00001
00002 #ifndef OBJECT_MANIPULATION_MSGS_MESSAGE_GRASPHANDPOSTUREEXECUTIONGOAL_H
00003 #define OBJECT_MANIPULATION_MSGS_MESSAGE_GRASPHANDPOSTUREEXECUTIONGOAL_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012
00013 #include "ros/macros.h"
00014
00015 #include "ros/assert.h"
00016
00017 #include "object_manipulation_msgs/Grasp.h"
00018
00019 namespace object_manipulation_msgs
00020 {
00021 template <class ContainerAllocator>
00022 struct GraspHandPostureExecutionGoal_ {
00023 typedef GraspHandPostureExecutionGoal_<ContainerAllocator> Type;
00024
00025 GraspHandPostureExecutionGoal_()
00026 : grasp()
00027 , goal(0)
00028 , max_contact_force(0.0)
00029 {
00030 }
00031
00032 GraspHandPostureExecutionGoal_(const ContainerAllocator& _alloc)
00033 : grasp(_alloc)
00034 , goal(0)
00035 , max_contact_force(0.0)
00036 {
00037 }
00038
00039 typedef ::object_manipulation_msgs::Grasp_<ContainerAllocator> _grasp_type;
00040 ::object_manipulation_msgs::Grasp_<ContainerAllocator> grasp;
00041
00042 typedef int32_t _goal_type;
00043 int32_t goal;
00044
00045 typedef float _max_contact_force_type;
00046 float max_contact_force;
00047
00048 enum { PRE_GRASP = 1 };
00049 enum { GRASP = 2 };
00050 enum { RELEASE = 3 };
00051
00052 private:
00053 static const char* __s_getDataType_() { return "object_manipulation_msgs/GraspHandPostureExecutionGoal"; }
00054 public:
00055 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); }
00056
00057 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); }
00058
00059 private:
00060 static const char* __s_getMD5Sum_() { return "6ada8d960f08b75285553cba8883055e"; }
00061 public:
00062 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); }
00063
00064 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); }
00065
00066 private:
00067 static const char* __s_getMessageDefinition_() { return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00068 # an action for requesting the finger posture part of grasp be physically carried out by a hand\n\
00069 # the name of the arm being used is not in here, as this will be sent to a specific action server\n\
00070 # for each arm\n\
00071 \n\
00072 # the grasp to be executed\n\
00073 Grasp grasp\n\
00074 \n\
00075 # the goal of this action\n\
00076 # requests that the hand be set in the pre-grasp posture\n\
00077 int32 PRE_GRASP=1\n\
00078 # requests that the hand execute the actual grasp\n\
00079 int32 GRASP=2\n\
00080 # requests that the hand open to release the object\n\
00081 int32 RELEASE=3\n\
00082 int32 goal\n\
00083 \n\
00084 # the max contact force to use (<=0 if no desired max)\n\
00085 float32 max_contact_force\n\
00086 \n\
00087 \n\
00088 ================================================================================\n\
00089 MSG: object_manipulation_msgs/Grasp\n\
00090 \n\
00091 # The internal posture of the hand for the pre-grasp\n\
00092 # only positions are used\n\
00093 sensor_msgs/JointState pre_grasp_posture\n\
00094 \n\
00095 # The internal posture of the hand for the grasp\n\
00096 # positions and efforts are used\n\
00097 sensor_msgs/JointState grasp_posture\n\
00098 \n\
00099 # The position of the end-effector for the grasp relative to a reference frame \n\
00100 # (that is always specified elsewhere, not in this message)\n\
00101 geometry_msgs/Pose grasp_pose\n\
00102 \n\
00103 # The estimated probability of success for this grasp\n\
00104 float64 success_probability\n\
00105 \n\
00106 # Debug flag to indicate that this grasp would be the best in its cluster\n\
00107 bool cluster_rep\n\
00108 \n\
00109 # how far the pre-grasp should ideally be away from the grasp\n\
00110 float32 desired_approach_distance\n\
00111 \n\
00112 # how much distance between pre-grasp and grasp must actually be feasible \n\
00113 # for the grasp not to be rejected\n\
00114 float32 min_approach_distance\n\
00115 \n\
00116 # an optional list of obstacles that we have semantic information about\n\
00117 # and that we expect might move in the course of executing this grasp\n\
00118 # the grasp planner is expected to make sure they move in an OK way; during\n\
00119 # execution, grasp executors will not check for collisions against these objects\n\
00120 GraspableObject[] moved_obstacles\n\
00121 \n\
00122 ================================================================================\n\
00123 MSG: sensor_msgs/JointState\n\
00124 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
00125 #\n\
00126 # The state of each joint (revolute or prismatic) is defined by:\n\
00127 # * the position of the joint (rad or m),\n\
00128 # * the velocity of the joint (rad/s or m/s) and \n\
00129 # * the effort that is applied in the joint (Nm or N).\n\
00130 #\n\
00131 # Each joint is uniquely identified by its name\n\
00132 # The header specifies the time at which the joint states were recorded. All the joint states\n\
00133 # in one message have to be recorded at the same time.\n\
00134 #\n\
00135 # This message consists of a multiple arrays, one for each part of the joint state. \n\
00136 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
00137 # effort associated with them, you can leave the effort array empty. \n\
00138 #\n\
00139 # All arrays in this message should have the same size, or be empty.\n\
00140 # This is the only way to uniquely associate the joint name with the correct\n\
00141 # states.\n\
00142 \n\
00143 \n\
00144 Header header\n\
00145 \n\
00146 string[] name\n\
00147 float64[] position\n\
00148 float64[] velocity\n\
00149 float64[] effort\n\
00150 \n\
00151 ================================================================================\n\
00152 MSG: std_msgs/Header\n\
00153 # Standard metadata for higher-level stamped data types.\n\
00154 # This is generally used to communicate timestamped data \n\
00155 # in a particular coordinate frame.\n\
00156 # \n\
00157 # sequence ID: consecutively increasing ID \n\
00158 uint32 seq\n\
00159 #Two-integer timestamp that is expressed as:\n\
00160 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00161 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00162 # time-handling sugar is provided by the client library\n\
00163 time stamp\n\
00164 #Frame this data is associated with\n\
00165 # 0: no frame\n\
00166 # 1: global frame\n\
00167 string frame_id\n\
00168 \n\
00169 ================================================================================\n\
00170 MSG: geometry_msgs/Pose\n\
00171 # A representation of pose in free space, composed of postion and orientation. \n\
00172 Point position\n\
00173 Quaternion orientation\n\
00174 \n\
00175 ================================================================================\n\
00176 MSG: geometry_msgs/Point\n\
00177 # This contains the position of a point in free space\n\
00178 float64 x\n\
00179 float64 y\n\
00180 float64 z\n\
00181 \n\
00182 ================================================================================\n\
00183 MSG: geometry_msgs/Quaternion\n\
00184 # This represents an orientation in free space in quaternion form.\n\
00185 \n\
00186 float64 x\n\
00187 float64 y\n\
00188 float64 z\n\
00189 float64 w\n\
00190 \n\
00191 ================================================================================\n\
00192 MSG: object_manipulation_msgs/GraspableObject\n\
00193 # an object that the object_manipulator can work on\n\
00194 \n\
00195 # a graspable object can be represented in multiple ways. This message\n\
00196 # can contain all of them. Which one is actually used is up to the receiver\n\
00197 # of this message. When adding new representations, one must be careful that\n\
00198 # they have reasonable lightweight defaults indicating that that particular\n\
00199 # representation is not available.\n\
00200 \n\
00201 # the tf frame to be used as a reference frame when combining information from\n\
00202 # the different representations below\n\
00203 string reference_frame_id\n\
00204 \n\
00205 # potential recognition results from a database of models\n\
00206 # all poses are relative to the object reference pose\n\
00207 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00208 \n\
00209 # the point cloud itself\n\
00210 sensor_msgs/PointCloud cluster\n\
00211 \n\
00212 # a region of a PointCloud2 of interest\n\
00213 object_manipulation_msgs/SceneRegion region\n\
00214 \n\
00215 # the name that this object has in the collision environment\n\
00216 string collision_name\n\
00217 ================================================================================\n\
00218 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00219 # Informs that a specific model from the Model Database has been \n\
00220 # identified at a certain location\n\
00221 \n\
00222 # the database id of the model\n\
00223 int32 model_id\n\
00224 \n\
00225 # the pose that it can be found in\n\
00226 geometry_msgs/PoseStamped pose\n\
00227 \n\
00228 # a measure of the confidence level in this detection result\n\
00229 float32 confidence\n\
00230 \n\
00231 # the name of the object detector that generated this detection result\n\
00232 string detector_name\n\
00233 \n\
00234 ================================================================================\n\
00235 MSG: geometry_msgs/PoseStamped\n\
00236 # A Pose with reference coordinate frame and timestamp\n\
00237 Header header\n\
00238 Pose pose\n\
00239 \n\
00240 ================================================================================\n\
00241 MSG: sensor_msgs/PointCloud\n\
00242 # This message holds a collection of 3d points, plus optional additional\n\
00243 # information about each point.\n\
00244 \n\
00245 # Time of sensor data acquisition, coordinate frame ID.\n\
00246 Header header\n\
00247 \n\
00248 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00249 # in the frame given in the header.\n\
00250 geometry_msgs/Point32[] points\n\
00251 \n\
00252 # Each channel should have the same number of elements as points array,\n\
00253 # and the data in each channel should correspond 1:1 with each point.\n\
00254 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00255 ChannelFloat32[] channels\n\
00256 \n\
00257 ================================================================================\n\
00258 MSG: geometry_msgs/Point32\n\
00259 # This contains the position of a point in free space(with 32 bits of precision).\n\
00260 # It is recommeded to use Point wherever possible instead of Point32. \n\
00261 # \n\
00262 # This recommendation is to promote interoperability. \n\
00263 #\n\
00264 # This message is designed to take up less space when sending\n\
00265 # lots of points at once, as in the case of a PointCloud. \n\
00266 \n\
00267 float32 x\n\
00268 float32 y\n\
00269 float32 z\n\
00270 ================================================================================\n\
00271 MSG: sensor_msgs/ChannelFloat32\n\
00272 # This message is used by the PointCloud message to hold optional data\n\
00273 # associated with each point in the cloud. The length of the values\n\
00274 # array should be the same as the length of the points array in the\n\
00275 # PointCloud, and each value should be associated with the corresponding\n\
00276 # point.\n\
00277 \n\
00278 # Channel names in existing practice include:\n\
00279 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00280 # This is opposite to usual conventions but remains for\n\
00281 # historical reasons. The newer PointCloud2 message has no\n\
00282 # such problem.\n\
00283 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00284 # (R,G,B) values packed into the least significant 24 bits,\n\
00285 # in order.\n\
00286 # \"intensity\" - laser or pixel intensity.\n\
00287 # \"distance\"\n\
00288 \n\
00289 # The channel name should give semantics of the channel (e.g.\n\
00290 # \"intensity\" instead of \"value\").\n\
00291 string name\n\
00292 \n\
00293 # The values array should be 1-1 with the elements of the associated\n\
00294 # PointCloud.\n\
00295 float32[] values\n\
00296 \n\
00297 ================================================================================\n\
00298 MSG: object_manipulation_msgs/SceneRegion\n\
00299 # Point cloud\n\
00300 sensor_msgs/PointCloud2 cloud\n\
00301 \n\
00302 # Indices for the region of interest\n\
00303 int32[] mask\n\
00304 \n\
00305 # One of the corresponding 2D images, if applicable\n\
00306 sensor_msgs/Image image\n\
00307 \n\
00308 # The disparity image, if applicable\n\
00309 sensor_msgs/Image disparity_image\n\
00310 \n\
00311 # Camera info for the camera that took the image\n\
00312 sensor_msgs/CameraInfo cam_info\n\
00313 \n\
00314 # a 3D region of interest for grasp planning\n\
00315 geometry_msgs/PoseStamped roi_box_pose\n\
00316 geometry_msgs/Vector3 roi_box_dims\n\
00317 \n\
00318 ================================================================================\n\
00319 MSG: sensor_msgs/PointCloud2\n\
00320 # This message holds a collection of N-dimensional points, which may\n\
00321 # contain additional information such as normals, intensity, etc. The\n\
00322 # point data is stored as a binary blob, its layout described by the\n\
00323 # contents of the \"fields\" array.\n\
00324 \n\
00325 # The point cloud data may be organized 2d (image-like) or 1d\n\
00326 # (unordered). Point clouds organized as 2d images may be produced by\n\
00327 # camera depth sensors such as stereo or time-of-flight.\n\
00328 \n\
00329 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00330 # points).\n\
00331 Header header\n\
00332 \n\
00333 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00334 # 1 and width is the length of the point cloud.\n\
00335 uint32 height\n\
00336 uint32 width\n\
00337 \n\
00338 # Describes the channels and their layout in the binary data blob.\n\
00339 PointField[] fields\n\
00340 \n\
00341 bool is_bigendian # Is this data bigendian?\n\
00342 uint32 point_step # Length of a point in bytes\n\
00343 uint32 row_step # Length of a row in bytes\n\
00344 uint8[] data # Actual point data, size is (row_step*height)\n\
00345 \n\
00346 bool is_dense # True if there are no invalid points\n\
00347 \n\
00348 ================================================================================\n\
00349 MSG: sensor_msgs/PointField\n\
00350 # This message holds the description of one point entry in the\n\
00351 # PointCloud2 message format.\n\
00352 uint8 INT8 = 1\n\
00353 uint8 UINT8 = 2\n\
00354 uint8 INT16 = 3\n\
00355 uint8 UINT16 = 4\n\
00356 uint8 INT32 = 5\n\
00357 uint8 UINT32 = 6\n\
00358 uint8 FLOAT32 = 7\n\
00359 uint8 FLOAT64 = 8\n\
00360 \n\
00361 string name # Name of field\n\
00362 uint32 offset # Offset from start of point struct\n\
00363 uint8 datatype # Datatype enumeration, see above\n\
00364 uint32 count # How many elements in the field\n\
00365 \n\
00366 ================================================================================\n\
00367 MSG: sensor_msgs/Image\n\
00368 # This message contains an uncompressed image\n\
00369 # (0, 0) is at top-left corner of image\n\
00370 #\n\
00371 \n\
00372 Header header # Header timestamp should be acquisition time of image\n\
00373 # Header frame_id should be optical frame of camera\n\
00374 # origin of frame should be optical center of cameara\n\
00375 # +x should point to the right in the image\n\
00376 # +y should point down in the image\n\
00377 # +z should point into to plane of the image\n\
00378 # If the frame_id here and the frame_id of the CameraInfo\n\
00379 # message associated with the image conflict\n\
00380 # the behavior is undefined\n\
00381 \n\
00382 uint32 height # image height, that is, number of rows\n\
00383 uint32 width # image width, that is, number of columns\n\
00384 \n\
00385 # The legal values for encoding are in file src/image_encodings.cpp\n\
00386 # If you want to standardize a new string format, join\n\
00387 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00388 \n\
00389 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00390 # taken from the list of strings in src/image_encodings.cpp\n\
00391 \n\
00392 uint8 is_bigendian # is this data bigendian?\n\
00393 uint32 step # Full row length in bytes\n\
00394 uint8[] data # actual matrix data, size is (step * rows)\n\
00395 \n\
00396 ================================================================================\n\
00397 MSG: sensor_msgs/CameraInfo\n\
00398 # This message defines meta information for a camera. It should be in a\n\
00399 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00400 # image topics named:\n\
00401 #\n\
00402 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00403 # image - monochrome, distorted\n\
00404 # image_color - color, distorted\n\
00405 # image_rect - monochrome, rectified\n\
00406 # image_rect_color - color, rectified\n\
00407 #\n\
00408 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00409 # for producing the four processed image topics from image_raw and\n\
00410 # camera_info. The meaning of the camera parameters are described in\n\
00411 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00412 #\n\
00413 # The image_geometry package provides a user-friendly interface to\n\
00414 # common operations using this meta information. If you want to, e.g.,\n\
00415 # project a 3d point into image coordinates, we strongly recommend\n\
00416 # using image_geometry.\n\
00417 #\n\
00418 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00419 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00420 # indicates an uncalibrated camera.\n\
00421 \n\
00422 #######################################################################\n\
00423 # Image acquisition info #\n\
00424 #######################################################################\n\
00425 \n\
00426 # Time of image acquisition, camera coordinate frame ID\n\
00427 Header header # Header timestamp should be acquisition time of image\n\
00428 # Header frame_id should be optical frame of camera\n\
00429 # origin of frame should be optical center of camera\n\
00430 # +x should point to the right in the image\n\
00431 # +y should point down in the image\n\
00432 # +z should point into the plane of the image\n\
00433 \n\
00434 \n\
00435 #######################################################################\n\
00436 # Calibration Parameters #\n\
00437 #######################################################################\n\
00438 # These are fixed during camera calibration. Their values will be the #\n\
00439 # same in all messages until the camera is recalibrated. Note that #\n\
00440 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00441 # #\n\
00442 # The internal parameters can be used to warp a raw (distorted) image #\n\
00443 # to: #\n\
00444 # 1. An undistorted image (requires D and K) #\n\
00445 # 2. A rectified image (requires D, K, R) #\n\
00446 # The projection matrix P projects 3D points into the rectified image.#\n\
00447 #######################################################################\n\
00448 \n\
00449 # The image dimensions with which the camera was calibrated. Normally\n\
00450 # this will be the full camera resolution in pixels.\n\
00451 uint32 height\n\
00452 uint32 width\n\
00453 \n\
00454 # The distortion model used. Supported models are listed in\n\
00455 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00456 # simple model of radial and tangential distortion - is sufficent.\n\
00457 string distortion_model\n\
00458 \n\
00459 # The distortion parameters, size depending on the distortion model.\n\
00460 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00461 float64[] D\n\
00462 \n\
00463 # Intrinsic camera matrix for the raw (distorted) images.\n\
00464 # [fx 0 cx]\n\
00465 # K = [ 0 fy cy]\n\
00466 # [ 0 0 1]\n\
00467 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00468 # coordinates using the focal lengths (fx, fy) and principal point\n\
00469 # (cx, cy).\n\
00470 float64[9] K # 3x3 row-major matrix\n\
00471 \n\
00472 # Rectification matrix (stereo cameras only)\n\
00473 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00474 # stereo image plane so that epipolar lines in both stereo images are\n\
00475 # parallel.\n\
00476 float64[9] R # 3x3 row-major matrix\n\
00477 \n\
00478 # Projection/camera matrix\n\
00479 # [fx' 0 cx' Tx]\n\
00480 # P = [ 0 fy' cy' Ty]\n\
00481 # [ 0 0 1 0]\n\
00482 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00483 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00484 # is the normal camera intrinsic matrix for the rectified image.\n\
00485 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00486 # coordinates using the focal lengths (fx', fy') and principal point\n\
00487 # (cx', cy') - these may differ from the values in K.\n\
00488 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00489 # also have R = the identity and P[1:3,1:3] = K.\n\
00490 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00491 # position of the optical center of the second camera in the first\n\
00492 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00493 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00494 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00495 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00496 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00497 # the rectified image is given by:\n\
00498 # [u v w]' = P * [X Y Z 1]'\n\
00499 # x = u / w\n\
00500 # y = v / w\n\
00501 # This holds for both images of a stereo pair.\n\
00502 float64[12] P # 3x4 row-major matrix\n\
00503 \n\
00504 \n\
00505 #######################################################################\n\
00506 # Operational Parameters #\n\
00507 #######################################################################\n\
00508 # These define the image region actually captured by the camera #\n\
00509 # driver. Although they affect the geometry of the output image, they #\n\
00510 # may be changed freely without recalibrating the camera. #\n\
00511 #######################################################################\n\
00512 \n\
00513 # Binning refers here to any camera setting which combines rectangular\n\
00514 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00515 # resolution of the output image to\n\
00516 # (width / binning_x) x (height / binning_y).\n\
00517 # The default values binning_x = binning_y = 0 is considered the same\n\
00518 # as binning_x = binning_y = 1 (no subsampling).\n\
00519 uint32 binning_x\n\
00520 uint32 binning_y\n\
00521 \n\
00522 # Region of interest (subwindow of full camera resolution), given in\n\
00523 # full resolution (unbinned) image coordinates. A particular ROI\n\
00524 # always denotes the same window of pixels on the camera sensor,\n\
00525 # regardless of binning settings.\n\
00526 # The default setting of roi (all values 0) is considered the same as\n\
00527 # full resolution (roi.width = width, roi.height = height).\n\
00528 RegionOfInterest roi\n\
00529 \n\
00530 ================================================================================\n\
00531 MSG: sensor_msgs/RegionOfInterest\n\
00532 # This message is used to specify a region of interest within an image.\n\
00533 #\n\
00534 # When used to specify the ROI setting of the camera when the image was\n\
00535 # taken, the height and width fields should either match the height and\n\
00536 # width fields for the associated image; or height = width = 0\n\
00537 # indicates that the full resolution image was captured.\n\
00538 \n\
00539 uint32 x_offset # Leftmost pixel of the ROI\n\
00540 # (0 if the ROI includes the left edge of the image)\n\
00541 uint32 y_offset # Topmost pixel of the ROI\n\
00542 # (0 if the ROI includes the top edge of the image)\n\
00543 uint32 height # Height of ROI\n\
00544 uint32 width # Width of ROI\n\
00545 \n\
00546 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00547 # ROI in this message. Typically this should be False if the full image\n\
00548 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00549 # used).\n\
00550 bool do_rectify\n\
00551 \n\
00552 ================================================================================\n\
00553 MSG: geometry_msgs/Vector3\n\
00554 # This represents a vector in free space. \n\
00555 \n\
00556 float64 x\n\
00557 float64 y\n\
00558 float64 z\n\
00559 "; }
00560 public:
00561 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); }
00562
00563 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); }
00564
00565 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const
00566 {
00567 ros::serialization::OStream stream(write_ptr, 1000000000);
00568 ros::serialization::serialize(stream, grasp);
00569 ros::serialization::serialize(stream, goal);
00570 ros::serialization::serialize(stream, max_contact_force);
00571 return stream.getData();
00572 }
00573
00574 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr)
00575 {
00576 ros::serialization::IStream stream(read_ptr, 1000000000);
00577 ros::serialization::deserialize(stream, grasp);
00578 ros::serialization::deserialize(stream, goal);
00579 ros::serialization::deserialize(stream, max_contact_force);
00580 return stream.getData();
00581 }
00582
00583 ROS_DEPRECATED virtual uint32_t serializationLength() const
00584 {
00585 uint32_t size = 0;
00586 size += ros::serialization::serializationLength(grasp);
00587 size += ros::serialization::serializationLength(goal);
00588 size += ros::serialization::serializationLength(max_contact_force);
00589 return size;
00590 }
00591
00592 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspHandPostureExecutionGoal_<ContainerAllocator> > Ptr;
00593 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspHandPostureExecutionGoal_<ContainerAllocator> const> ConstPtr;
00594 boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00595 };
00596 typedef ::object_manipulation_msgs::GraspHandPostureExecutionGoal_<std::allocator<void> > GraspHandPostureExecutionGoal;
00597
00598 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspHandPostureExecutionGoal> GraspHandPostureExecutionGoalPtr;
00599 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspHandPostureExecutionGoal const> GraspHandPostureExecutionGoalConstPtr;
00600
00601
00602 template<typename ContainerAllocator>
00603 std::ostream& operator<<(std::ostream& s, const ::object_manipulation_msgs::GraspHandPostureExecutionGoal_<ContainerAllocator> & v)
00604 {
00605 ros::message_operations::Printer< ::object_manipulation_msgs::GraspHandPostureExecutionGoal_<ContainerAllocator> >::stream(s, "", v);
00606 return s;}
00607
00608 }
00609
00610 namespace ros
00611 {
00612 namespace message_traits
00613 {
00614 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::GraspHandPostureExecutionGoal_<ContainerAllocator> > : public TrueType {};
00615 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::GraspHandPostureExecutionGoal_<ContainerAllocator> const> : public TrueType {};
00616 template<class ContainerAllocator>
00617 struct MD5Sum< ::object_manipulation_msgs::GraspHandPostureExecutionGoal_<ContainerAllocator> > {
00618 static const char* value()
00619 {
00620 return "6ada8d960f08b75285553cba8883055e";
00621 }
00622
00623 static const char* value(const ::object_manipulation_msgs::GraspHandPostureExecutionGoal_<ContainerAllocator> &) { return value(); }
00624 static const uint64_t static_value1 = 0x6ada8d960f08b752ULL;
00625 static const uint64_t static_value2 = 0x85553cba8883055eULL;
00626 };
00627
00628 template<class ContainerAllocator>
00629 struct DataType< ::object_manipulation_msgs::GraspHandPostureExecutionGoal_<ContainerAllocator> > {
00630 static const char* value()
00631 {
00632 return "object_manipulation_msgs/GraspHandPostureExecutionGoal";
00633 }
00634
00635 static const char* value(const ::object_manipulation_msgs::GraspHandPostureExecutionGoal_<ContainerAllocator> &) { return value(); }
00636 };
00637
00638 template<class ContainerAllocator>
00639 struct Definition< ::object_manipulation_msgs::GraspHandPostureExecutionGoal_<ContainerAllocator> > {
00640 static const char* value()
00641 {
00642 return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00643 # an action for requesting the finger posture part of grasp be physically carried out by a hand\n\
00644 # the name of the arm being used is not in here, as this will be sent to a specific action server\n\
00645 # for each arm\n\
00646 \n\
00647 # the grasp to be executed\n\
00648 Grasp grasp\n\
00649 \n\
00650 # the goal of this action\n\
00651 # requests that the hand be set in the pre-grasp posture\n\
00652 int32 PRE_GRASP=1\n\
00653 # requests that the hand execute the actual grasp\n\
00654 int32 GRASP=2\n\
00655 # requests that the hand open to release the object\n\
00656 int32 RELEASE=3\n\
00657 int32 goal\n\
00658 \n\
00659 # the max contact force to use (<=0 if no desired max)\n\
00660 float32 max_contact_force\n\
00661 \n\
00662 \n\
00663 ================================================================================\n\
00664 MSG: object_manipulation_msgs/Grasp\n\
00665 \n\
00666 # The internal posture of the hand for the pre-grasp\n\
00667 # only positions are used\n\
00668 sensor_msgs/JointState pre_grasp_posture\n\
00669 \n\
00670 # The internal posture of the hand for the grasp\n\
00671 # positions and efforts are used\n\
00672 sensor_msgs/JointState grasp_posture\n\
00673 \n\
00674 # The position of the end-effector for the grasp relative to a reference frame \n\
00675 # (that is always specified elsewhere, not in this message)\n\
00676 geometry_msgs/Pose grasp_pose\n\
00677 \n\
00678 # The estimated probability of success for this grasp\n\
00679 float64 success_probability\n\
00680 \n\
00681 # Debug flag to indicate that this grasp would be the best in its cluster\n\
00682 bool cluster_rep\n\
00683 \n\
00684 # how far the pre-grasp should ideally be away from the grasp\n\
00685 float32 desired_approach_distance\n\
00686 \n\
00687 # how much distance between pre-grasp and grasp must actually be feasible \n\
00688 # for the grasp not to be rejected\n\
00689 float32 min_approach_distance\n\
00690 \n\
00691 # an optional list of obstacles that we have semantic information about\n\
00692 # and that we expect might move in the course of executing this grasp\n\
00693 # the grasp planner is expected to make sure they move in an OK way; during\n\
00694 # execution, grasp executors will not check for collisions against these objects\n\
00695 GraspableObject[] moved_obstacles\n\
00696 \n\
00697 ================================================================================\n\
00698 MSG: sensor_msgs/JointState\n\
00699 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
00700 #\n\
00701 # The state of each joint (revolute or prismatic) is defined by:\n\
00702 # * the position of the joint (rad or m),\n\
00703 # * the velocity of the joint (rad/s or m/s) and \n\
00704 # * the effort that is applied in the joint (Nm or N).\n\
00705 #\n\
00706 # Each joint is uniquely identified by its name\n\
00707 # The header specifies the time at which the joint states were recorded. All the joint states\n\
00708 # in one message have to be recorded at the same time.\n\
00709 #\n\
00710 # This message consists of a multiple arrays, one for each part of the joint state. \n\
00711 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
00712 # effort associated with them, you can leave the effort array empty. \n\
00713 #\n\
00714 # All arrays in this message should have the same size, or be empty.\n\
00715 # This is the only way to uniquely associate the joint name with the correct\n\
00716 # states.\n\
00717 \n\
00718 \n\
00719 Header header\n\
00720 \n\
00721 string[] name\n\
00722 float64[] position\n\
00723 float64[] velocity\n\
00724 float64[] effort\n\
00725 \n\
00726 ================================================================================\n\
00727 MSG: std_msgs/Header\n\
00728 # Standard metadata for higher-level stamped data types.\n\
00729 # This is generally used to communicate timestamped data \n\
00730 # in a particular coordinate frame.\n\
00731 # \n\
00732 # sequence ID: consecutively increasing ID \n\
00733 uint32 seq\n\
00734 #Two-integer timestamp that is expressed as:\n\
00735 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00736 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00737 # time-handling sugar is provided by the client library\n\
00738 time stamp\n\
00739 #Frame this data is associated with\n\
00740 # 0: no frame\n\
00741 # 1: global frame\n\
00742 string frame_id\n\
00743 \n\
00744 ================================================================================\n\
00745 MSG: geometry_msgs/Pose\n\
00746 # A representation of pose in free space, composed of postion and orientation. \n\
00747 Point position\n\
00748 Quaternion orientation\n\
00749 \n\
00750 ================================================================================\n\
00751 MSG: geometry_msgs/Point\n\
00752 # This contains the position of a point in free space\n\
00753 float64 x\n\
00754 float64 y\n\
00755 float64 z\n\
00756 \n\
00757 ================================================================================\n\
00758 MSG: geometry_msgs/Quaternion\n\
00759 # This represents an orientation in free space in quaternion form.\n\
00760 \n\
00761 float64 x\n\
00762 float64 y\n\
00763 float64 z\n\
00764 float64 w\n\
00765 \n\
00766 ================================================================================\n\
00767 MSG: object_manipulation_msgs/GraspableObject\n\
00768 # an object that the object_manipulator can work on\n\
00769 \n\
00770 # a graspable object can be represented in multiple ways. This message\n\
00771 # can contain all of them. Which one is actually used is up to the receiver\n\
00772 # of this message. When adding new representations, one must be careful that\n\
00773 # they have reasonable lightweight defaults indicating that that particular\n\
00774 # representation is not available.\n\
00775 \n\
00776 # the tf frame to be used as a reference frame when combining information from\n\
00777 # the different representations below\n\
00778 string reference_frame_id\n\
00779 \n\
00780 # potential recognition results from a database of models\n\
00781 # all poses are relative to the object reference pose\n\
00782 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00783 \n\
00784 # the point cloud itself\n\
00785 sensor_msgs/PointCloud cluster\n\
00786 \n\
00787 # a region of a PointCloud2 of interest\n\
00788 object_manipulation_msgs/SceneRegion region\n\
00789 \n\
00790 # the name that this object has in the collision environment\n\
00791 string collision_name\n\
00792 ================================================================================\n\
00793 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00794 # Informs that a specific model from the Model Database has been \n\
00795 # identified at a certain location\n\
00796 \n\
00797 # the database id of the model\n\
00798 int32 model_id\n\
00799 \n\
00800 # the pose that it can be found in\n\
00801 geometry_msgs/PoseStamped pose\n\
00802 \n\
00803 # a measure of the confidence level in this detection result\n\
00804 float32 confidence\n\
00805 \n\
00806 # the name of the object detector that generated this detection result\n\
00807 string detector_name\n\
00808 \n\
00809 ================================================================================\n\
00810 MSG: geometry_msgs/PoseStamped\n\
00811 # A Pose with reference coordinate frame and timestamp\n\
00812 Header header\n\
00813 Pose pose\n\
00814 \n\
00815 ================================================================================\n\
00816 MSG: sensor_msgs/PointCloud\n\
00817 # This message holds a collection of 3d points, plus optional additional\n\
00818 # information about each point.\n\
00819 \n\
00820 # Time of sensor data acquisition, coordinate frame ID.\n\
00821 Header header\n\
00822 \n\
00823 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00824 # in the frame given in the header.\n\
00825 geometry_msgs/Point32[] points\n\
00826 \n\
00827 # Each channel should have the same number of elements as points array,\n\
00828 # and the data in each channel should correspond 1:1 with each point.\n\
00829 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00830 ChannelFloat32[] channels\n\
00831 \n\
00832 ================================================================================\n\
00833 MSG: geometry_msgs/Point32\n\
00834 # This contains the position of a point in free space(with 32 bits of precision).\n\
00835 # It is recommeded to use Point wherever possible instead of Point32. \n\
00836 # \n\
00837 # This recommendation is to promote interoperability. \n\
00838 #\n\
00839 # This message is designed to take up less space when sending\n\
00840 # lots of points at once, as in the case of a PointCloud. \n\
00841 \n\
00842 float32 x\n\
00843 float32 y\n\
00844 float32 z\n\
00845 ================================================================================\n\
00846 MSG: sensor_msgs/ChannelFloat32\n\
00847 # This message is used by the PointCloud message to hold optional data\n\
00848 # associated with each point in the cloud. The length of the values\n\
00849 # array should be the same as the length of the points array in the\n\
00850 # PointCloud, and each value should be associated with the corresponding\n\
00851 # point.\n\
00852 \n\
00853 # Channel names in existing practice include:\n\
00854 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00855 # This is opposite to usual conventions but remains for\n\
00856 # historical reasons. The newer PointCloud2 message has no\n\
00857 # such problem.\n\
00858 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00859 # (R,G,B) values packed into the least significant 24 bits,\n\
00860 # in order.\n\
00861 # \"intensity\" - laser or pixel intensity.\n\
00862 # \"distance\"\n\
00863 \n\
00864 # The channel name should give semantics of the channel (e.g.\n\
00865 # \"intensity\" instead of \"value\").\n\
00866 string name\n\
00867 \n\
00868 # The values array should be 1-1 with the elements of the associated\n\
00869 # PointCloud.\n\
00870 float32[] values\n\
00871 \n\
00872 ================================================================================\n\
00873 MSG: object_manipulation_msgs/SceneRegion\n\
00874 # Point cloud\n\
00875 sensor_msgs/PointCloud2 cloud\n\
00876 \n\
00877 # Indices for the region of interest\n\
00878 int32[] mask\n\
00879 \n\
00880 # One of the corresponding 2D images, if applicable\n\
00881 sensor_msgs/Image image\n\
00882 \n\
00883 # The disparity image, if applicable\n\
00884 sensor_msgs/Image disparity_image\n\
00885 \n\
00886 # Camera info for the camera that took the image\n\
00887 sensor_msgs/CameraInfo cam_info\n\
00888 \n\
00889 # a 3D region of interest for grasp planning\n\
00890 geometry_msgs/PoseStamped roi_box_pose\n\
00891 geometry_msgs/Vector3 roi_box_dims\n\
00892 \n\
00893 ================================================================================\n\
00894 MSG: sensor_msgs/PointCloud2\n\
00895 # This message holds a collection of N-dimensional points, which may\n\
00896 # contain additional information such as normals, intensity, etc. The\n\
00897 # point data is stored as a binary blob, its layout described by the\n\
00898 # contents of the \"fields\" array.\n\
00899 \n\
00900 # The point cloud data may be organized 2d (image-like) or 1d\n\
00901 # (unordered). Point clouds organized as 2d images may be produced by\n\
00902 # camera depth sensors such as stereo or time-of-flight.\n\
00903 \n\
00904 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00905 # points).\n\
00906 Header header\n\
00907 \n\
00908 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00909 # 1 and width is the length of the point cloud.\n\
00910 uint32 height\n\
00911 uint32 width\n\
00912 \n\
00913 # Describes the channels and their layout in the binary data blob.\n\
00914 PointField[] fields\n\
00915 \n\
00916 bool is_bigendian # Is this data bigendian?\n\
00917 uint32 point_step # Length of a point in bytes\n\
00918 uint32 row_step # Length of a row in bytes\n\
00919 uint8[] data # Actual point data, size is (row_step*height)\n\
00920 \n\
00921 bool is_dense # True if there are no invalid points\n\
00922 \n\
00923 ================================================================================\n\
00924 MSG: sensor_msgs/PointField\n\
00925 # This message holds the description of one point entry in the\n\
00926 # PointCloud2 message format.\n\
00927 uint8 INT8 = 1\n\
00928 uint8 UINT8 = 2\n\
00929 uint8 INT16 = 3\n\
00930 uint8 UINT16 = 4\n\
00931 uint8 INT32 = 5\n\
00932 uint8 UINT32 = 6\n\
00933 uint8 FLOAT32 = 7\n\
00934 uint8 FLOAT64 = 8\n\
00935 \n\
00936 string name # Name of field\n\
00937 uint32 offset # Offset from start of point struct\n\
00938 uint8 datatype # Datatype enumeration, see above\n\
00939 uint32 count # How many elements in the field\n\
00940 \n\
00941 ================================================================================\n\
00942 MSG: sensor_msgs/Image\n\
00943 # This message contains an uncompressed image\n\
00944 # (0, 0) is at top-left corner of image\n\
00945 #\n\
00946 \n\
00947 Header header # Header timestamp should be acquisition time of image\n\
00948 # Header frame_id should be optical frame of camera\n\
00949 # origin of frame should be optical center of cameara\n\
00950 # +x should point to the right in the image\n\
00951 # +y should point down in the image\n\
00952 # +z should point into to plane of the image\n\
00953 # If the frame_id here and the frame_id of the CameraInfo\n\
00954 # message associated with the image conflict\n\
00955 # the behavior is undefined\n\
00956 \n\
00957 uint32 height # image height, that is, number of rows\n\
00958 uint32 width # image width, that is, number of columns\n\
00959 \n\
00960 # The legal values for encoding are in file src/image_encodings.cpp\n\
00961 # If you want to standardize a new string format, join\n\
00962 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00963 \n\
00964 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00965 # taken from the list of strings in src/image_encodings.cpp\n\
00966 \n\
00967 uint8 is_bigendian # is this data bigendian?\n\
00968 uint32 step # Full row length in bytes\n\
00969 uint8[] data # actual matrix data, size is (step * rows)\n\
00970 \n\
00971 ================================================================================\n\
00972 MSG: sensor_msgs/CameraInfo\n\
00973 # This message defines meta information for a camera. It should be in a\n\
00974 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00975 # image topics named:\n\
00976 #\n\
00977 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00978 # image - monochrome, distorted\n\
00979 # image_color - color, distorted\n\
00980 # image_rect - monochrome, rectified\n\
00981 # image_rect_color - color, rectified\n\
00982 #\n\
00983 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00984 # for producing the four processed image topics from image_raw and\n\
00985 # camera_info. The meaning of the camera parameters are described in\n\
00986 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00987 #\n\
00988 # The image_geometry package provides a user-friendly interface to\n\
00989 # common operations using this meta information. If you want to, e.g.,\n\
00990 # project a 3d point into image coordinates, we strongly recommend\n\
00991 # using image_geometry.\n\
00992 #\n\
00993 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00994 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00995 # indicates an uncalibrated camera.\n\
00996 \n\
00997 #######################################################################\n\
00998 # Image acquisition info #\n\
00999 #######################################################################\n\
01000 \n\
01001 # Time of image acquisition, camera coordinate frame ID\n\
01002 Header header # Header timestamp should be acquisition time of image\n\
01003 # Header frame_id should be optical frame of camera\n\
01004 # origin of frame should be optical center of camera\n\
01005 # +x should point to the right in the image\n\
01006 # +y should point down in the image\n\
01007 # +z should point into the plane of the image\n\
01008 \n\
01009 \n\
01010 #######################################################################\n\
01011 # Calibration Parameters #\n\
01012 #######################################################################\n\
01013 # These are fixed during camera calibration. Their values will be the #\n\
01014 # same in all messages until the camera is recalibrated. Note that #\n\
01015 # self-calibrating systems may \"recalibrate\" frequently. #\n\
01016 # #\n\
01017 # The internal parameters can be used to warp a raw (distorted) image #\n\
01018 # to: #\n\
01019 # 1. An undistorted image (requires D and K) #\n\
01020 # 2. A rectified image (requires D, K, R) #\n\
01021 # The projection matrix P projects 3D points into the rectified image.#\n\
01022 #######################################################################\n\
01023 \n\
01024 # The image dimensions with which the camera was calibrated. Normally\n\
01025 # this will be the full camera resolution in pixels.\n\
01026 uint32 height\n\
01027 uint32 width\n\
01028 \n\
01029 # The distortion model used. Supported models are listed in\n\
01030 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
01031 # simple model of radial and tangential distortion - is sufficent.\n\
01032 string distortion_model\n\
01033 \n\
01034 # The distortion parameters, size depending on the distortion model.\n\
01035 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
01036 float64[] D\n\
01037 \n\
01038 # Intrinsic camera matrix for the raw (distorted) images.\n\
01039 # [fx 0 cx]\n\
01040 # K = [ 0 fy cy]\n\
01041 # [ 0 0 1]\n\
01042 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
01043 # coordinates using the focal lengths (fx, fy) and principal point\n\
01044 # (cx, cy).\n\
01045 float64[9] K # 3x3 row-major matrix\n\
01046 \n\
01047 # Rectification matrix (stereo cameras only)\n\
01048 # A rotation matrix aligning the camera coordinate system to the ideal\n\
01049 # stereo image plane so that epipolar lines in both stereo images are\n\
01050 # parallel.\n\
01051 float64[9] R # 3x3 row-major matrix\n\
01052 \n\
01053 # Projection/camera matrix\n\
01054 # [fx' 0 cx' Tx]\n\
01055 # P = [ 0 fy' cy' Ty]\n\
01056 # [ 0 0 1 0]\n\
01057 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
01058 # of the processed (rectified) image. That is, the left 3x3 portion\n\
01059 # is the normal camera intrinsic matrix for the rectified image.\n\
01060 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
01061 # coordinates using the focal lengths (fx', fy') and principal point\n\
01062 # (cx', cy') - these may differ from the values in K.\n\
01063 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
01064 # also have R = the identity and P[1:3,1:3] = K.\n\
01065 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
01066 # position of the optical center of the second camera in the first\n\
01067 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
01068 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
01069 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
01070 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
01071 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
01072 # the rectified image is given by:\n\
01073 # [u v w]' = P * [X Y Z 1]'\n\
01074 # x = u / w\n\
01075 # y = v / w\n\
01076 # This holds for both images of a stereo pair.\n\
01077 float64[12] P # 3x4 row-major matrix\n\
01078 \n\
01079 \n\
01080 #######################################################################\n\
01081 # Operational Parameters #\n\
01082 #######################################################################\n\
01083 # These define the image region actually captured by the camera #\n\
01084 # driver. Although they affect the geometry of the output image, they #\n\
01085 # may be changed freely without recalibrating the camera. #\n\
01086 #######################################################################\n\
01087 \n\
01088 # Binning refers here to any camera setting which combines rectangular\n\
01089 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
01090 # resolution of the output image to\n\
01091 # (width / binning_x) x (height / binning_y).\n\
01092 # The default values binning_x = binning_y = 0 is considered the same\n\
01093 # as binning_x = binning_y = 1 (no subsampling).\n\
01094 uint32 binning_x\n\
01095 uint32 binning_y\n\
01096 \n\
01097 # Region of interest (subwindow of full camera resolution), given in\n\
01098 # full resolution (unbinned) image coordinates. A particular ROI\n\
01099 # always denotes the same window of pixels on the camera sensor,\n\
01100 # regardless of binning settings.\n\
01101 # The default setting of roi (all values 0) is considered the same as\n\
01102 # full resolution (roi.width = width, roi.height = height).\n\
01103 RegionOfInterest roi\n\
01104 \n\
01105 ================================================================================\n\
01106 MSG: sensor_msgs/RegionOfInterest\n\
01107 # This message is used to specify a region of interest within an image.\n\
01108 #\n\
01109 # When used to specify the ROI setting of the camera when the image was\n\
01110 # taken, the height and width fields should either match the height and\n\
01111 # width fields for the associated image; or height = width = 0\n\
01112 # indicates that the full resolution image was captured.\n\
01113 \n\
01114 uint32 x_offset # Leftmost pixel of the ROI\n\
01115 # (0 if the ROI includes the left edge of the image)\n\
01116 uint32 y_offset # Topmost pixel of the ROI\n\
01117 # (0 if the ROI includes the top edge of the image)\n\
01118 uint32 height # Height of ROI\n\
01119 uint32 width # Width of ROI\n\
01120 \n\
01121 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
01122 # ROI in this message. Typically this should be False if the full image\n\
01123 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
01124 # used).\n\
01125 bool do_rectify\n\
01126 \n\
01127 ================================================================================\n\
01128 MSG: geometry_msgs/Vector3\n\
01129 # This represents a vector in free space. \n\
01130 \n\
01131 float64 x\n\
01132 float64 y\n\
01133 float64 z\n\
01134 ";
01135 }
01136
01137 static const char* value(const ::object_manipulation_msgs::GraspHandPostureExecutionGoal_<ContainerAllocator> &) { return value(); }
01138 };
01139
01140 }
01141 }
01142
01143 namespace ros
01144 {
01145 namespace serialization
01146 {
01147
01148 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::GraspHandPostureExecutionGoal_<ContainerAllocator> >
01149 {
01150 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
01151 {
01152 stream.next(m.grasp);
01153 stream.next(m.goal);
01154 stream.next(m.max_contact_force);
01155 }
01156
01157 ROS_DECLARE_ALLINONE_SERIALIZER;
01158 };
01159 }
01160 }
01161
01162 namespace ros
01163 {
01164 namespace message_operations
01165 {
01166
01167 template<class ContainerAllocator>
01168 struct Printer< ::object_manipulation_msgs::GraspHandPostureExecutionGoal_<ContainerAllocator> >
01169 {
01170 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_manipulation_msgs::GraspHandPostureExecutionGoal_<ContainerAllocator> & v)
01171 {
01172 s << indent << "grasp: ";
01173 s << std::endl;
01174 Printer< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::stream(s, indent + " ", v.grasp);
01175 s << indent << "goal: ";
01176 Printer<int32_t>::stream(s, indent + " ", v.goal);
01177 s << indent << "max_contact_force: ";
01178 Printer<float>::stream(s, indent + " ", v.max_contact_force);
01179 }
01180 };
01181
01182
01183 }
01184 }
01185
01186 #endif // OBJECT_MANIPULATION_MSGS_MESSAGE_GRASPHANDPOSTUREEXECUTIONGOAL_H
01187