stream(s, indent + " ", v.grasp_pose);
01184 s << indent << "success_probability: ";
01185 Printer<double>::stream(s, indent + " ", v.success_probability);
01186 s << indent << "cluster_rep: ";
01187 Printer<uint8_t>::stream(s, indent + " ", v.cluster_rep);
01188 s << indent << "desired_approach_distance: ";
01189 Printer<float>::stream(s, indent + " ", v.desired_approach_distance);
01190 s << indent << "min_approach_distance: ";
01191 Printer<float>::stream(s, indent + " ", v.min_approach_distance);
01192 s << indent << "moved_obstacles[]" << std::endl;
01193 for (size_t i = 0; i < v.moved_obstacles.size(); ++i)
01194 {
01195 s << indent << " moved_obstacles[" << i << "]: ";
01196 s << std::endl;
01197 s << indent;
01198 Printer< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::stream(s, indent + " ", v.moved_obstacles[i]);
01199 }
01200 }
01201 };
01202
01203
01204 }
01205 }
01206
01207 #endif // OBJECT_MANIPULATION_MSGS_MESSAGE_GRASP_H
01208