00001
00002 #ifndef OBJECT_MANIPULATION_MSGS_SERVICE_GRASPSTATUS_H
00003 #define OBJECT_MANIPULATION_MSGS_SERVICE_GRASPSTATUS_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012
00013 #include "ros/macros.h"
00014
00015 #include "ros/assert.h"
00016
00017 #include "ros/service_traits.h"
00018
00019 #include "object_manipulation_msgs/Grasp.h"
00020
00021
00022
00023 namespace object_manipulation_msgs
00024 {
00025 template <class ContainerAllocator>
00026 struct GraspStatusRequest_ {
00027 typedef GraspStatusRequest_<ContainerAllocator> Type;
00028
00029 GraspStatusRequest_()
00030 : grasp()
00031 {
00032 }
00033
00034 GraspStatusRequest_(const ContainerAllocator& _alloc)
00035 : grasp(_alloc)
00036 {
00037 }
00038
00039 typedef ::object_manipulation_msgs::Grasp_<ContainerAllocator> _grasp_type;
00040 ::object_manipulation_msgs::Grasp_<ContainerAllocator> grasp;
00041
00042
00043 private:
00044 static const char* __s_getDataType_() { return "object_manipulation_msgs/GraspStatusRequest"; }
00045 public:
00046 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); }
00047
00048 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); }
00049
00050 private:
00051 static const char* __s_getMD5Sum_() { return "46f92cc36c8200695a0cfa52ac75eb0a"; }
00052 public:
00053 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); }
00054
00055 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); }
00056
00057 private:
00058 static const char* __s_getServerMD5Sum_() { return "222f0090ca965a030dae07c0a77db48b"; }
00059 public:
00060 ROS_DEPRECATED static const std::string __s_getServerMD5Sum() { return __s_getServerMD5Sum_(); }
00061
00062 ROS_DEPRECATED const std::string __getServerMD5Sum() const { return __s_getServerMD5Sum_(); }
00063
00064 private:
00065 static const char* __s_getMessageDefinition_() { return "\n\
00066 \n\
00067 \n\
00068 \n\
00069 \n\
00070 \n\
00071 \n\
00072 \n\
00073 object_manipulation_msgs/Grasp grasp\n\
00074 \n\
00075 \n\
00076 ================================================================================\n\
00077 MSG: object_manipulation_msgs/Grasp\n\
00078 \n\
00079 # The internal posture of the hand for the pre-grasp\n\
00080 # only positions are used\n\
00081 sensor_msgs/JointState pre_grasp_posture\n\
00082 \n\
00083 # The internal posture of the hand for the grasp\n\
00084 # positions and efforts are used\n\
00085 sensor_msgs/JointState grasp_posture\n\
00086 \n\
00087 # The position of the end-effector for the grasp relative to a reference frame \n\
00088 # (that is always specified elsewhere, not in this message)\n\
00089 geometry_msgs/Pose grasp_pose\n\
00090 \n\
00091 # The estimated probability of success for this grasp\n\
00092 float64 success_probability\n\
00093 \n\
00094 # Debug flag to indicate that this grasp would be the best in its cluster\n\
00095 bool cluster_rep\n\
00096 \n\
00097 # how far the pre-grasp should ideally be away from the grasp\n\
00098 float32 desired_approach_distance\n\
00099 \n\
00100 # how much distance between pre-grasp and grasp must actually be feasible \n\
00101 # for the grasp not to be rejected\n\
00102 float32 min_approach_distance\n\
00103 \n\
00104 # an optional list of obstacles that we have semantic information about\n\
00105 # and that we expect might move in the course of executing this grasp\n\
00106 # the grasp planner is expected to make sure they move in an OK way; during\n\
00107 # execution, grasp executors will not check for collisions against these objects\n\
00108 GraspableObject[] moved_obstacles\n\
00109 \n\
00110 ================================================================================\n\
00111 MSG: sensor_msgs/JointState\n\
00112 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
00113 #\n\
00114 # The state of each joint (revolute or prismatic) is defined by:\n\
00115 # * the position of the joint (rad or m),\n\
00116 # * the velocity of the joint (rad/s or m/s) and \n\
00117 # * the effort that is applied in the joint (Nm or N).\n\
00118 #\n\
00119 # Each joint is uniquely identified by its name\n\
00120 # The header specifies the time at which the joint states were recorded. All the joint states\n\
00121 # in one message have to be recorded at the same time.\n\
00122 #\n\
00123 # This message consists of a multiple arrays, one for each part of the joint state. \n\
00124 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
00125 # effort associated with them, you can leave the effort array empty. \n\
00126 #\n\
00127 # All arrays in this message should have the same size, or be empty.\n\
00128 # This is the only way to uniquely associate the joint name with the correct\n\
00129 # states.\n\
00130 \n\
00131 \n\
00132 Header header\n\
00133 \n\
00134 string[] name\n\
00135 float64[] position\n\
00136 float64[] velocity\n\
00137 float64[] effort\n\
00138 \n\
00139 ================================================================================\n\
00140 MSG: std_msgs/Header\n\
00141 # Standard metadata for higher-level stamped data types.\n\
00142 # This is generally used to communicate timestamped data \n\
00143 # in a particular coordinate frame.\n\
00144 # \n\
00145 # sequence ID: consecutively increasing ID \n\
00146 uint32 seq\n\
00147 #Two-integer timestamp that is expressed as:\n\
00148 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00149 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00150 # time-handling sugar is provided by the client library\n\
00151 time stamp\n\
00152 #Frame this data is associated with\n\
00153 # 0: no frame\n\
00154 # 1: global frame\n\
00155 string frame_id\n\
00156 \n\
00157 ================================================================================\n\
00158 MSG: geometry_msgs/Pose\n\
00159 # A representation of pose in free space, composed of postion and orientation. \n\
00160 Point position\n\
00161 Quaternion orientation\n\
00162 \n\
00163 ================================================================================\n\
00164 MSG: geometry_msgs/Point\n\
00165 # This contains the position of a point in free space\n\
00166 float64 x\n\
00167 float64 y\n\
00168 float64 z\n\
00169 \n\
00170 ================================================================================\n\
00171 MSG: geometry_msgs/Quaternion\n\
00172 # This represents an orientation in free space in quaternion form.\n\
00173 \n\
00174 float64 x\n\
00175 float64 y\n\
00176 float64 z\n\
00177 float64 w\n\
00178 \n\
00179 ================================================================================\n\
00180 MSG: object_manipulation_msgs/GraspableObject\n\
00181 # an object that the object_manipulator can work on\n\
00182 \n\
00183 # a graspable object can be represented in multiple ways. This message\n\
00184 # can contain all of them. Which one is actually used is up to the receiver\n\
00185 # of this message. When adding new representations, one must be careful that\n\
00186 # they have reasonable lightweight defaults indicating that that particular\n\
00187 # representation is not available.\n\
00188 \n\
00189 # the tf frame to be used as a reference frame when combining information from\n\
00190 # the different representations below\n\
00191 string reference_frame_id\n\
00192 \n\
00193 # potential recognition results from a database of models\n\
00194 # all poses are relative to the object reference pose\n\
00195 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00196 \n\
00197 # the point cloud itself\n\
00198 sensor_msgs/PointCloud cluster\n\
00199 \n\
00200 # a region of a PointCloud2 of interest\n\
00201 object_manipulation_msgs/SceneRegion region\n\
00202 \n\
00203 # the name that this object has in the collision environment\n\
00204 string collision_name\n\
00205 ================================================================================\n\
00206 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00207 # Informs that a specific model from the Model Database has been \n\
00208 # identified at a certain location\n\
00209 \n\
00210 # the database id of the model\n\
00211 int32 model_id\n\
00212 \n\
00213 # the pose that it can be found in\n\
00214 geometry_msgs/PoseStamped pose\n\
00215 \n\
00216 # a measure of the confidence level in this detection result\n\
00217 float32 confidence\n\
00218 \n\
00219 # the name of the object detector that generated this detection result\n\
00220 string detector_name\n\
00221 \n\
00222 ================================================================================\n\
00223 MSG: geometry_msgs/PoseStamped\n\
00224 # A Pose with reference coordinate frame and timestamp\n\
00225 Header header\n\
00226 Pose pose\n\
00227 \n\
00228 ================================================================================\n\
00229 MSG: sensor_msgs/PointCloud\n\
00230 # This message holds a collection of 3d points, plus optional additional\n\
00231 # information about each point.\n\
00232 \n\
00233 # Time of sensor data acquisition, coordinate frame ID.\n\
00234 Header header\n\
00235 \n\
00236 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00237 # in the frame given in the header.\n\
00238 geometry_msgs/Point32[] points\n\
00239 \n\
00240 # Each channel should have the same number of elements as points array,\n\
00241 # and the data in each channel should correspond 1:1 with each point.\n\
00242 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00243 ChannelFloat32[] channels\n\
00244 \n\
00245 ================================================================================\n\
00246 MSG: geometry_msgs/Point32\n\
00247 # This contains the position of a point in free space(with 32 bits of precision).\n\
00248 # It is recommeded to use Point wherever possible instead of Point32. \n\
00249 # \n\
00250 # This recommendation is to promote interoperability. \n\
00251 #\n\
00252 # This message is designed to take up less space when sending\n\
00253 # lots of points at once, as in the case of a PointCloud. \n\
00254 \n\
00255 float32 x\n\
00256 float32 y\n\
00257 float32 z\n\
00258 ================================================================================\n\
00259 MSG: sensor_msgs/ChannelFloat32\n\
00260 # This message is used by the PointCloud message to hold optional data\n\
00261 # associated with each point in the cloud. The length of the values\n\
00262 # array should be the same as the length of the points array in the\n\
00263 # PointCloud, and each value should be associated with the corresponding\n\
00264 # point.\n\
00265 \n\
00266 # Channel names in existing practice include:\n\
00267 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00268 # This is opposite to usual conventions but remains for\n\
00269 # historical reasons. The newer PointCloud2 message has no\n\
00270 # such problem.\n\
00271 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00272 # (R,G,B) values packed into the least significant 24 bits,\n\
00273 # in order.\n\
00274 # \"intensity\" - laser or pixel intensity.\n\
00275 # \"distance\"\n\
00276 \n\
00277 # The channel name should give semantics of the channel (e.g.\n\
00278 # \"intensity\" instead of \"value\").\n\
00279 string name\n\
00280 \n\
00281 # The values array should be 1-1 with the elements of the associated\n\
00282 # PointCloud.\n\
00283 float32[] values\n\
00284 \n\
00285 ================================================================================\n\
00286 MSG: object_manipulation_msgs/SceneRegion\n\
00287 # Point cloud\n\
00288 sensor_msgs/PointCloud2 cloud\n\
00289 \n\
00290 # Indices for the region of interest\n\
00291 int32[] mask\n\
00292 \n\
00293 # One of the corresponding 2D images, if applicable\n\
00294 sensor_msgs/Image image\n\
00295 \n\
00296 # The disparity image, if applicable\n\
00297 sensor_msgs/Image disparity_image\n\
00298 \n\
00299 # Camera info for the camera that took the image\n\
00300 sensor_msgs/CameraInfo cam_info\n\
00301 \n\
00302 # a 3D region of interest for grasp planning\n\
00303 geometry_msgs/PoseStamped roi_box_pose\n\
00304 geometry_msgs/Vector3 roi_box_dims\n\
00305 \n\
00306 ================================================================================\n\
00307 MSG: sensor_msgs/PointCloud2\n\
00308 # This message holds a collection of N-dimensional points, which may\n\
00309 # contain additional information such as normals, intensity, etc. The\n\
00310 # point data is stored as a binary blob, its layout described by the\n\
00311 # contents of the \"fields\" array.\n\
00312 \n\
00313 # The point cloud data may be organized 2d (image-like) or 1d\n\
00314 # (unordered). Point clouds organized as 2d images may be produced by\n\
00315 # camera depth sensors such as stereo or time-of-flight.\n\
00316 \n\
00317 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00318 # points).\n\
00319 Header header\n\
00320 \n\
00321 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00322 # 1 and width is the length of the point cloud.\n\
00323 uint32 height\n\
00324 uint32 width\n\
00325 \n\
00326 # Describes the channels and their layout in the binary data blob.\n\
00327 PointField[] fields\n\
00328 \n\
00329 bool is_bigendian # Is this data bigendian?\n\
00330 uint32 point_step # Length of a point in bytes\n\
00331 uint32 row_step # Length of a row in bytes\n\
00332 uint8[] data # Actual point data, size is (row_step*height)\n\
00333 \n\
00334 bool is_dense # True if there are no invalid points\n\
00335 \n\
00336 ================================================================================\n\
00337 MSG: sensor_msgs/PointField\n\
00338 # This message holds the description of one point entry in the\n\
00339 # PointCloud2 message format.\n\
00340 uint8 INT8 = 1\n\
00341 uint8 UINT8 = 2\n\
00342 uint8 INT16 = 3\n\
00343 uint8 UINT16 = 4\n\
00344 uint8 INT32 = 5\n\
00345 uint8 UINT32 = 6\n\
00346 uint8 FLOAT32 = 7\n\
00347 uint8 FLOAT64 = 8\n\
00348 \n\
00349 string name # Name of field\n\
00350 uint32 offset # Offset from start of point struct\n\
00351 uint8 datatype # Datatype enumeration, see above\n\
00352 uint32 count # How many elements in the field\n\
00353 \n\
00354 ================================================================================\n\
00355 MSG: sensor_msgs/Image\n\
00356 # This message contains an uncompressed image\n\
00357 # (0, 0) is at top-left corner of image\n\
00358 #\n\
00359 \n\
00360 Header header # Header timestamp should be acquisition time of image\n\
00361 # Header frame_id should be optical frame of camera\n\
00362 # origin of frame should be optical center of cameara\n\
00363 # +x should point to the right in the image\n\
00364 # +y should point down in the image\n\
00365 # +z should point into to plane of the image\n\
00366 # If the frame_id here and the frame_id of the CameraInfo\n\
00367 # message associated with the image conflict\n\
00368 # the behavior is undefined\n\
00369 \n\
00370 uint32 height # image height, that is, number of rows\n\
00371 uint32 width # image width, that is, number of columns\n\
00372 \n\
00373 # The legal values for encoding are in file src/image_encodings.cpp\n\
00374 # If you want to standardize a new string format, join\n\
00375 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00376 \n\
00377 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00378 # taken from the list of strings in src/image_encodings.cpp\n\
00379 \n\
00380 uint8 is_bigendian # is this data bigendian?\n\
00381 uint32 step # Full row length in bytes\n\
00382 uint8[] data # actual matrix data, size is (step * rows)\n\
00383 \n\
00384 ================================================================================\n\
00385 MSG: sensor_msgs/CameraInfo\n\
00386 # This message defines meta information for a camera. It should be in a\n\
00387 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00388 # image topics named:\n\
00389 #\n\
00390 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00391 # image - monochrome, distorted\n\
00392 # image_color - color, distorted\n\
00393 # image_rect - monochrome, rectified\n\
00394 # image_rect_color - color, rectified\n\
00395 #\n\
00396 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00397 # for producing the four processed image topics from image_raw and\n\
00398 # camera_info. The meaning of the camera parameters are described in\n\
00399 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00400 #\n\
00401 # The image_geometry package provides a user-friendly interface to\n\
00402 # common operations using this meta information. If you want to, e.g.,\n\
00403 # project a 3d point into image coordinates, we strongly recommend\n\
00404 # using image_geometry.\n\
00405 #\n\
00406 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00407 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00408 # indicates an uncalibrated camera.\n\
00409 \n\
00410 #######################################################################\n\
00411 # Image acquisition info #\n\
00412 #######################################################################\n\
00413 \n\
00414 # Time of image acquisition, camera coordinate frame ID\n\
00415 Header header # Header timestamp should be acquisition time of image\n\
00416 # Header frame_id should be optical frame of camera\n\
00417 # origin of frame should be optical center of camera\n\
00418 # +x should point to the right in the image\n\
00419 # +y should point down in the image\n\
00420 # +z should point into the plane of the image\n\
00421 \n\
00422 \n\
00423 #######################################################################\n\
00424 # Calibration Parameters #\n\
00425 #######################################################################\n\
00426 # These are fixed during camera calibration. Their values will be the #\n\
00427 # same in all messages until the camera is recalibrated. Note that #\n\
00428 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00429 # #\n\
00430 # The internal parameters can be used to warp a raw (distorted) image #\n\
00431 # to: #\n\
00432 # 1. An undistorted image (requires D and K) #\n\
00433 # 2. A rectified image (requires D, K, R) #\n\
00434 # The projection matrix P projects 3D points into the rectified image.#\n\
00435 #######################################################################\n\
00436 \n\
00437 # The image dimensions with which the camera was calibrated. Normally\n\
00438 # this will be the full camera resolution in pixels.\n\
00439 uint32 height\n\
00440 uint32 width\n\
00441 \n\
00442 # The distortion model used. Supported models are listed in\n\
00443 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00444 # simple model of radial and tangential distortion - is sufficent.\n\
00445 string distortion_model\n\
00446 \n\
00447 # The distortion parameters, size depending on the distortion model.\n\
00448 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00449 float64[] D\n\
00450 \n\
00451 # Intrinsic camera matrix for the raw (distorted) images.\n\
00452 # [fx 0 cx]\n\
00453 # K = [ 0 fy cy]\n\
00454 # [ 0 0 1]\n\
00455 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00456 # coordinates using the focal lengths (fx, fy) and principal point\n\
00457 # (cx, cy).\n\
00458 float64[9] K # 3x3 row-major matrix\n\
00459 \n\
00460 # Rectification matrix (stereo cameras only)\n\
00461 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00462 # stereo image plane so that epipolar lines in both stereo images are\n\
00463 # parallel.\n\
00464 float64[9] R # 3x3 row-major matrix\n\
00465 \n\
00466 # Projection/camera matrix\n\
00467 # [fx' 0 cx' Tx]\n\
00468 # P = [ 0 fy' cy' Ty]\n\
00469 # [ 0 0 1 0]\n\
00470 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00471 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00472 # is the normal camera intrinsic matrix for the rectified image.\n\
00473 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00474 # coordinates using the focal lengths (fx', fy') and principal point\n\
00475 # (cx', cy') - these may differ from the values in K.\n\
00476 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00477 # also have R = the identity and P[1:3,1:3] = K.\n\
00478 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00479 # position of the optical center of the second camera in the first\n\
00480 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00481 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00482 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00483 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00484 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00485 # the rectified image is given by:\n\
00486 # [u v w]' = P * [X Y Z 1]'\n\
00487 # x = u / w\n\
00488 # y = v / w\n\
00489 # This holds for both images of a stereo pair.\n\
00490 float64[12] P # 3x4 row-major matrix\n\
00491 \n\
00492 \n\
00493 #######################################################################\n\
00494 # Operational Parameters #\n\
00495 #######################################################################\n\
00496 # These define the image region actually captured by the camera #\n\
00497 # driver. Although they affect the geometry of the output image, they #\n\
00498 # may be changed freely without recalibrating the camera. #\n\
00499 #######################################################################\n\
00500 \n\
00501 # Binning refers here to any camera setting which combines rectangular\n\
00502 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00503 # resolution of the output image to\n\
00504 # (width / binning_x) x (height / binning_y).\n\
00505 # The default values binning_x = binning_y = 0 is considered the same\n\
00506 # as binning_x = binning_y = 1 (no subsampling).\n\
00507 uint32 binning_x\n\
00508 uint32 binning_y\n\
00509 \n\
00510 # Region of interest (subwindow of full camera resolution), given in\n\
00511 # full resolution (unbinned) image coordinates. A particular ROI\n\
00512 # always denotes the same window of pixels on the camera sensor,\n\
00513 # regardless of binning settings.\n\
00514 # The default setting of roi (all values 0) is considered the same as\n\
00515 # full resolution (roi.width = width, roi.height = height).\n\
00516 RegionOfInterest roi\n\
00517 \n\
00518 ================================================================================\n\
00519 MSG: sensor_msgs/RegionOfInterest\n\
00520 # This message is used to specify a region of interest within an image.\n\
00521 #\n\
00522 # When used to specify the ROI setting of the camera when the image was\n\
00523 # taken, the height and width fields should either match the height and\n\
00524 # width fields for the associated image; or height = width = 0\n\
00525 # indicates that the full resolution image was captured.\n\
00526 \n\
00527 uint32 x_offset # Leftmost pixel of the ROI\n\
00528 # (0 if the ROI includes the left edge of the image)\n\
00529 uint32 y_offset # Topmost pixel of the ROI\n\
00530 # (0 if the ROI includes the top edge of the image)\n\
00531 uint32 height # Height of ROI\n\
00532 uint32 width # Width of ROI\n\
00533 \n\
00534 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00535 # ROI in this message. Typically this should be False if the full image\n\
00536 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00537 # used).\n\
00538 bool do_rectify\n\
00539 \n\
00540 ================================================================================\n\
00541 MSG: geometry_msgs/Vector3\n\
00542 # This represents a vector in free space. \n\
00543 \n\
00544 float64 x\n\
00545 float64 y\n\
00546 float64 z\n\
00547 "; }
00548 public:
00549 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); }
00550
00551 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); }
00552
00553 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const
00554 {
00555 ros::serialization::OStream stream(write_ptr, 1000000000);
00556 ros::serialization::serialize(stream, grasp);
00557 return stream.getData();
00558 }
00559
00560 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr)
00561 {
00562 ros::serialization::IStream stream(read_ptr, 1000000000);
00563 ros::serialization::deserialize(stream, grasp);
00564 return stream.getData();
00565 }
00566
00567 ROS_DEPRECATED virtual uint32_t serializationLength() const
00568 {
00569 uint32_t size = 0;
00570 size += ros::serialization::serializationLength(grasp);
00571 return size;
00572 }
00573
00574 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspStatusRequest_<ContainerAllocator> > Ptr;
00575 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspStatusRequest_<ContainerAllocator> const> ConstPtr;
00576 boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00577 };
00578 typedef ::object_manipulation_msgs::GraspStatusRequest_<std::allocator<void> > GraspStatusRequest;
00579
00580 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspStatusRequest> GraspStatusRequestPtr;
00581 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspStatusRequest const> GraspStatusRequestConstPtr;
00582
00583
00584 template <class ContainerAllocator>
00585 struct GraspStatusResponse_ {
00586 typedef GraspStatusResponse_<ContainerAllocator> Type;
00587
00588 GraspStatusResponse_()
00589 : is_hand_occupied(false)
00590 {
00591 }
00592
00593 GraspStatusResponse_(const ContainerAllocator& _alloc)
00594 : is_hand_occupied(false)
00595 {
00596 }
00597
00598 typedef uint8_t _is_hand_occupied_type;
00599 uint8_t is_hand_occupied;
00600
00601
00602 private:
00603 static const char* __s_getDataType_() { return "object_manipulation_msgs/GraspStatusResponse"; }
00604 public:
00605 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); }
00606
00607 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); }
00608
00609 private:
00610 static const char* __s_getMD5Sum_() { return "d58cf7836f039d8e002583af45001d6d"; }
00611 public:
00612 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); }
00613
00614 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); }
00615
00616 private:
00617 static const char* __s_getServerMD5Sum_() { return "222f0090ca965a030dae07c0a77db48b"; }
00618 public:
00619 ROS_DEPRECATED static const std::string __s_getServerMD5Sum() { return __s_getServerMD5Sum_(); }
00620
00621 ROS_DEPRECATED const std::string __getServerMD5Sum() const { return __s_getServerMD5Sum_(); }
00622
00623 private:
00624 static const char* __s_getMessageDefinition_() { return "\n\
00625 bool is_hand_occupied\n\
00626 \n\
00627 \n\
00628 "; }
00629 public:
00630 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); }
00631
00632 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); }
00633
00634 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const
00635 {
00636 ros::serialization::OStream stream(write_ptr, 1000000000);
00637 ros::serialization::serialize(stream, is_hand_occupied);
00638 return stream.getData();
00639 }
00640
00641 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr)
00642 {
00643 ros::serialization::IStream stream(read_ptr, 1000000000);
00644 ros::serialization::deserialize(stream, is_hand_occupied);
00645 return stream.getData();
00646 }
00647
00648 ROS_DEPRECATED virtual uint32_t serializationLength() const
00649 {
00650 uint32_t size = 0;
00651 size += ros::serialization::serializationLength(is_hand_occupied);
00652 return size;
00653 }
00654
00655 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspStatusResponse_<ContainerAllocator> > Ptr;
00656 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspStatusResponse_<ContainerAllocator> const> ConstPtr;
00657 boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00658 };
00659 typedef ::object_manipulation_msgs::GraspStatusResponse_<std::allocator<void> > GraspStatusResponse;
00660
00661 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspStatusResponse> GraspStatusResponsePtr;
00662 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspStatusResponse const> GraspStatusResponseConstPtr;
00663
00664 struct GraspStatus
00665 {
00666
00667 typedef GraspStatusRequest Request;
00668 typedef GraspStatusResponse Response;
00669 Request request;
00670 Response response;
00671
00672 typedef Request RequestType;
00673 typedef Response ResponseType;
00674 };
00675 }
00676
00677 namespace ros
00678 {
00679 namespace message_traits
00680 {
00681 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::GraspStatusRequest_<ContainerAllocator> > : public TrueType {};
00682 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::GraspStatusRequest_<ContainerAllocator> const> : public TrueType {};
00683 template<class ContainerAllocator>
00684 struct MD5Sum< ::object_manipulation_msgs::GraspStatusRequest_<ContainerAllocator> > {
00685 static const char* value()
00686 {
00687 return "46f92cc36c8200695a0cfa52ac75eb0a";
00688 }
00689
00690 static const char* value(const ::object_manipulation_msgs::GraspStatusRequest_<ContainerAllocator> &) { return value(); }
00691 static const uint64_t static_value1 = 0x46f92cc36c820069ULL;
00692 static const uint64_t static_value2 = 0x5a0cfa52ac75eb0aULL;
00693 };
00694
00695 template<class ContainerAllocator>
00696 struct DataType< ::object_manipulation_msgs::GraspStatusRequest_<ContainerAllocator> > {
00697 static const char* value()
00698 {
00699 return "object_manipulation_msgs/GraspStatusRequest";
00700 }
00701
00702 static const char* value(const ::object_manipulation_msgs::GraspStatusRequest_<ContainerAllocator> &) { return value(); }
00703 };
00704
00705 template<class ContainerAllocator>
00706 struct Definition< ::object_manipulation_msgs::GraspStatusRequest_<ContainerAllocator> > {
00707 static const char* value()
00708 {
00709 return "\n\
00710 \n\
00711 \n\
00712 \n\
00713 \n\
00714 \n\
00715 \n\
00716 \n\
00717 object_manipulation_msgs/Grasp grasp\n\
00718 \n\
00719 \n\
00720 ================================================================================\n\
00721 MSG: object_manipulation_msgs/Grasp\n\
00722 \n\
00723 # The internal posture of the hand for the pre-grasp\n\
00724 # only positions are used\n\
00725 sensor_msgs/JointState pre_grasp_posture\n\
00726 \n\
00727 # The internal posture of the hand for the grasp\n\
00728 # positions and efforts are used\n\
00729 sensor_msgs/JointState grasp_posture\n\
00730 \n\
00731 # The position of the end-effector for the grasp relative to a reference frame \n\
00732 # (that is always specified elsewhere, not in this message)\n\
00733 geometry_msgs/Pose grasp_pose\n\
00734 \n\
00735 # The estimated probability of success for this grasp\n\
00736 float64 success_probability\n\
00737 \n\
00738 # Debug flag to indicate that this grasp would be the best in its cluster\n\
00739 bool cluster_rep\n\
00740 \n\
00741 # how far the pre-grasp should ideally be away from the grasp\n\
00742 float32 desired_approach_distance\n\
00743 \n\
00744 # how much distance between pre-grasp and grasp must actually be feasible \n\
00745 # for the grasp not to be rejected\n\
00746 float32 min_approach_distance\n\
00747 \n\
00748 # an optional list of obstacles that we have semantic information about\n\
00749 # and that we expect might move in the course of executing this grasp\n\
00750 # the grasp planner is expected to make sure they move in an OK way; during\n\
00751 # execution, grasp executors will not check for collisions against these objects\n\
00752 GraspableObject[] moved_obstacles\n\
00753 \n\
00754 ================================================================================\n\
00755 MSG: sensor_msgs/JointState\n\
00756 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
00757 #\n\
00758 # The state of each joint (revolute or prismatic) is defined by:\n\
00759 # * the position of the joint (rad or m),\n\
00760 # * the velocity of the joint (rad/s or m/s) and \n\
00761 # * the effort that is applied in the joint (Nm or N).\n\
00762 #\n\
00763 # Each joint is uniquely identified by its name\n\
00764 # The header specifies the time at which the joint states were recorded. All the joint states\n\
00765 # in one message have to be recorded at the same time.\n\
00766 #\n\
00767 # This message consists of a multiple arrays, one for each part of the joint state. \n\
00768 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
00769 # effort associated with them, you can leave the effort array empty. \n\
00770 #\n\
00771 # All arrays in this message should have the same size, or be empty.\n\
00772 # This is the only way to uniquely associate the joint name with the correct\n\
00773 # states.\n\
00774 \n\
00775 \n\
00776 Header header\n\
00777 \n\
00778 string[] name\n\
00779 float64[] position\n\
00780 float64[] velocity\n\
00781 float64[] effort\n\
00782 \n\
00783 ================================================================================\n\
00784 MSG: std_msgs/Header\n\
00785 # Standard metadata for higher-level stamped data types.\n\
00786 # This is generally used to communicate timestamped data \n\
00787 # in a particular coordinate frame.\n\
00788 # \n\
00789 # sequence ID: consecutively increasing ID \n\
00790 uint32 seq\n\
00791 #Two-integer timestamp that is expressed as:\n\
00792 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00793 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00794 # time-handling sugar is provided by the client library\n\
00795 time stamp\n\
00796 #Frame this data is associated with\n\
00797 # 0: no frame\n\
00798 # 1: global frame\n\
00799 string frame_id\n\
00800 \n\
00801 ================================================================================\n\
00802 MSG: geometry_msgs/Pose\n\
00803 # A representation of pose in free space, composed of postion and orientation. \n\
00804 Point position\n\
00805 Quaternion orientation\n\
00806 \n\
00807 ================================================================================\n\
00808 MSG: geometry_msgs/Point\n\
00809 # This contains the position of a point in free space\n\
00810 float64 x\n\
00811 float64 y\n\
00812 float64 z\n\
00813 \n\
00814 ================================================================================\n\
00815 MSG: geometry_msgs/Quaternion\n\
00816 # This represents an orientation in free space in quaternion form.\n\
00817 \n\
00818 float64 x\n\
00819 float64 y\n\
00820 float64 z\n\
00821 float64 w\n\
00822 \n\
00823 ================================================================================\n\
00824 MSG: object_manipulation_msgs/GraspableObject\n\
00825 # an object that the object_manipulator can work on\n\
00826 \n\
00827 # a graspable object can be represented in multiple ways. This message\n\
00828 # can contain all of them. Which one is actually used is up to the receiver\n\
00829 # of this message. When adding new representations, one must be careful that\n\
00830 # they have reasonable lightweight defaults indicating that that particular\n\
00831 # representation is not available.\n\
00832 \n\
00833 # the tf frame to be used as a reference frame when combining information from\n\
00834 # the different representations below\n\
00835 string reference_frame_id\n\
00836 \n\
00837 # potential recognition results from a database of models\n\
00838 # all poses are relative to the object reference pose\n\
00839 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00840 \n\
00841 # the point cloud itself\n\
00842 sensor_msgs/PointCloud cluster\n\
00843 \n\
00844 # a region of a PointCloud2 of interest\n\
00845 object_manipulation_msgs/SceneRegion region\n\
00846 \n\
00847 # the name that this object has in the collision environment\n\
00848 string collision_name\n\
00849 ================================================================================\n\
00850 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00851 # Informs that a specific model from the Model Database has been \n\
00852 # identified at a certain location\n\
00853 \n\
00854 # the database id of the model\n\
00855 int32 model_id\n\
00856 \n\
00857 # the pose that it can be found in\n\
00858 geometry_msgs/PoseStamped pose\n\
00859 \n\
00860 # a measure of the confidence level in this detection result\n\
00861 float32 confidence\n\
00862 \n\
00863 # the name of the object detector that generated this detection result\n\
00864 string detector_name\n\
00865 \n\
00866 ================================================================================\n\
00867 MSG: geometry_msgs/PoseStamped\n\
00868 # A Pose with reference coordinate frame and timestamp\n\
00869 Header header\n\
00870 Pose pose\n\
00871 \n\
00872 ================================================================================\n\
00873 MSG: sensor_msgs/PointCloud\n\
00874 # This message holds a collection of 3d points, plus optional additional\n\
00875 # information about each point.\n\
00876 \n\
00877 # Time of sensor data acquisition, coordinate frame ID.\n\
00878 Header header\n\
00879 \n\
00880 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00881 # in the frame given in the header.\n\
00882 geometry_msgs/Point32[] points\n\
00883 \n\
00884 # Each channel should have the same number of elements as points array,\n\
00885 # and the data in each channel should correspond 1:1 with each point.\n\
00886 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00887 ChannelFloat32[] channels\n\
00888 \n\
00889 ================================================================================\n\
00890 MSG: geometry_msgs/Point32\n\
00891 # This contains the position of a point in free space(with 32 bits of precision).\n\
00892 # It is recommeded to use Point wherever possible instead of Point32. \n\
00893 # \n\
00894 # This recommendation is to promote interoperability. \n\
00895 #\n\
00896 # This message is designed to take up less space when sending\n\
00897 # lots of points at once, as in the case of a PointCloud. \n\
00898 \n\
00899 float32 x\n\
00900 float32 y\n\
00901 float32 z\n\
00902 ================================================================================\n\
00903 MSG: sensor_msgs/ChannelFloat32\n\
00904 # This message is used by the PointCloud message to hold optional data\n\
00905 # associated with each point in the cloud. The length of the values\n\
00906 # array should be the same as the length of the points array in the\n\
00907 # PointCloud, and each value should be associated with the corresponding\n\
00908 # point.\n\
00909 \n\
00910 # Channel names in existing practice include:\n\
00911 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00912 # This is opposite to usual conventions but remains for\n\
00913 # historical reasons. The newer PointCloud2 message has no\n\
00914 # such problem.\n\
00915 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00916 # (R,G,B) values packed into the least significant 24 bits,\n\
00917 # in order.\n\
00918 # \"intensity\" - laser or pixel intensity.\n\
00919 # \"distance\"\n\
00920 \n\
00921 # The channel name should give semantics of the channel (e.g.\n\
00922 # \"intensity\" instead of \"value\").\n\
00923 string name\n\
00924 \n\
00925 # The values array should be 1-1 with the elements of the associated\n\
00926 # PointCloud.\n\
00927 float32[] values\n\
00928 \n\
00929 ================================================================================\n\
00930 MSG: object_manipulation_msgs/SceneRegion\n\
00931 # Point cloud\n\
00932 sensor_msgs/PointCloud2 cloud\n\
00933 \n\
00934 # Indices for the region of interest\n\
00935 int32[] mask\n\
00936 \n\
00937 # One of the corresponding 2D images, if applicable\n\
00938 sensor_msgs/Image image\n\
00939 \n\
00940 # The disparity image, if applicable\n\
00941 sensor_msgs/Image disparity_image\n\
00942 \n\
00943 # Camera info for the camera that took the image\n\
00944 sensor_msgs/CameraInfo cam_info\n\
00945 \n\
00946 # a 3D region of interest for grasp planning\n\
00947 geometry_msgs/PoseStamped roi_box_pose\n\
00948 geometry_msgs/Vector3 roi_box_dims\n\
00949 \n\
00950 ================================================================================\n\
00951 MSG: sensor_msgs/PointCloud2\n\
00952 # This message holds a collection of N-dimensional points, which may\n\
00953 # contain additional information such as normals, intensity, etc. The\n\
00954 # point data is stored as a binary blob, its layout described by the\n\
00955 # contents of the \"fields\" array.\n\
00956 \n\
00957 # The point cloud data may be organized 2d (image-like) or 1d\n\
00958 # (unordered). Point clouds organized as 2d images may be produced by\n\
00959 # camera depth sensors such as stereo or time-of-flight.\n\
00960 \n\
00961 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00962 # points).\n\
00963 Header header\n\
00964 \n\
00965 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00966 # 1 and width is the length of the point cloud.\n\
00967 uint32 height\n\
00968 uint32 width\n\
00969 \n\
00970 # Describes the channels and their layout in the binary data blob.\n\
00971 PointField[] fields\n\
00972 \n\
00973 bool is_bigendian # Is this data bigendian?\n\
00974 uint32 point_step # Length of a point in bytes\n\
00975 uint32 row_step # Length of a row in bytes\n\
00976 uint8[] data # Actual point data, size is (row_step*height)\n\
00977 \n\
00978 bool is_dense # True if there are no invalid points\n\
00979 \n\
00980 ================================================================================\n\
00981 MSG: sensor_msgs/PointField\n\
00982 # This message holds the description of one point entry in the\n\
00983 # PointCloud2 message format.\n\
00984 uint8 INT8 = 1\n\
00985 uint8 UINT8 = 2\n\
00986 uint8 INT16 = 3\n\
00987 uint8 UINT16 = 4\n\
00988 uint8 INT32 = 5\n\
00989 uint8 UINT32 = 6\n\
00990 uint8 FLOAT32 = 7\n\
00991 uint8 FLOAT64 = 8\n\
00992 \n\
00993 string name # Name of field\n\
00994 uint32 offset # Offset from start of point struct\n\
00995 uint8 datatype # Datatype enumeration, see above\n\
00996 uint32 count # How many elements in the field\n\
00997 \n\
00998 ================================================================================\n\
00999 MSG: sensor_msgs/Image\n\
01000 # This message contains an uncompressed image\n\
01001 # (0, 0) is at top-left corner of image\n\
01002 #\n\
01003 \n\
01004 Header header # Header timestamp should be acquisition time of image\n\
01005 # Header frame_id should be optical frame of camera\n\
01006 # origin of frame should be optical center of cameara\n\
01007 # +x should point to the right in the image\n\
01008 # +y should point down in the image\n\
01009 # +z should point into to plane of the image\n\
01010 # If the frame_id here and the frame_id of the CameraInfo\n\
01011 # message associated with the image conflict\n\
01012 # the behavior is undefined\n\
01013 \n\
01014 uint32 height # image height, that is, number of rows\n\
01015 uint32 width # image width, that is, number of columns\n\
01016 \n\
01017 # The legal values for encoding are in file src/image_encodings.cpp\n\
01018 # If you want to standardize a new string format, join\n\
01019 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
01020 \n\
01021 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
01022 # taken from the list of strings in src/image_encodings.cpp\n\
01023 \n\
01024 uint8 is_bigendian # is this data bigendian?\n\
01025 uint32 step # Full row length in bytes\n\
01026 uint8[] data # actual matrix data, size is (step * rows)\n\
01027 \n\
01028 ================================================================================\n\
01029 MSG: sensor_msgs/CameraInfo\n\
01030 # This message defines meta information for a camera. It should be in a\n\
01031 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
01032 # image topics named:\n\
01033 #\n\
01034 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
01035 # image - monochrome, distorted\n\
01036 # image_color - color, distorted\n\
01037 # image_rect - monochrome, rectified\n\
01038 # image_rect_color - color, rectified\n\
01039 #\n\
01040 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
01041 # for producing the four processed image topics from image_raw and\n\
01042 # camera_info. The meaning of the camera parameters are described in\n\
01043 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
01044 #\n\
01045 # The image_geometry package provides a user-friendly interface to\n\
01046 # common operations using this meta information. If you want to, e.g.,\n\
01047 # project a 3d point into image coordinates, we strongly recommend\n\
01048 # using image_geometry.\n\
01049 #\n\
01050 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
01051 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
01052 # indicates an uncalibrated camera.\n\
01053 \n\
01054 #######################################################################\n\
01055 # Image acquisition info #\n\
01056 #######################################################################\n\
01057 \n\
01058 # Time of image acquisition, camera coordinate frame ID\n\
01059 Header header # Header timestamp should be acquisition time of image\n\
01060 # Header frame_id should be optical frame of camera\n\
01061 # origin of frame should be optical center of camera\n\
01062 # +x should point to the right in the image\n\
01063 # +y should point down in the image\n\
01064 # +z should point into the plane of the image\n\
01065 \n\
01066 \n\
01067 #######################################################################\n\
01068 # Calibration Parameters #\n\
01069 #######################################################################\n\
01070 # These are fixed during camera calibration. Their values will be the #\n\
01071 # same in all messages until the camera is recalibrated. Note that #\n\
01072 # self-calibrating systems may \"recalibrate\" frequently. #\n\
01073 # #\n\
01074 # The internal parameters can be used to warp a raw (distorted) image #\n\
01075 # to: #\n\
01076 # 1. An undistorted image (requires D and K) #\n\
01077 # 2. A rectified image (requires D, K, R) #\n\
01078 # The projection matrix P projects 3D points into the rectified image.#\n\
01079 #######################################################################\n\
01080 \n\
01081 # The image dimensions with which the camera was calibrated. Normally\n\
01082 # this will be the full camera resolution in pixels.\n\
01083 uint32 height\n\
01084 uint32 width\n\
01085 \n\
01086 # The distortion model used. Supported models are listed in\n\
01087 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
01088 # simple model of radial and tangential distortion - is sufficent.\n\
01089 string distortion_model\n\
01090 \n\
01091 # The distortion parameters, size depending on the distortion model.\n\
01092 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
01093 float64[] D\n\
01094 \n\
01095 # Intrinsic camera matrix for the raw (distorted) images.\n\
01096 # [fx 0 cx]\n\
01097 # K = [ 0 fy cy]\n\
01098 # [ 0 0 1]\n\
01099 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
01100 # coordinates using the focal lengths (fx, fy) and principal point\n\
01101 # (cx, cy).\n\
01102 float64[9] K # 3x3 row-major matrix\n\
01103 \n\
01104 # Rectification matrix (stereo cameras only)\n\
01105 # A rotation matrix aligning the camera coordinate system to the ideal\n\
01106 # stereo image plane so that epipolar lines in both stereo images are\n\
01107 # parallel.\n\
01108 float64[9] R # 3x3 row-major matrix\n\
01109 \n\
01110 # Projection/camera matrix\n\
01111 # [fx' 0 cx' Tx]\n\
01112 # P = [ 0 fy' cy' Ty]\n\
01113 # [ 0 0 1 0]\n\
01114 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
01115 # of the processed (rectified) image. That is, the left 3x3 portion\n\
01116 # is the normal camera intrinsic matrix for the rectified image.\n\
01117 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
01118 # coordinates using the focal lengths (fx', fy') and principal point\n\
01119 # (cx', cy') - these may differ from the values in K.\n\
01120 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
01121 # also have R = the identity and P[1:3,1:3] = K.\n\
01122 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
01123 # position of the optical center of the second camera in the first\n\
01124 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
01125 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
01126 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
01127 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
01128 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
01129 # the rectified image is given by:\n\
01130 # [u v w]' = P * [X Y Z 1]'\n\
01131 # x = u / w\n\
01132 # y = v / w\n\
01133 # This holds for both images of a stereo pair.\n\
01134 float64[12] P # 3x4 row-major matrix\n\
01135 \n\
01136 \n\
01137 #######################################################################\n\
01138 # Operational Parameters #\n\
01139 #######################################################################\n\
01140 # These define the image region actually captured by the camera #\n\
01141 # driver. Although they affect the geometry of the output image, they #\n\
01142 # may be changed freely without recalibrating the camera. #\n\
01143 #######################################################################\n\
01144 \n\
01145 # Binning refers here to any camera setting which combines rectangular\n\
01146 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
01147 # resolution of the output image to\n\
01148 # (width / binning_x) x (height / binning_y).\n\
01149 # The default values binning_x = binning_y = 0 is considered the same\n\
01150 # as binning_x = binning_y = 1 (no subsampling).\n\
01151 uint32 binning_x\n\
01152 uint32 binning_y\n\
01153 \n\
01154 # Region of interest (subwindow of full camera resolution), given in\n\
01155 # full resolution (unbinned) image coordinates. A particular ROI\n\
01156 # always denotes the same window of pixels on the camera sensor,\n\
01157 # regardless of binning settings.\n\
01158 # The default setting of roi (all values 0) is considered the same as\n\
01159 # full resolution (roi.width = width, roi.height = height).\n\
01160 RegionOfInterest roi\n\
01161 \n\
01162 ================================================================================\n\
01163 MSG: sensor_msgs/RegionOfInterest\n\
01164 # This message is used to specify a region of interest within an image.\n\
01165 #\n\
01166 # When used to specify the ROI setting of the camera when the image was\n\
01167 # taken, the height and width fields should either match the height and\n\
01168 # width fields for the associated image; or height = width = 0\n\
01169 # indicates that the full resolution image was captured.\n\
01170 \n\
01171 uint32 x_offset # Leftmost pixel of the ROI\n\
01172 # (0 if the ROI includes the left edge of the image)\n\
01173 uint32 y_offset # Topmost pixel of the ROI\n\
01174 # (0 if the ROI includes the top edge of the image)\n\
01175 uint32 height # Height of ROI\n\
01176 uint32 width # Width of ROI\n\
01177 \n\
01178 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
01179 # ROI in this message. Typically this should be False if the full image\n\
01180 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
01181 # used).\n\
01182 bool do_rectify\n\
01183 \n\
01184 ================================================================================\n\
01185 MSG: geometry_msgs/Vector3\n\
01186 # This represents a vector in free space. \n\
01187 \n\
01188 float64 x\n\
01189 float64 y\n\
01190 float64 z\n\
01191 ";
01192 }
01193
01194 static const char* value(const ::object_manipulation_msgs::GraspStatusRequest_<ContainerAllocator> &) { return value(); }
01195 };
01196
01197 }
01198 }
01199
01200
01201 namespace ros
01202 {
01203 namespace message_traits
01204 {
01205 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::GraspStatusResponse_<ContainerAllocator> > : public TrueType {};
01206 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::GraspStatusResponse_<ContainerAllocator> const> : public TrueType {};
01207 template<class ContainerAllocator>
01208 struct MD5Sum< ::object_manipulation_msgs::GraspStatusResponse_<ContainerAllocator> > {
01209 static const char* value()
01210 {
01211 return "d58cf7836f039d8e002583af45001d6d";
01212 }
01213
01214 static const char* value(const ::object_manipulation_msgs::GraspStatusResponse_<ContainerAllocator> &) { return value(); }
01215 static const uint64_t static_value1 = 0xd58cf7836f039d8eULL;
01216 static const uint64_t static_value2 = 0x002583af45001d6dULL;
01217 };
01218
01219 template<class ContainerAllocator>
01220 struct DataType< ::object_manipulation_msgs::GraspStatusResponse_<ContainerAllocator> > {
01221 static const char* value()
01222 {
01223 return "object_manipulation_msgs/GraspStatusResponse";
01224 }
01225
01226 static const char* value(const ::object_manipulation_msgs::GraspStatusResponse_<ContainerAllocator> &) { return value(); }
01227 };
01228
01229 template<class ContainerAllocator>
01230 struct Definition< ::object_manipulation_msgs::GraspStatusResponse_<ContainerAllocator> > {
01231 static const char* value()
01232 {
01233 return "\n\
01234 bool is_hand_occupied\n\
01235 \n\
01236 \n\
01237 ";
01238 }
01239
01240 static const char* value(const ::object_manipulation_msgs::GraspStatusResponse_<ContainerAllocator> &) { return value(); }
01241 };
01242
01243 template<class ContainerAllocator> struct IsFixedSize< ::object_manipulation_msgs::GraspStatusResponse_<ContainerAllocator> > : public TrueType {};
01244 }
01245 }
01246
01247 namespace ros
01248 {
01249 namespace serialization
01250 {
01251
01252 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::GraspStatusRequest_<ContainerAllocator> >
01253 {
01254 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
01255 {
01256 stream.next(m.grasp);
01257 }
01258
01259 ROS_DECLARE_ALLINONE_SERIALIZER;
01260 };
01261 }
01262 }
01263
01264
01265 namespace ros
01266 {
01267 namespace serialization
01268 {
01269
01270 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::GraspStatusResponse_<ContainerAllocator> >
01271 {
01272 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
01273 {
01274 stream.next(m.is_hand_occupied);
01275 }
01276
01277 ROS_DECLARE_ALLINONE_SERIALIZER;
01278 };
01279 }
01280 }
01281
01282 namespace ros
01283 {
01284 namespace service_traits
01285 {
01286 template<>
01287 struct MD5Sum<object_manipulation_msgs::GraspStatus> {
01288 static const char* value()
01289 {
01290 return "222f0090ca965a030dae07c0a77db48b";
01291 }
01292
01293 static const char* value(const object_manipulation_msgs::GraspStatus&) { return value(); }
01294 };
01295
01296 template<>
01297 struct DataType<object_manipulation_msgs::GraspStatus> {
01298 static const char* value()
01299 {
01300 return "object_manipulation_msgs/GraspStatus";
01301 }
01302
01303 static const char* value(const object_manipulation_msgs::GraspStatus&) { return value(); }
01304 };
01305
01306 template<class ContainerAllocator>
01307 struct MD5Sum<object_manipulation_msgs::GraspStatusRequest_<ContainerAllocator> > {
01308 static const char* value()
01309 {
01310 return "222f0090ca965a030dae07c0a77db48b";
01311 }
01312
01313 static const char* value(const object_manipulation_msgs::GraspStatusRequest_<ContainerAllocator> &) { return value(); }
01314 };
01315
01316 template<class ContainerAllocator>
01317 struct DataType<object_manipulation_msgs::GraspStatusRequest_<ContainerAllocator> > {
01318 static const char* value()
01319 {
01320 return "object_manipulation_msgs/GraspStatus";
01321 }
01322
01323 static const char* value(const object_manipulation_msgs::GraspStatusRequest_<ContainerAllocator> &) { return value(); }
01324 };
01325
01326 template<class ContainerAllocator>
01327 struct MD5Sum<object_manipulation_msgs::GraspStatusResponse_<ContainerAllocator> > {
01328 static const char* value()
01329 {
01330 return "222f0090ca965a030dae07c0a77db48b";
01331 }
01332
01333 static const char* value(const object_manipulation_msgs::GraspStatusResponse_<ContainerAllocator> &) { return value(); }
01334 };
01335
01336 template<class ContainerAllocator>
01337 struct DataType<object_manipulation_msgs::GraspStatusResponse_<ContainerAllocator> > {
01338 static const char* value()
01339 {
01340 return "object_manipulation_msgs/GraspStatus";
01341 }
01342
01343 static const char* value(const object_manipulation_msgs::GraspStatusResponse_<ContainerAllocator> &) { return value(); }
01344 };
01345
01346 }
01347 }
01348
01349 #endif // OBJECT_MANIPULATION_MSGS_SERVICE_GRASPSTATUS_H
01350