$search
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-electric-object_manipulation/doc_stacks/2013-03-01_16-13-18.345538/object_manipulation/object_manipulation_msgs/msg/Grasp.msg */ 00002 #ifndef OBJECT_MANIPULATION_MSGS_MESSAGE_GRASP_H 00003 #define OBJECT_MANIPULATION_MSGS_MESSAGE_GRASP_H 00004 #include <string> 00005 #include <vector> 00006 #include <map> 00007 #include <ostream> 00008 #include "ros/serialization.h" 00009 #include "ros/builtin_message_traits.h" 00010 #include "ros/message_operations.h" 00011 #include "ros/time.h" 00012 00013 #include "ros/macros.h" 00014 00015 #include "ros/assert.h" 00016 00017 #include "sensor_msgs/JointState.h" 00018 #include "sensor_msgs/JointState.h" 00019 #include "geometry_msgs/Pose.h" 00020 #include "object_manipulation_msgs/GraspableObject.h" 00021 00022 namespace object_manipulation_msgs 00023 { 00024 template <class ContainerAllocator> 00025 struct Grasp_ { 00026 typedef Grasp_<ContainerAllocator> Type; 00027 00028 Grasp_() 00029 : pre_grasp_posture() 00030 , grasp_posture() 00031 , grasp_pose() 00032 , success_probability(0.0) 00033 , cluster_rep(false) 00034 , desired_approach_distance(0.0) 00035 , min_approach_distance(0.0) 00036 , moved_obstacles() 00037 { 00038 } 00039 00040 Grasp_(const ContainerAllocator& _alloc) 00041 : pre_grasp_posture(_alloc) 00042 , grasp_posture(_alloc) 00043 , grasp_pose(_alloc) 00044 , success_probability(0.0) 00045 , cluster_rep(false) 00046 , desired_approach_distance(0.0) 00047 , min_approach_distance(0.0) 00048 , moved_obstacles(_alloc) 00049 { 00050 } 00051 00052 typedef ::sensor_msgs::JointState_<ContainerAllocator> _pre_grasp_posture_type; 00053 ::sensor_msgs::JointState_<ContainerAllocator> pre_grasp_posture; 00054 00055 typedef ::sensor_msgs::JointState_<ContainerAllocator> _grasp_posture_type; 00056 ::sensor_msgs::JointState_<ContainerAllocator> grasp_posture; 00057 00058 typedef ::geometry_msgs::Pose_<ContainerAllocator> _grasp_pose_type; 00059 ::geometry_msgs::Pose_<ContainerAllocator> grasp_pose; 00060 00061 typedef double _success_probability_type; 00062 double success_probability; 00063 00064 typedef uint8_t _cluster_rep_type; 00065 uint8_t cluster_rep; 00066 00067 typedef float _desired_approach_distance_type; 00068 float desired_approach_distance; 00069 00070 typedef float _min_approach_distance_type; 00071 float min_approach_distance; 00072 00073 typedef std::vector< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::other > _moved_obstacles_type; 00074 std::vector< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::other > moved_obstacles; 00075 00076 00077 ROS_DEPRECATED uint32_t get_moved_obstacles_size() const { return (uint32_t)moved_obstacles.size(); } 00078 ROS_DEPRECATED void set_moved_obstacles_size(uint32_t size) { moved_obstacles.resize((size_t)size); } 00079 ROS_DEPRECATED void get_moved_obstacles_vec(std::vector< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::other > & vec) const { vec = this->moved_obstacles; } 00080 ROS_DEPRECATED void set_moved_obstacles_vec(const std::vector< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::other > & vec) { this->moved_obstacles = vec; } 00081 private: 00082 static const char* __s_getDataType_() { return "object_manipulation_msgs/Grasp"; } 00083 public: 00084 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); } 00085 00086 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); } 00087 00088 private: 00089 static const char* __s_getMD5Sum_() { return "4e72917bb6dbc7207581a7124a26ba32"; } 00090 public: 00091 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); } 00092 00093 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); } 00094 00095 private: 00096 static const char* __s_getMessageDefinition_() { return "\n\ 00097 # The internal posture of the hand for the pre-grasp\n\ 00098 # only positions are used\n\ 00099 sensor_msgs/JointState pre_grasp_posture\n\ 00100 \n\ 00101 # The internal posture of the hand for the grasp\n\ 00102 # positions and efforts are used\n\ 00103 sensor_msgs/JointState grasp_posture\n\ 00104 \n\ 00105 # The position of the end-effector for the grasp relative to a reference frame \n\ 00106 # (that is always specified elsewhere, not in this message)\n\ 00107 geometry_msgs/Pose grasp_pose\n\ 00108 \n\ 00109 # The estimated probability of success for this grasp\n\ 00110 float64 success_probability\n\ 00111 \n\ 00112 # Debug flag to indicate that this grasp would be the best in its cluster\n\ 00113 bool cluster_rep\n\ 00114 \n\ 00115 # how far the pre-grasp should ideally be away from the grasp\n\ 00116 float32 desired_approach_distance\n\ 00117 \n\ 00118 # how much distance between pre-grasp and grasp must actually be feasible \n\ 00119 # for the grasp not to be rejected\n\ 00120 float32 min_approach_distance\n\ 00121 \n\ 00122 # an optional list of obstacles that we have semantic information about\n\ 00123 # and that we expect might move in the course of executing this grasp\n\ 00124 # the grasp planner is expected to make sure they move in an OK way; during\n\ 00125 # execution, grasp executors will not check for collisions against these objects\n\ 00126 GraspableObject[] moved_obstacles\n\ 00127 \n\ 00128 ================================================================================\n\ 00129 MSG: sensor_msgs/JointState\n\ 00130 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\ 00131 #\n\ 00132 # The state of each joint (revolute or prismatic) is defined by:\n\ 00133 # * the position of the joint (rad or m),\n\ 00134 # * the velocity of the joint (rad/s or m/s) and \n\ 00135 # * the effort that is applied in the joint (Nm or N).\n\ 00136 #\n\ 00137 # Each joint is uniquely identified by its name\n\ 00138 # The header specifies the time at which the joint states were recorded. All the joint states\n\ 00139 # in one message have to be recorded at the same time.\n\ 00140 #\n\ 00141 # This message consists of a multiple arrays, one for each part of the joint state. \n\ 00142 # The goal is to make each of the fields optional. When e.g. your joints have no\n\ 00143 # effort associated with them, you can leave the effort array empty. \n\ 00144 #\n\ 00145 # All arrays in this message should have the same size, or be empty.\n\ 00146 # This is the only way to uniquely associate the joint name with the correct\n\ 00147 # states.\n\ 00148 \n\ 00149 \n\ 00150 Header header\n\ 00151 \n\ 00152 string[] name\n\ 00153 float64[] position\n\ 00154 float64[] velocity\n\ 00155 float64[] effort\n\ 00156 \n\ 00157 ================================================================================\n\ 00158 MSG: std_msgs/Header\n\ 00159 # Standard metadata for higher-level stamped data types.\n\ 00160 # This is generally used to communicate timestamped data \n\ 00161 # in a particular coordinate frame.\n\ 00162 # \n\ 00163 # sequence ID: consecutively increasing ID \n\ 00164 uint32 seq\n\ 00165 #Two-integer timestamp that is expressed as:\n\ 00166 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00167 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00168 # time-handling sugar is provided by the client library\n\ 00169 time stamp\n\ 00170 #Frame this data is associated with\n\ 00171 # 0: no frame\n\ 00172 # 1: global frame\n\ 00173 string frame_id\n\ 00174 \n\ 00175 ================================================================================\n\ 00176 MSG: geometry_msgs/Pose\n\ 00177 # A representation of pose in free space, composed of postion and orientation. \n\ 00178 Point position\n\ 00179 Quaternion orientation\n\ 00180 \n\ 00181 ================================================================================\n\ 00182 MSG: geometry_msgs/Point\n\ 00183 # This contains the position of a point in free space\n\ 00184 float64 x\n\ 00185 float64 y\n\ 00186 float64 z\n\ 00187 \n\ 00188 ================================================================================\n\ 00189 MSG: geometry_msgs/Quaternion\n\ 00190 # This represents an orientation in free space in quaternion form.\n\ 00191 \n\ 00192 float64 x\n\ 00193 float64 y\n\ 00194 float64 z\n\ 00195 float64 w\n\ 00196 \n\ 00197 ================================================================================\n\ 00198 MSG: object_manipulation_msgs/GraspableObject\n\ 00199 # an object that the object_manipulator can work on\n\ 00200 \n\ 00201 # a graspable object can be represented in multiple ways. This message\n\ 00202 # can contain all of them. Which one is actually used is up to the receiver\n\ 00203 # of this message. When adding new representations, one must be careful that\n\ 00204 # they have reasonable lightweight defaults indicating that that particular\n\ 00205 # representation is not available.\n\ 00206 \n\ 00207 # the tf frame to be used as a reference frame when combining information from\n\ 00208 # the different representations below\n\ 00209 string reference_frame_id\n\ 00210 \n\ 00211 # potential recognition results from a database of models\n\ 00212 # all poses are relative to the object reference pose\n\ 00213 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\ 00214 \n\ 00215 # the point cloud itself\n\ 00216 sensor_msgs/PointCloud cluster\n\ 00217 \n\ 00218 # a region of a PointCloud2 of interest\n\ 00219 object_manipulation_msgs/SceneRegion region\n\ 00220 \n\ 00221 # the name that this object has in the collision environment\n\ 00222 string collision_name\n\ 00223 ================================================================================\n\ 00224 MSG: household_objects_database_msgs/DatabaseModelPose\n\ 00225 # Informs that a specific model from the Model Database has been \n\ 00226 # identified at a certain location\n\ 00227 \n\ 00228 # the database id of the model\n\ 00229 int32 model_id\n\ 00230 \n\ 00231 # the pose that it can be found in\n\ 00232 geometry_msgs/PoseStamped pose\n\ 00233 \n\ 00234 # a measure of the confidence level in this detection result\n\ 00235 float32 confidence\n\ 00236 \n\ 00237 # the name of the object detector that generated this detection result\n\ 00238 string detector_name\n\ 00239 \n\ 00240 ================================================================================\n\ 00241 MSG: geometry_msgs/PoseStamped\n\ 00242 # A Pose with reference coordinate frame and timestamp\n\ 00243 Header header\n\ 00244 Pose pose\n\ 00245 \n\ 00246 ================================================================================\n\ 00247 MSG: sensor_msgs/PointCloud\n\ 00248 # This message holds a collection of 3d points, plus optional additional\n\ 00249 # information about each point.\n\ 00250 \n\ 00251 # Time of sensor data acquisition, coordinate frame ID.\n\ 00252 Header header\n\ 00253 \n\ 00254 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 00255 # in the frame given in the header.\n\ 00256 geometry_msgs/Point32[] points\n\ 00257 \n\ 00258 # Each channel should have the same number of elements as points array,\n\ 00259 # and the data in each channel should correspond 1:1 with each point.\n\ 00260 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 00261 ChannelFloat32[] channels\n\ 00262 \n\ 00263 ================================================================================\n\ 00264 MSG: geometry_msgs/Point32\n\ 00265 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00266 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00267 # \n\ 00268 # This recommendation is to promote interoperability. \n\ 00269 #\n\ 00270 # This message is designed to take up less space when sending\n\ 00271 # lots of points at once, as in the case of a PointCloud. \n\ 00272 \n\ 00273 float32 x\n\ 00274 float32 y\n\ 00275 float32 z\n\ 00276 ================================================================================\n\ 00277 MSG: sensor_msgs/ChannelFloat32\n\ 00278 # This message is used by the PointCloud message to hold optional data\n\ 00279 # associated with each point in the cloud. The length of the values\n\ 00280 # array should be the same as the length of the points array in the\n\ 00281 # PointCloud, and each value should be associated with the corresponding\n\ 00282 # point.\n\ 00283 \n\ 00284 # Channel names in existing practice include:\n\ 00285 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 00286 # This is opposite to usual conventions but remains for\n\ 00287 # historical reasons. The newer PointCloud2 message has no\n\ 00288 # such problem.\n\ 00289 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 00290 # (R,G,B) values packed into the least significant 24 bits,\n\ 00291 # in order.\n\ 00292 # \"intensity\" - laser or pixel intensity.\n\ 00293 # \"distance\"\n\ 00294 \n\ 00295 # The channel name should give semantics of the channel (e.g.\n\ 00296 # \"intensity\" instead of \"value\").\n\ 00297 string name\n\ 00298 \n\ 00299 # The values array should be 1-1 with the elements of the associated\n\ 00300 # PointCloud.\n\ 00301 float32[] values\n\ 00302 \n\ 00303 ================================================================================\n\ 00304 MSG: object_manipulation_msgs/SceneRegion\n\ 00305 # Point cloud\n\ 00306 sensor_msgs/PointCloud2 cloud\n\ 00307 \n\ 00308 # Indices for the region of interest\n\ 00309 int32[] mask\n\ 00310 \n\ 00311 # One of the corresponding 2D images, if applicable\n\ 00312 sensor_msgs/Image image\n\ 00313 \n\ 00314 # The disparity image, if applicable\n\ 00315 sensor_msgs/Image disparity_image\n\ 00316 \n\ 00317 # Camera info for the camera that took the image\n\ 00318 sensor_msgs/CameraInfo cam_info\n\ 00319 \n\ 00320 # a 3D region of interest for grasp planning\n\ 00321 geometry_msgs/PoseStamped roi_box_pose\n\ 00322 geometry_msgs/Vector3 roi_box_dims\n\ 00323 \n\ 00324 ================================================================================\n\ 00325 MSG: sensor_msgs/PointCloud2\n\ 00326 # This message holds a collection of N-dimensional points, which may\n\ 00327 # contain additional information such as normals, intensity, etc. The\n\ 00328 # point data is stored as a binary blob, its layout described by the\n\ 00329 # contents of the \"fields\" array.\n\ 00330 \n\ 00331 # The point cloud data may be organized 2d (image-like) or 1d\n\ 00332 # (unordered). Point clouds organized as 2d images may be produced by\n\ 00333 # camera depth sensors such as stereo or time-of-flight.\n\ 00334 \n\ 00335 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 00336 # points).\n\ 00337 Header header\n\ 00338 \n\ 00339 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 00340 # 1 and width is the length of the point cloud.\n\ 00341 uint32 height\n\ 00342 uint32 width\n\ 00343 \n\ 00344 # Describes the channels and their layout in the binary data blob.\n\ 00345 PointField[] fields\n\ 00346 \n\ 00347 bool is_bigendian # Is this data bigendian?\n\ 00348 uint32 point_step # Length of a point in bytes\n\ 00349 uint32 row_step # Length of a row in bytes\n\ 00350 uint8[] data # Actual point data, size is (row_step*height)\n\ 00351 \n\ 00352 bool is_dense # True if there are no invalid points\n\ 00353 \n\ 00354 ================================================================================\n\ 00355 MSG: sensor_msgs/PointField\n\ 00356 # This message holds the description of one point entry in the\n\ 00357 # PointCloud2 message format.\n\ 00358 uint8 INT8 = 1\n\ 00359 uint8 UINT8 = 2\n\ 00360 uint8 INT16 = 3\n\ 00361 uint8 UINT16 = 4\n\ 00362 uint8 INT32 = 5\n\ 00363 uint8 UINT32 = 6\n\ 00364 uint8 FLOAT32 = 7\n\ 00365 uint8 FLOAT64 = 8\n\ 00366 \n\ 00367 string name # Name of field\n\ 00368 uint32 offset # Offset from start of point struct\n\ 00369 uint8 datatype # Datatype enumeration, see above\n\ 00370 uint32 count # How many elements in the field\n\ 00371 \n\ 00372 ================================================================================\n\ 00373 MSG: sensor_msgs/Image\n\ 00374 # This message contains an uncompressed image\n\ 00375 # (0, 0) is at top-left corner of image\n\ 00376 #\n\ 00377 \n\ 00378 Header header # Header timestamp should be acquisition time of image\n\ 00379 # Header frame_id should be optical frame of camera\n\ 00380 # origin of frame should be optical center of cameara\n\ 00381 # +x should point to the right in the image\n\ 00382 # +y should point down in the image\n\ 00383 # +z should point into to plane of the image\n\ 00384 # If the frame_id here and the frame_id of the CameraInfo\n\ 00385 # message associated with the image conflict\n\ 00386 # the behavior is undefined\n\ 00387 \n\ 00388 uint32 height # image height, that is, number of rows\n\ 00389 uint32 width # image width, that is, number of columns\n\ 00390 \n\ 00391 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00392 # If you want to standardize a new string format, join\n\ 00393 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00394 \n\ 00395 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00396 # taken from the list of strings in src/image_encodings.cpp\n\ 00397 \n\ 00398 uint8 is_bigendian # is this data bigendian?\n\ 00399 uint32 step # Full row length in bytes\n\ 00400 uint8[] data # actual matrix data, size is (step * rows)\n\ 00401 \n\ 00402 ================================================================================\n\ 00403 MSG: sensor_msgs/CameraInfo\n\ 00404 # This message defines meta information for a camera. It should be in a\n\ 00405 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00406 # image topics named:\n\ 00407 #\n\ 00408 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00409 # image - monochrome, distorted\n\ 00410 # image_color - color, distorted\n\ 00411 # image_rect - monochrome, rectified\n\ 00412 # image_rect_color - color, rectified\n\ 00413 #\n\ 00414 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00415 # for producing the four processed image topics from image_raw and\n\ 00416 # camera_info. The meaning of the camera parameters are described in\n\ 00417 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00418 #\n\ 00419 # The image_geometry package provides a user-friendly interface to\n\ 00420 # common operations using this meta information. If you want to, e.g.,\n\ 00421 # project a 3d point into image coordinates, we strongly recommend\n\ 00422 # using image_geometry.\n\ 00423 #\n\ 00424 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00425 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00426 # indicates an uncalibrated camera.\n\ 00427 \n\ 00428 #######################################################################\n\ 00429 # Image acquisition info #\n\ 00430 #######################################################################\n\ 00431 \n\ 00432 # Time of image acquisition, camera coordinate frame ID\n\ 00433 Header header # Header timestamp should be acquisition time of image\n\ 00434 # Header frame_id should be optical frame of camera\n\ 00435 # origin of frame should be optical center of camera\n\ 00436 # +x should point to the right in the image\n\ 00437 # +y should point down in the image\n\ 00438 # +z should point into the plane of the image\n\ 00439 \n\ 00440 \n\ 00441 #######################################################################\n\ 00442 # Calibration Parameters #\n\ 00443 #######################################################################\n\ 00444 # These are fixed during camera calibration. Their values will be the #\n\ 00445 # same in all messages until the camera is recalibrated. Note that #\n\ 00446 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00447 # #\n\ 00448 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00449 # to: #\n\ 00450 # 1. An undistorted image (requires D and K) #\n\ 00451 # 2. A rectified image (requires D, K, R) #\n\ 00452 # The projection matrix P projects 3D points into the rectified image.#\n\ 00453 #######################################################################\n\ 00454 \n\ 00455 # The image dimensions with which the camera was calibrated. Normally\n\ 00456 # this will be the full camera resolution in pixels.\n\ 00457 uint32 height\n\ 00458 uint32 width\n\ 00459 \n\ 00460 # The distortion model used. Supported models are listed in\n\ 00461 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00462 # simple model of radial and tangential distortion - is sufficent.\n\ 00463 string distortion_model\n\ 00464 \n\ 00465 # The distortion parameters, size depending on the distortion model.\n\ 00466 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00467 float64[] D\n\ 00468 \n\ 00469 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00470 # [fx 0 cx]\n\ 00471 # K = [ 0 fy cy]\n\ 00472 # [ 0 0 1]\n\ 00473 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00474 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00475 # (cx, cy).\n\ 00476 float64[9] K # 3x3 row-major matrix\n\ 00477 \n\ 00478 # Rectification matrix (stereo cameras only)\n\ 00479 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00480 # stereo image plane so that epipolar lines in both stereo images are\n\ 00481 # parallel.\n\ 00482 float64[9] R # 3x3 row-major matrix\n\ 00483 \n\ 00484 # Projection/camera matrix\n\ 00485 # [fx' 0 cx' Tx]\n\ 00486 # P = [ 0 fy' cy' Ty]\n\ 00487 # [ 0 0 1 0]\n\ 00488 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 00489 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 00490 # is the normal camera intrinsic matrix for the rectified image.\n\ 00491 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 00492 # coordinates using the focal lengths (fx', fy') and principal point\n\ 00493 # (cx', cy') - these may differ from the values in K.\n\ 00494 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 00495 # also have R = the identity and P[1:3,1:3] = K.\n\ 00496 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 00497 # position of the optical center of the second camera in the first\n\ 00498 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 00499 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 00500 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 00501 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 00502 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 00503 # the rectified image is given by:\n\ 00504 # [u v w]' = P * [X Y Z 1]'\n\ 00505 # x = u / w\n\ 00506 # y = v / w\n\ 00507 # This holds for both images of a stereo pair.\n\ 00508 float64[12] P # 3x4 row-major matrix\n\ 00509 \n\ 00510 \n\ 00511 #######################################################################\n\ 00512 # Operational Parameters #\n\ 00513 #######################################################################\n\ 00514 # These define the image region actually captured by the camera #\n\ 00515 # driver. Although they affect the geometry of the output image, they #\n\ 00516 # may be changed freely without recalibrating the camera. #\n\ 00517 #######################################################################\n\ 00518 \n\ 00519 # Binning refers here to any camera setting which combines rectangular\n\ 00520 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 00521 # resolution of the output image to\n\ 00522 # (width / binning_x) x (height / binning_y).\n\ 00523 # The default values binning_x = binning_y = 0 is considered the same\n\ 00524 # as binning_x = binning_y = 1 (no subsampling).\n\ 00525 uint32 binning_x\n\ 00526 uint32 binning_y\n\ 00527 \n\ 00528 # Region of interest (subwindow of full camera resolution), given in\n\ 00529 # full resolution (unbinned) image coordinates. A particular ROI\n\ 00530 # always denotes the same window of pixels on the camera sensor,\n\ 00531 # regardless of binning settings.\n\ 00532 # The default setting of roi (all values 0) is considered the same as\n\ 00533 # full resolution (roi.width = width, roi.height = height).\n\ 00534 RegionOfInterest roi\n\ 00535 \n\ 00536 ================================================================================\n\ 00537 MSG: sensor_msgs/RegionOfInterest\n\ 00538 # This message is used to specify a region of interest within an image.\n\ 00539 #\n\ 00540 # When used to specify the ROI setting of the camera when the image was\n\ 00541 # taken, the height and width fields should either match the height and\n\ 00542 # width fields for the associated image; or height = width = 0\n\ 00543 # indicates that the full resolution image was captured.\n\ 00544 \n\ 00545 uint32 x_offset # Leftmost pixel of the ROI\n\ 00546 # (0 if the ROI includes the left edge of the image)\n\ 00547 uint32 y_offset # Topmost pixel of the ROI\n\ 00548 # (0 if the ROI includes the top edge of the image)\n\ 00549 uint32 height # Height of ROI\n\ 00550 uint32 width # Width of ROI\n\ 00551 \n\ 00552 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 00553 # ROI in this message. Typically this should be False if the full image\n\ 00554 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 00555 # used).\n\ 00556 bool do_rectify\n\ 00557 \n\ 00558 ================================================================================\n\ 00559 MSG: geometry_msgs/Vector3\n\ 00560 # This represents a vector in free space. \n\ 00561 \n\ 00562 float64 x\n\ 00563 float64 y\n\ 00564 float64 z\n\ 00565 "; } 00566 public: 00567 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); } 00568 00569 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); } 00570 00571 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const 00572 { 00573 ros::serialization::OStream stream(write_ptr, 1000000000); 00574 ros::serialization::serialize(stream, pre_grasp_posture); 00575 ros::serialization::serialize(stream, grasp_posture); 00576 ros::serialization::serialize(stream, grasp_pose); 00577 ros::serialization::serialize(stream, success_probability); 00578 ros::serialization::serialize(stream, cluster_rep); 00579 ros::serialization::serialize(stream, desired_approach_distance); 00580 ros::serialization::serialize(stream, min_approach_distance); 00581 ros::serialization::serialize(stream, moved_obstacles); 00582 return stream.getData(); 00583 } 00584 00585 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr) 00586 { 00587 ros::serialization::IStream stream(read_ptr, 1000000000); 00588 ros::serialization::deserialize(stream, pre_grasp_posture); 00589 ros::serialization::deserialize(stream, grasp_posture); 00590 ros::serialization::deserialize(stream, grasp_pose); 00591 ros::serialization::deserialize(stream, success_probability); 00592 ros::serialization::deserialize(stream, cluster_rep); 00593 ros::serialization::deserialize(stream, desired_approach_distance); 00594 ros::serialization::deserialize(stream, min_approach_distance); 00595 ros::serialization::deserialize(stream, moved_obstacles); 00596 return stream.getData(); 00597 } 00598 00599 ROS_DEPRECATED virtual uint32_t serializationLength() const 00600 { 00601 uint32_t size = 0; 00602 size += ros::serialization::serializationLength(pre_grasp_posture); 00603 size += ros::serialization::serializationLength(grasp_posture); 00604 size += ros::serialization::serializationLength(grasp_pose); 00605 size += ros::serialization::serializationLength(success_probability); 00606 size += ros::serialization::serializationLength(cluster_rep); 00607 size += ros::serialization::serializationLength(desired_approach_distance); 00608 size += ros::serialization::serializationLength(min_approach_distance); 00609 size += ros::serialization::serializationLength(moved_obstacles); 00610 return size; 00611 } 00612 00613 typedef boost::shared_ptr< ::object_manipulation_msgs::Grasp_<ContainerAllocator> > Ptr; 00614 typedef boost::shared_ptr< ::object_manipulation_msgs::Grasp_<ContainerAllocator> const> ConstPtr; 00615 boost::shared_ptr<std::map<std::string, std::string> > __connection_header; 00616 }; // struct Grasp 00617 typedef ::object_manipulation_msgs::Grasp_<std::allocator<void> > Grasp; 00618 00619 typedef boost::shared_ptr< ::object_manipulation_msgs::Grasp> GraspPtr; 00620 typedef boost::shared_ptr< ::object_manipulation_msgs::Grasp const> GraspConstPtr; 00621 00622 00623 template<typename ContainerAllocator> 00624 std::ostream& operator<<(std::ostream& s, const ::object_manipulation_msgs::Grasp_<ContainerAllocator> & v) 00625 { 00626 ros::message_operations::Printer< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::stream(s, "", v); 00627 return s;} 00628 00629 } // namespace object_manipulation_msgs 00630 00631 namespace ros 00632 { 00633 namespace message_traits 00634 { 00635 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::Grasp_<ContainerAllocator> > : public TrueType {}; 00636 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::Grasp_<ContainerAllocator> const> : public TrueType {}; 00637 template<class ContainerAllocator> 00638 struct MD5Sum< ::object_manipulation_msgs::Grasp_<ContainerAllocator> > { 00639 static const char* value() 00640 { 00641 return "4e72917bb6dbc7207581a7124a26ba32"; 00642 } 00643 00644 static const char* value(const ::object_manipulation_msgs::Grasp_<ContainerAllocator> &) { return value(); } 00645 static const uint64_t static_value1 = 0x4e72917bb6dbc720ULL; 00646 static const uint64_t static_value2 = 0x7581a7124a26ba32ULL; 00647 }; 00648 00649 template<class ContainerAllocator> 00650 struct DataType< ::object_manipulation_msgs::Grasp_<ContainerAllocator> > { 00651 static const char* value() 00652 { 00653 return "object_manipulation_msgs/Grasp"; 00654 } 00655 00656 static const char* value(const ::object_manipulation_msgs::Grasp_<ContainerAllocator> &) { return value(); } 00657 }; 00658 00659 template<class ContainerAllocator> 00660 struct Definition< ::object_manipulation_msgs::Grasp_<ContainerAllocator> > { 00661 static const char* value() 00662 { 00663 return "\n\ 00664 # The internal posture of the hand for the pre-grasp\n\ 00665 # only positions are used\n\ 00666 sensor_msgs/JointState pre_grasp_posture\n\ 00667 \n\ 00668 # The internal posture of the hand for the grasp\n\ 00669 # positions and efforts are used\n\ 00670 sensor_msgs/JointState grasp_posture\n\ 00671 \n\ 00672 # The position of the end-effector for the grasp relative to a reference frame \n\ 00673 # (that is always specified elsewhere, not in this message)\n\ 00674 geometry_msgs/Pose grasp_pose\n\ 00675 \n\ 00676 # The estimated probability of success for this grasp\n\ 00677 float64 success_probability\n\ 00678 \n\ 00679 # Debug flag to indicate that this grasp would be the best in its cluster\n\ 00680 bool cluster_rep\n\ 00681 \n\ 00682 # how far the pre-grasp should ideally be away from the grasp\n\ 00683 float32 desired_approach_distance\n\ 00684 \n\ 00685 # how much distance between pre-grasp and grasp must actually be feasible \n\ 00686 # for the grasp not to be rejected\n\ 00687 float32 min_approach_distance\n\ 00688 \n\ 00689 # an optional list of obstacles that we have semantic information about\n\ 00690 # and that we expect might move in the course of executing this grasp\n\ 00691 # the grasp planner is expected to make sure they move in an OK way; during\n\ 00692 # execution, grasp executors will not check for collisions against these objects\n\ 00693 GraspableObject[] moved_obstacles\n\ 00694 \n\ 00695 ================================================================================\n\ 00696 MSG: sensor_msgs/JointState\n\ 00697 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\ 00698 #\n\ 00699 # The state of each joint (revolute or prismatic) is defined by:\n\ 00700 # * the position of the joint (rad or m),\n\ 00701 # * the velocity of the joint (rad/s or m/s) and \n\ 00702 # * the effort that is applied in the joint (Nm or N).\n\ 00703 #\n\ 00704 # Each joint is uniquely identified by its name\n\ 00705 # The header specifies the time at which the joint states were recorded. All the joint states\n\ 00706 # in one message have to be recorded at the same time.\n\ 00707 #\n\ 00708 # This message consists of a multiple arrays, one for each part of the joint state. \n\ 00709 # The goal is to make each of the fields optional. When e.g. your joints have no\n\ 00710 # effort associated with them, you can leave the effort array empty. \n\ 00711 #\n\ 00712 # All arrays in this message should have the same size, or be empty.\n\ 00713 # This is the only way to uniquely associate the joint name with the correct\n\ 00714 # states.\n\ 00715 \n\ 00716 \n\ 00717 Header header\n\ 00718 \n\ 00719 string[] name\n\ 00720 float64[] position\n\ 00721 float64[] velocity\n\ 00722 float64[] effort\n\ 00723 \n\ 00724 ================================================================================\n\ 00725 MSG: std_msgs/Header\n\ 00726 # Standard metadata for higher-level stamped data types.\n\ 00727 # This is generally used to communicate timestamped data \n\ 00728 # in a particular coordinate frame.\n\ 00729 # \n\ 00730 # sequence ID: consecutively increasing ID \n\ 00731 uint32 seq\n\ 00732 #Two-integer timestamp that is expressed as:\n\ 00733 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00734 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00735 # time-handling sugar is provided by the client library\n\ 00736 time stamp\n\ 00737 #Frame this data is associated with\n\ 00738 # 0: no frame\n\ 00739 # 1: global frame\n\ 00740 string frame_id\n\ 00741 \n\ 00742 ================================================================================\n\ 00743 MSG: geometry_msgs/Pose\n\ 00744 # A representation of pose in free space, composed of postion and orientation. \n\ 00745 Point position\n\ 00746 Quaternion orientation\n\ 00747 \n\ 00748 ================================================================================\n\ 00749 MSG: geometry_msgs/Point\n\ 00750 # This contains the position of a point in free space\n\ 00751 float64 x\n\ 00752 float64 y\n\ 00753 float64 z\n\ 00754 \n\ 00755 ================================================================================\n\ 00756 MSG: geometry_msgs/Quaternion\n\ 00757 # This represents an orientation in free space in quaternion form.\n\ 00758 \n\ 00759 float64 x\n\ 00760 float64 y\n\ 00761 float64 z\n\ 00762 float64 w\n\ 00763 \n\ 00764 ================================================================================\n\ 00765 MSG: object_manipulation_msgs/GraspableObject\n\ 00766 # an object that the object_manipulator can work on\n\ 00767 \n\ 00768 # a graspable object can be represented in multiple ways. This message\n\ 00769 # can contain all of them. Which one is actually used is up to the receiver\n\ 00770 # of this message. When adding new representations, one must be careful that\n\ 00771 # they have reasonable lightweight defaults indicating that that particular\n\ 00772 # representation is not available.\n\ 00773 \n\ 00774 # the tf frame to be used as a reference frame when combining information from\n\ 00775 # the different representations below\n\ 00776 string reference_frame_id\n\ 00777 \n\ 00778 # potential recognition results from a database of models\n\ 00779 # all poses are relative to the object reference pose\n\ 00780 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\ 00781 \n\ 00782 # the point cloud itself\n\ 00783 sensor_msgs/PointCloud cluster\n\ 00784 \n\ 00785 # a region of a PointCloud2 of interest\n\ 00786 object_manipulation_msgs/SceneRegion region\n\ 00787 \n\ 00788 # the name that this object has in the collision environment\n\ 00789 string collision_name\n\ 00790 ================================================================================\n\ 00791 MSG: household_objects_database_msgs/DatabaseModelPose\n\ 00792 # Informs that a specific model from the Model Database has been \n\ 00793 # identified at a certain location\n\ 00794 \n\ 00795 # the database id of the model\n\ 00796 int32 model_id\n\ 00797 \n\ 00798 # the pose that it can be found in\n\ 00799 geometry_msgs/PoseStamped pose\n\ 00800 \n\ 00801 # a measure of the confidence level in this detection result\n\ 00802 float32 confidence\n\ 00803 \n\ 00804 # the name of the object detector that generated this detection result\n\ 00805 string detector_name\n\ 00806 \n\ 00807 ================================================================================\n\ 00808 MSG: geometry_msgs/PoseStamped\n\ 00809 # A Pose with reference coordinate frame and timestamp\n\ 00810 Header header\n\ 00811 Pose pose\n\ 00812 \n\ 00813 ================================================================================\n\ 00814 MSG: sensor_msgs/PointCloud\n\ 00815 # This message holds a collection of 3d points, plus optional additional\n\ 00816 # information about each point.\n\ 00817 \n\ 00818 # Time of sensor data acquisition, coordinate frame ID.\n\ 00819 Header header\n\ 00820 \n\ 00821 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 00822 # in the frame given in the header.\n\ 00823 geometry_msgs/Point32[] points\n\ 00824 \n\ 00825 # Each channel should have the same number of elements as points array,\n\ 00826 # and the data in each channel should correspond 1:1 with each point.\n\ 00827 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 00828 ChannelFloat32[] channels\n\ 00829 \n\ 00830 ================================================================================\n\ 00831 MSG: geometry_msgs/Point32\n\ 00832 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00833 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00834 # \n\ 00835 # This recommendation is to promote interoperability. \n\ 00836 #\n\ 00837 # This message is designed to take up less space when sending\n\ 00838 # lots of points at once, as in the case of a PointCloud. \n\ 00839 \n\ 00840 float32 x\n\ 00841 float32 y\n\ 00842 float32 z\n\ 00843 ================================================================================\n\ 00844 MSG: sensor_msgs/ChannelFloat32\n\ 00845 # This message is used by the PointCloud message to hold optional data\n\ 00846 # associated with each point in the cloud. The length of the values\n\ 00847 # array should be the same as the length of the points array in the\n\ 00848 # PointCloud, and each value should be associated with the corresponding\n\ 00849 # point.\n\ 00850 \n\ 00851 # Channel names in existing practice include:\n\ 00852 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 00853 # This is opposite to usual conventions but remains for\n\ 00854 # historical reasons. The newer PointCloud2 message has no\n\ 00855 # such problem.\n\ 00856 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 00857 # (R,G,B) values packed into the least significant 24 bits,\n\ 00858 # in order.\n\ 00859 # \"intensity\" - laser or pixel intensity.\n\ 00860 # \"distance\"\n\ 00861 \n\ 00862 # The channel name should give semantics of the channel (e.g.\n\ 00863 # \"intensity\" instead of \"value\").\n\ 00864 string name\n\ 00865 \n\ 00866 # The values array should be 1-1 with the elements of the associated\n\ 00867 # PointCloud.\n\ 00868 float32[] values\n\ 00869 \n\ 00870 ================================================================================\n\ 00871 MSG: object_manipulation_msgs/SceneRegion\n\ 00872 # Point cloud\n\ 00873 sensor_msgs/PointCloud2 cloud\n\ 00874 \n\ 00875 # Indices for the region of interest\n\ 00876 int32[] mask\n\ 00877 \n\ 00878 # One of the corresponding 2D images, if applicable\n\ 00879 sensor_msgs/Image image\n\ 00880 \n\ 00881 # The disparity image, if applicable\n\ 00882 sensor_msgs/Image disparity_image\n\ 00883 \n\ 00884 # Camera info for the camera that took the image\n\ 00885 sensor_msgs/CameraInfo cam_info\n\ 00886 \n\ 00887 # a 3D region of interest for grasp planning\n\ 00888 geometry_msgs/PoseStamped roi_box_pose\n\ 00889 geometry_msgs/Vector3 roi_box_dims\n\ 00890 \n\ 00891 ================================================================================\n\ 00892 MSG: sensor_msgs/PointCloud2\n\ 00893 # This message holds a collection of N-dimensional points, which may\n\ 00894 # contain additional information such as normals, intensity, etc. The\n\ 00895 # point data is stored as a binary blob, its layout described by the\n\ 00896 # contents of the \"fields\" array.\n\ 00897 \n\ 00898 # The point cloud data may be organized 2d (image-like) or 1d\n\ 00899 # (unordered). Point clouds organized as 2d images may be produced by\n\ 00900 # camera depth sensors such as stereo or time-of-flight.\n\ 00901 \n\ 00902 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 00903 # points).\n\ 00904 Header header\n\ 00905 \n\ 00906 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 00907 # 1 and width is the length of the point cloud.\n\ 00908 uint32 height\n\ 00909 uint32 width\n\ 00910 \n\ 00911 # Describes the channels and their layout in the binary data blob.\n\ 00912 PointField[] fields\n\ 00913 \n\ 00914 bool is_bigendian # Is this data bigendian?\n\ 00915 uint32 point_step # Length of a point in bytes\n\ 00916 uint32 row_step # Length of a row in bytes\n\ 00917 uint8[] data # Actual point data, size is (row_step*height)\n\ 00918 \n\ 00919 bool is_dense # True if there are no invalid points\n\ 00920 \n\ 00921 ================================================================================\n\ 00922 MSG: sensor_msgs/PointField\n\ 00923 # This message holds the description of one point entry in the\n\ 00924 # PointCloud2 message format.\n\ 00925 uint8 INT8 = 1\n\ 00926 uint8 UINT8 = 2\n\ 00927 uint8 INT16 = 3\n\ 00928 uint8 UINT16 = 4\n\ 00929 uint8 INT32 = 5\n\ 00930 uint8 UINT32 = 6\n\ 00931 uint8 FLOAT32 = 7\n\ 00932 uint8 FLOAT64 = 8\n\ 00933 \n\ 00934 string name # Name of field\n\ 00935 uint32 offset # Offset from start of point struct\n\ 00936 uint8 datatype # Datatype enumeration, see above\n\ 00937 uint32 count # How many elements in the field\n\ 00938 \n\ 00939 ================================================================================\n\ 00940 MSG: sensor_msgs/Image\n\ 00941 # This message contains an uncompressed image\n\ 00942 # (0, 0) is at top-left corner of image\n\ 00943 #\n\ 00944 \n\ 00945 Header header # Header timestamp should be acquisition time of image\n\ 00946 # Header frame_id should be optical frame of camera\n\ 00947 # origin of frame should be optical center of cameara\n\ 00948 # +x should point to the right in the image\n\ 00949 # +y should point down in the image\n\ 00950 # +z should point into to plane of the image\n\ 00951 # If the frame_id here and the frame_id of the CameraInfo\n\ 00952 # message associated with the image conflict\n\ 00953 # the behavior is undefined\n\ 00954 \n\ 00955 uint32 height # image height, that is, number of rows\n\ 00956 uint32 width # image width, that is, number of columns\n\ 00957 \n\ 00958 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00959 # If you want to standardize a new string format, join\n\ 00960 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00961 \n\ 00962 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00963 # taken from the list of strings in src/image_encodings.cpp\n\ 00964 \n\ 00965 uint8 is_bigendian # is this data bigendian?\n\ 00966 uint32 step # Full row length in bytes\n\ 00967 uint8[] data # actual matrix data, size is (step * rows)\n\ 00968 \n\ 00969 ================================================================================\n\ 00970 MSG: sensor_msgs/CameraInfo\n\ 00971 # This message defines meta information for a camera. It should be in a\n\ 00972 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00973 # image topics named:\n\ 00974 #\n\ 00975 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00976 # image - monochrome, distorted\n\ 00977 # image_color - color, distorted\n\ 00978 # image_rect - monochrome, rectified\n\ 00979 # image_rect_color - color, rectified\n\ 00980 #\n\ 00981 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00982 # for producing the four processed image topics from image_raw and\n\ 00983 # camera_info. The meaning of the camera parameters are described in\n\ 00984 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00985 #\n\ 00986 # The image_geometry package provides a user-friendly interface to\n\ 00987 # common operations using this meta information. If you want to, e.g.,\n\ 00988 # project a 3d point into image coordinates, we strongly recommend\n\ 00989 # using image_geometry.\n\ 00990 #\n\ 00991 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00992 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00993 # indicates an uncalibrated camera.\n\ 00994 \n\ 00995 #######################################################################\n\ 00996 # Image acquisition info #\n\ 00997 #######################################################################\n\ 00998 \n\ 00999 # Time of image acquisition, camera coordinate frame ID\n\ 01000 Header header # Header timestamp should be acquisition time of image\n\ 01001 # Header frame_id should be optical frame of camera\n\ 01002 # origin of frame should be optical center of camera\n\ 01003 # +x should point to the right in the image\n\ 01004 # +y should point down in the image\n\ 01005 # +z should point into the plane of the image\n\ 01006 \n\ 01007 \n\ 01008 #######################################################################\n\ 01009 # Calibration Parameters #\n\ 01010 #######################################################################\n\ 01011 # These are fixed during camera calibration. Their values will be the #\n\ 01012 # same in all messages until the camera is recalibrated. Note that #\n\ 01013 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 01014 # #\n\ 01015 # The internal parameters can be used to warp a raw (distorted) image #\n\ 01016 # to: #\n\ 01017 # 1. An undistorted image (requires D and K) #\n\ 01018 # 2. A rectified image (requires D, K, R) #\n\ 01019 # The projection matrix P projects 3D points into the rectified image.#\n\ 01020 #######################################################################\n\ 01021 \n\ 01022 # The image dimensions with which the camera was calibrated. Normally\n\ 01023 # this will be the full camera resolution in pixels.\n\ 01024 uint32 height\n\ 01025 uint32 width\n\ 01026 \n\ 01027 # The distortion model used. Supported models are listed in\n\ 01028 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 01029 # simple model of radial and tangential distortion - is sufficent.\n\ 01030 string distortion_model\n\ 01031 \n\ 01032 # The distortion parameters, size depending on the distortion model.\n\ 01033 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 01034 float64[] D\n\ 01035 \n\ 01036 # Intrinsic camera matrix for the raw (distorted) images.\n\ 01037 # [fx 0 cx]\n\ 01038 # K = [ 0 fy cy]\n\ 01039 # [ 0 0 1]\n\ 01040 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 01041 # coordinates using the focal lengths (fx, fy) and principal point\n\ 01042 # (cx, cy).\n\ 01043 float64[9] K # 3x3 row-major matrix\n\ 01044 \n\ 01045 # Rectification matrix (stereo cameras only)\n\ 01046 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 01047 # stereo image plane so that epipolar lines in both stereo images are\n\ 01048 # parallel.\n\ 01049 float64[9] R # 3x3 row-major matrix\n\ 01050 \n\ 01051 # Projection/camera matrix\n\ 01052 # [fx' 0 cx' Tx]\n\ 01053 # P = [ 0 fy' cy' Ty]\n\ 01054 # [ 0 0 1 0]\n\ 01055 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 01056 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 01057 # is the normal camera intrinsic matrix for the rectified image.\n\ 01058 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 01059 # coordinates using the focal lengths (fx', fy') and principal point\n\ 01060 # (cx', cy') - these may differ from the values in K.\n\ 01061 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 01062 # also have R = the identity and P[1:3,1:3] = K.\n\ 01063 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 01064 # position of the optical center of the second camera in the first\n\ 01065 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 01066 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 01067 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 01068 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 01069 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 01070 # the rectified image is given by:\n\ 01071 # [u v w]' = P * [X Y Z 1]'\n\ 01072 # x = u / w\n\ 01073 # y = v / w\n\ 01074 # This holds for both images of a stereo pair.\n\ 01075 float64[12] P # 3x4 row-major matrix\n\ 01076 \n\ 01077 \n\ 01078 #######################################################################\n\ 01079 # Operational Parameters #\n\ 01080 #######################################################################\n\ 01081 # These define the image region actually captured by the camera #\n\ 01082 # driver. Although they affect the geometry of the output image, they #\n\ 01083 # may be changed freely without recalibrating the camera. #\n\ 01084 #######################################################################\n\ 01085 \n\ 01086 # Binning refers here to any camera setting which combines rectangular\n\ 01087 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 01088 # resolution of the output image to\n\ 01089 # (width / binning_x) x (height / binning_y).\n\ 01090 # The default values binning_x = binning_y = 0 is considered the same\n\ 01091 # as binning_x = binning_y = 1 (no subsampling).\n\ 01092 uint32 binning_x\n\ 01093 uint32 binning_y\n\ 01094 \n\ 01095 # Region of interest (subwindow of full camera resolution), given in\n\ 01096 # full resolution (unbinned) image coordinates. A particular ROI\n\ 01097 # always denotes the same window of pixels on the camera sensor,\n\ 01098 # regardless of binning settings.\n\ 01099 # The default setting of roi (all values 0) is considered the same as\n\ 01100 # full resolution (roi.width = width, roi.height = height).\n\ 01101 RegionOfInterest roi\n\ 01102 \n\ 01103 ================================================================================\n\ 01104 MSG: sensor_msgs/RegionOfInterest\n\ 01105 # This message is used to specify a region of interest within an image.\n\ 01106 #\n\ 01107 # When used to specify the ROI setting of the camera when the image was\n\ 01108 # taken, the height and width fields should either match the height and\n\ 01109 # width fields for the associated image; or height = width = 0\n\ 01110 # indicates that the full resolution image was captured.\n\ 01111 \n\ 01112 uint32 x_offset # Leftmost pixel of the ROI\n\ 01113 # (0 if the ROI includes the left edge of the image)\n\ 01114 uint32 y_offset # Topmost pixel of the ROI\n\ 01115 # (0 if the ROI includes the top edge of the image)\n\ 01116 uint32 height # Height of ROI\n\ 01117 uint32 width # Width of ROI\n\ 01118 \n\ 01119 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 01120 # ROI in this message. Typically this should be False if the full image\n\ 01121 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 01122 # used).\n\ 01123 bool do_rectify\n\ 01124 \n\ 01125 ================================================================================\n\ 01126 MSG: geometry_msgs/Vector3\n\ 01127 # This represents a vector in free space. \n\ 01128 \n\ 01129 float64 x\n\ 01130 float64 y\n\ 01131 float64 z\n\ 01132 "; 01133 } 01134 01135 static const char* value(const ::object_manipulation_msgs::Grasp_<ContainerAllocator> &) { return value(); } 01136 }; 01137 01138 } // namespace message_traits 01139 } // namespace ros 01140 01141 namespace ros 01142 { 01143 namespace serialization 01144 { 01145 01146 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::Grasp_<ContainerAllocator> > 01147 { 01148 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m) 01149 { 01150 stream.next(m.pre_grasp_posture); 01151 stream.next(m.grasp_posture); 01152 stream.next(m.grasp_pose); 01153 stream.next(m.success_probability); 01154 stream.next(m.cluster_rep); 01155 stream.next(m.desired_approach_distance); 01156 stream.next(m.min_approach_distance); 01157 stream.next(m.moved_obstacles); 01158 } 01159 01160 ROS_DECLARE_ALLINONE_SERIALIZER; 01161 }; // struct Grasp_ 01162 } // namespace serialization 01163 } // namespace ros 01164 01165 namespace ros 01166 { 01167 namespace message_operations 01168 { 01169 01170 template<class ContainerAllocator> 01171 struct Printer< ::object_manipulation_msgs::Grasp_<ContainerAllocator> > 01172 { 01173 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_manipulation_msgs::Grasp_<ContainerAllocator> & v) 01174 { 01175 s << indent << "pre_grasp_posture: "; 01176 s << std::endl; 01177 Printer< ::sensor_msgs::JointState_<ContainerAllocator> >::stream(s, indent + " ", v.pre_grasp_posture); 01178 s << indent << "grasp_posture: "; 01179 s << std::endl; 01180 Printer< ::sensor_msgs::JointState_<ContainerAllocator> >::stream(s, indent + " ", v.grasp_posture); 01181 s << indent << "grasp_pose: "; 01182 s << std::endl; 01183 Printer< ::geometry_msgs::Pose_<ContainerAllocator> >::stream(s, indent + " ", v.grasp_pose); 01184 s << indent << "success_probability: "; 01185 Printer<double>::stream(s, indent + " ", v.success_probability); 01186 s << indent << "cluster_rep: "; 01187 Printer<uint8_t>::stream(s, indent + " ", v.cluster_rep); 01188 s << indent << "desired_approach_distance: "; 01189 Printer<float>::stream(s, indent + " ", v.desired_approach_distance); 01190 s << indent << "min_approach_distance: "; 01191 Printer<float>::stream(s, indent + " ", v.min_approach_distance); 01192 s << indent << "moved_obstacles[]" << std::endl; 01193 for (size_t i = 0; i < v.moved_obstacles.size(); ++i) 01194 { 01195 s << indent << " moved_obstacles[" << i << "]: "; 01196 s << std::endl; 01197 s << indent; 01198 Printer< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::stream(s, indent + " ", v.moved_obstacles[i]); 01199 } 01200 } 01201 }; 01202 01203 01204 } // namespace message_operations 01205 } // namespace ros 01206 01207 #endif // OBJECT_MANIPULATION_MSGS_MESSAGE_GRASP_H 01208