00001
00002 #ifndef OBJECT_MANIPULATION_MSGS_MESSAGE_GRASPHANDPOSTUREEXECUTIONACTIONGOAL_H
00003 #define OBJECT_MANIPULATION_MSGS_MESSAGE_GRASPHANDPOSTUREEXECUTIONACTIONGOAL_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012
00013 #include "ros/macros.h"
00014
00015 #include "ros/assert.h"
00016
00017 #include "std_msgs/Header.h"
00018 #include "actionlib_msgs/GoalID.h"
00019 #include "object_manipulation_msgs/GraspHandPostureExecutionGoal.h"
00020
00021 namespace object_manipulation_msgs
00022 {
00023 template <class ContainerAllocator>
00024 struct GraspHandPostureExecutionActionGoal_ {
00025 typedef GraspHandPostureExecutionActionGoal_<ContainerAllocator> Type;
00026
00027 GraspHandPostureExecutionActionGoal_()
00028 : header()
00029 , goal_id()
00030 , goal()
00031 {
00032 }
00033
00034 GraspHandPostureExecutionActionGoal_(const ContainerAllocator& _alloc)
00035 : header(_alloc)
00036 , goal_id(_alloc)
00037 , goal(_alloc)
00038 {
00039 }
00040
00041 typedef ::std_msgs::Header_<ContainerAllocator> _header_type;
00042 ::std_msgs::Header_<ContainerAllocator> header;
00043
00044 typedef ::actionlib_msgs::GoalID_<ContainerAllocator> _goal_id_type;
00045 ::actionlib_msgs::GoalID_<ContainerAllocator> goal_id;
00046
00047 typedef ::object_manipulation_msgs::GraspHandPostureExecutionGoal_<ContainerAllocator> _goal_type;
00048 ::object_manipulation_msgs::GraspHandPostureExecutionGoal_<ContainerAllocator> goal;
00049
00050
00051 private:
00052 static const char* __s_getDataType_() { return "object_manipulation_msgs/GraspHandPostureExecutionActionGoal"; }
00053 public:
00054 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); }
00055
00056 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); }
00057
00058 private:
00059 static const char* __s_getMD5Sum_() { return "37a3c654e517374e8dbb5861abf034f4"; }
00060 public:
00061 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); }
00062
00063 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); }
00064
00065 private:
00066 static const char* __s_getMessageDefinition_() { return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00067 \n\
00068 Header header\n\
00069 actionlib_msgs/GoalID goal_id\n\
00070 GraspHandPostureExecutionGoal goal\n\
00071 \n\
00072 ================================================================================\n\
00073 MSG: std_msgs/Header\n\
00074 # Standard metadata for higher-level stamped data types.\n\
00075 # This is generally used to communicate timestamped data \n\
00076 # in a particular coordinate frame.\n\
00077 # \n\
00078 # sequence ID: consecutively increasing ID \n\
00079 uint32 seq\n\
00080 #Two-integer timestamp that is expressed as:\n\
00081 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00082 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00083 # time-handling sugar is provided by the client library\n\
00084 time stamp\n\
00085 #Frame this data is associated with\n\
00086 # 0: no frame\n\
00087 # 1: global frame\n\
00088 string frame_id\n\
00089 \n\
00090 ================================================================================\n\
00091 MSG: actionlib_msgs/GoalID\n\
00092 # The stamp should store the time at which this goal was requested.\n\
00093 # It is used by an action server when it tries to preempt all\n\
00094 # goals that were requested before a certain time\n\
00095 time stamp\n\
00096 \n\
00097 # The id provides a way to associate feedback and\n\
00098 # result message with specific goal requests. The id\n\
00099 # specified must be unique.\n\
00100 string id\n\
00101 \n\
00102 \n\
00103 ================================================================================\n\
00104 MSG: object_manipulation_msgs/GraspHandPostureExecutionGoal\n\
00105 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00106 # an action for requesting the finger posture part of grasp be physically carried out by a hand\n\
00107 # the name of the arm being used is not in here, as this will be sent to a specific action server\n\
00108 # for each arm\n\
00109 \n\
00110 # the grasp to be executed\n\
00111 Grasp grasp\n\
00112 \n\
00113 # the goal of this action\n\
00114 # requests that the hand be set in the pre-grasp posture\n\
00115 int32 PRE_GRASP=1\n\
00116 # requests that the hand execute the actual grasp\n\
00117 int32 GRASP=2\n\
00118 # requests that the hand open to release the object\n\
00119 int32 RELEASE=3\n\
00120 int32 goal\n\
00121 \n\
00122 # the max contact force to use (<=0 if no desired max)\n\
00123 float32 max_contact_force\n\
00124 \n\
00125 \n\
00126 ================================================================================\n\
00127 MSG: object_manipulation_msgs/Grasp\n\
00128 \n\
00129 # The internal posture of the hand for the pre-grasp\n\
00130 # only positions are used\n\
00131 sensor_msgs/JointState pre_grasp_posture\n\
00132 \n\
00133 # The internal posture of the hand for the grasp\n\
00134 # positions and efforts are used\n\
00135 sensor_msgs/JointState grasp_posture\n\
00136 \n\
00137 # The position of the end-effector for the grasp relative to a reference frame \n\
00138 # (that is always specified elsewhere, not in this message)\n\
00139 geometry_msgs/Pose grasp_pose\n\
00140 \n\
00141 # The estimated probability of success for this grasp\n\
00142 float64 success_probability\n\
00143 \n\
00144 # Debug flag to indicate that this grasp would be the best in its cluster\n\
00145 bool cluster_rep\n\
00146 \n\
00147 # how far the pre-grasp should ideally be away from the grasp\n\
00148 float32 desired_approach_distance\n\
00149 \n\
00150 # how much distance between pre-grasp and grasp must actually be feasible \n\
00151 # for the grasp not to be rejected\n\
00152 float32 min_approach_distance\n\
00153 \n\
00154 # an optional list of obstacles that we have semantic information about\n\
00155 # and that we expect might move in the course of executing this grasp\n\
00156 # the grasp planner is expected to make sure they move in an OK way; during\n\
00157 # execution, grasp executors will not check for collisions against these objects\n\
00158 GraspableObject[] moved_obstacles\n\
00159 \n\
00160 ================================================================================\n\
00161 MSG: sensor_msgs/JointState\n\
00162 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
00163 #\n\
00164 # The state of each joint (revolute or prismatic) is defined by:\n\
00165 # * the position of the joint (rad or m),\n\
00166 # * the velocity of the joint (rad/s or m/s) and \n\
00167 # * the effort that is applied in the joint (Nm or N).\n\
00168 #\n\
00169 # Each joint is uniquely identified by its name\n\
00170 # The header specifies the time at which the joint states were recorded. All the joint states\n\
00171 # in one message have to be recorded at the same time.\n\
00172 #\n\
00173 # This message consists of a multiple arrays, one for each part of the joint state. \n\
00174 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
00175 # effort associated with them, you can leave the effort array empty. \n\
00176 #\n\
00177 # All arrays in this message should have the same size, or be empty.\n\
00178 # This is the only way to uniquely associate the joint name with the correct\n\
00179 # states.\n\
00180 \n\
00181 \n\
00182 Header header\n\
00183 \n\
00184 string[] name\n\
00185 float64[] position\n\
00186 float64[] velocity\n\
00187 float64[] effort\n\
00188 \n\
00189 ================================================================================\n\
00190 MSG: geometry_msgs/Pose\n\
00191 # A representation of pose in free space, composed of postion and orientation. \n\
00192 Point position\n\
00193 Quaternion orientation\n\
00194 \n\
00195 ================================================================================\n\
00196 MSG: geometry_msgs/Point\n\
00197 # This contains the position of a point in free space\n\
00198 float64 x\n\
00199 float64 y\n\
00200 float64 z\n\
00201 \n\
00202 ================================================================================\n\
00203 MSG: geometry_msgs/Quaternion\n\
00204 # This represents an orientation in free space in quaternion form.\n\
00205 \n\
00206 float64 x\n\
00207 float64 y\n\
00208 float64 z\n\
00209 float64 w\n\
00210 \n\
00211 ================================================================================\n\
00212 MSG: object_manipulation_msgs/GraspableObject\n\
00213 # an object that the object_manipulator can work on\n\
00214 \n\
00215 # a graspable object can be represented in multiple ways. This message\n\
00216 # can contain all of them. Which one is actually used is up to the receiver\n\
00217 # of this message. When adding new representations, one must be careful that\n\
00218 # they have reasonable lightweight defaults indicating that that particular\n\
00219 # representation is not available.\n\
00220 \n\
00221 # the tf frame to be used as a reference frame when combining information from\n\
00222 # the different representations below\n\
00223 string reference_frame_id\n\
00224 \n\
00225 # potential recognition results from a database of models\n\
00226 # all poses are relative to the object reference pose\n\
00227 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00228 \n\
00229 # the point cloud itself\n\
00230 sensor_msgs/PointCloud cluster\n\
00231 \n\
00232 # a region of a PointCloud2 of interest\n\
00233 object_manipulation_msgs/SceneRegion region\n\
00234 \n\
00235 # the name that this object has in the collision environment\n\
00236 string collision_name\n\
00237 ================================================================================\n\
00238 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00239 # Informs that a specific model from the Model Database has been \n\
00240 # identified at a certain location\n\
00241 \n\
00242 # the database id of the model\n\
00243 int32 model_id\n\
00244 \n\
00245 # the pose that it can be found in\n\
00246 geometry_msgs/PoseStamped pose\n\
00247 \n\
00248 # a measure of the confidence level in this detection result\n\
00249 float32 confidence\n\
00250 \n\
00251 # the name of the object detector that generated this detection result\n\
00252 string detector_name\n\
00253 \n\
00254 ================================================================================\n\
00255 MSG: geometry_msgs/PoseStamped\n\
00256 # A Pose with reference coordinate frame and timestamp\n\
00257 Header header\n\
00258 Pose pose\n\
00259 \n\
00260 ================================================================================\n\
00261 MSG: sensor_msgs/PointCloud\n\
00262 # This message holds a collection of 3d points, plus optional additional\n\
00263 # information about each point.\n\
00264 \n\
00265 # Time of sensor data acquisition, coordinate frame ID.\n\
00266 Header header\n\
00267 \n\
00268 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00269 # in the frame given in the header.\n\
00270 geometry_msgs/Point32[] points\n\
00271 \n\
00272 # Each channel should have the same number of elements as points array,\n\
00273 # and the data in each channel should correspond 1:1 with each point.\n\
00274 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00275 ChannelFloat32[] channels\n\
00276 \n\
00277 ================================================================================\n\
00278 MSG: geometry_msgs/Point32\n\
00279 # This contains the position of a point in free space(with 32 bits of precision).\n\
00280 # It is recommeded to use Point wherever possible instead of Point32. \n\
00281 # \n\
00282 # This recommendation is to promote interoperability. \n\
00283 #\n\
00284 # This message is designed to take up less space when sending\n\
00285 # lots of points at once, as in the case of a PointCloud. \n\
00286 \n\
00287 float32 x\n\
00288 float32 y\n\
00289 float32 z\n\
00290 ================================================================================\n\
00291 MSG: sensor_msgs/ChannelFloat32\n\
00292 # This message is used by the PointCloud message to hold optional data\n\
00293 # associated with each point in the cloud. The length of the values\n\
00294 # array should be the same as the length of the points array in the\n\
00295 # PointCloud, and each value should be associated with the corresponding\n\
00296 # point.\n\
00297 \n\
00298 # Channel names in existing practice include:\n\
00299 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00300 # This is opposite to usual conventions but remains for\n\
00301 # historical reasons. The newer PointCloud2 message has no\n\
00302 # such problem.\n\
00303 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00304 # (R,G,B) values packed into the least significant 24 bits,\n\
00305 # in order.\n\
00306 # \"intensity\" - laser or pixel intensity.\n\
00307 # \"distance\"\n\
00308 \n\
00309 # The channel name should give semantics of the channel (e.g.\n\
00310 # \"intensity\" instead of \"value\").\n\
00311 string name\n\
00312 \n\
00313 # The values array should be 1-1 with the elements of the associated\n\
00314 # PointCloud.\n\
00315 float32[] values\n\
00316 \n\
00317 ================================================================================\n\
00318 MSG: object_manipulation_msgs/SceneRegion\n\
00319 # Point cloud\n\
00320 sensor_msgs/PointCloud2 cloud\n\
00321 \n\
00322 # Indices for the region of interest\n\
00323 int32[] mask\n\
00324 \n\
00325 # One of the corresponding 2D images, if applicable\n\
00326 sensor_msgs/Image image\n\
00327 \n\
00328 # The disparity image, if applicable\n\
00329 sensor_msgs/Image disparity_image\n\
00330 \n\
00331 # Camera info for the camera that took the image\n\
00332 sensor_msgs/CameraInfo cam_info\n\
00333 \n\
00334 # a 3D region of interest for grasp planning\n\
00335 geometry_msgs/PoseStamped roi_box_pose\n\
00336 geometry_msgs/Vector3 roi_box_dims\n\
00337 \n\
00338 ================================================================================\n\
00339 MSG: sensor_msgs/PointCloud2\n\
00340 # This message holds a collection of N-dimensional points, which may\n\
00341 # contain additional information such as normals, intensity, etc. The\n\
00342 # point data is stored as a binary blob, its layout described by the\n\
00343 # contents of the \"fields\" array.\n\
00344 \n\
00345 # The point cloud data may be organized 2d (image-like) or 1d\n\
00346 # (unordered). Point clouds organized as 2d images may be produced by\n\
00347 # camera depth sensors such as stereo or time-of-flight.\n\
00348 \n\
00349 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00350 # points).\n\
00351 Header header\n\
00352 \n\
00353 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00354 # 1 and width is the length of the point cloud.\n\
00355 uint32 height\n\
00356 uint32 width\n\
00357 \n\
00358 # Describes the channels and their layout in the binary data blob.\n\
00359 PointField[] fields\n\
00360 \n\
00361 bool is_bigendian # Is this data bigendian?\n\
00362 uint32 point_step # Length of a point in bytes\n\
00363 uint32 row_step # Length of a row in bytes\n\
00364 uint8[] data # Actual point data, size is (row_step*height)\n\
00365 \n\
00366 bool is_dense # True if there are no invalid points\n\
00367 \n\
00368 ================================================================================\n\
00369 MSG: sensor_msgs/PointField\n\
00370 # This message holds the description of one point entry in the\n\
00371 # PointCloud2 message format.\n\
00372 uint8 INT8 = 1\n\
00373 uint8 UINT8 = 2\n\
00374 uint8 INT16 = 3\n\
00375 uint8 UINT16 = 4\n\
00376 uint8 INT32 = 5\n\
00377 uint8 UINT32 = 6\n\
00378 uint8 FLOAT32 = 7\n\
00379 uint8 FLOAT64 = 8\n\
00380 \n\
00381 string name # Name of field\n\
00382 uint32 offset # Offset from start of point struct\n\
00383 uint8 datatype # Datatype enumeration, see above\n\
00384 uint32 count # How many elements in the field\n\
00385 \n\
00386 ================================================================================\n\
00387 MSG: sensor_msgs/Image\n\
00388 # This message contains an uncompressed image\n\
00389 # (0, 0) is at top-left corner of image\n\
00390 #\n\
00391 \n\
00392 Header header # Header timestamp should be acquisition time of image\n\
00393 # Header frame_id should be optical frame of camera\n\
00394 # origin of frame should be optical center of cameara\n\
00395 # +x should point to the right in the image\n\
00396 # +y should point down in the image\n\
00397 # +z should point into to plane of the image\n\
00398 # If the frame_id here and the frame_id of the CameraInfo\n\
00399 # message associated with the image conflict\n\
00400 # the behavior is undefined\n\
00401 \n\
00402 uint32 height # image height, that is, number of rows\n\
00403 uint32 width # image width, that is, number of columns\n\
00404 \n\
00405 # The legal values for encoding are in file src/image_encodings.cpp\n\
00406 # If you want to standardize a new string format, join\n\
00407 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00408 \n\
00409 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00410 # taken from the list of strings in src/image_encodings.cpp\n\
00411 \n\
00412 uint8 is_bigendian # is this data bigendian?\n\
00413 uint32 step # Full row length in bytes\n\
00414 uint8[] data # actual matrix data, size is (step * rows)\n\
00415 \n\
00416 ================================================================================\n\
00417 MSG: sensor_msgs/CameraInfo\n\
00418 # This message defines meta information for a camera. It should be in a\n\
00419 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00420 # image topics named:\n\
00421 #\n\
00422 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00423 # image - monochrome, distorted\n\
00424 # image_color - color, distorted\n\
00425 # image_rect - monochrome, rectified\n\
00426 # image_rect_color - color, rectified\n\
00427 #\n\
00428 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00429 # for producing the four processed image topics from image_raw and\n\
00430 # camera_info. The meaning of the camera parameters are described in\n\
00431 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00432 #\n\
00433 # The image_geometry package provides a user-friendly interface to\n\
00434 # common operations using this meta information. If you want to, e.g.,\n\
00435 # project a 3d point into image coordinates, we strongly recommend\n\
00436 # using image_geometry.\n\
00437 #\n\
00438 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00439 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00440 # indicates an uncalibrated camera.\n\
00441 \n\
00442 #######################################################################\n\
00443 # Image acquisition info #\n\
00444 #######################################################################\n\
00445 \n\
00446 # Time of image acquisition, camera coordinate frame ID\n\
00447 Header header # Header timestamp should be acquisition time of image\n\
00448 # Header frame_id should be optical frame of camera\n\
00449 # origin of frame should be optical center of camera\n\
00450 # +x should point to the right in the image\n\
00451 # +y should point down in the image\n\
00452 # +z should point into the plane of the image\n\
00453 \n\
00454 \n\
00455 #######################################################################\n\
00456 # Calibration Parameters #\n\
00457 #######################################################################\n\
00458 # These are fixed during camera calibration. Their values will be the #\n\
00459 # same in all messages until the camera is recalibrated. Note that #\n\
00460 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00461 # #\n\
00462 # The internal parameters can be used to warp a raw (distorted) image #\n\
00463 # to: #\n\
00464 # 1. An undistorted image (requires D and K) #\n\
00465 # 2. A rectified image (requires D, K, R) #\n\
00466 # The projection matrix P projects 3D points into the rectified image.#\n\
00467 #######################################################################\n\
00468 \n\
00469 # The image dimensions with which the camera was calibrated. Normally\n\
00470 # this will be the full camera resolution in pixels.\n\
00471 uint32 height\n\
00472 uint32 width\n\
00473 \n\
00474 # The distortion model used. Supported models are listed in\n\
00475 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00476 # simple model of radial and tangential distortion - is sufficent.\n\
00477 string distortion_model\n\
00478 \n\
00479 # The distortion parameters, size depending on the distortion model.\n\
00480 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00481 float64[] D\n\
00482 \n\
00483 # Intrinsic camera matrix for the raw (distorted) images.\n\
00484 # [fx 0 cx]\n\
00485 # K = [ 0 fy cy]\n\
00486 # [ 0 0 1]\n\
00487 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00488 # coordinates using the focal lengths (fx, fy) and principal point\n\
00489 # (cx, cy).\n\
00490 float64[9] K # 3x3 row-major matrix\n\
00491 \n\
00492 # Rectification matrix (stereo cameras only)\n\
00493 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00494 # stereo image plane so that epipolar lines in both stereo images are\n\
00495 # parallel.\n\
00496 float64[9] R # 3x3 row-major matrix\n\
00497 \n\
00498 # Projection/camera matrix\n\
00499 # [fx' 0 cx' Tx]\n\
00500 # P = [ 0 fy' cy' Ty]\n\
00501 # [ 0 0 1 0]\n\
00502 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00503 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00504 # is the normal camera intrinsic matrix for the rectified image.\n\
00505 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00506 # coordinates using the focal lengths (fx', fy') and principal point\n\
00507 # (cx', cy') - these may differ from the values in K.\n\
00508 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00509 # also have R = the identity and P[1:3,1:3] = K.\n\
00510 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00511 # position of the optical center of the second camera in the first\n\
00512 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00513 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00514 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00515 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00516 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00517 # the rectified image is given by:\n\
00518 # [u v w]' = P * [X Y Z 1]'\n\
00519 # x = u / w\n\
00520 # y = v / w\n\
00521 # This holds for both images of a stereo pair.\n\
00522 float64[12] P # 3x4 row-major matrix\n\
00523 \n\
00524 \n\
00525 #######################################################################\n\
00526 # Operational Parameters #\n\
00527 #######################################################################\n\
00528 # These define the image region actually captured by the camera #\n\
00529 # driver. Although they affect the geometry of the output image, they #\n\
00530 # may be changed freely without recalibrating the camera. #\n\
00531 #######################################################################\n\
00532 \n\
00533 # Binning refers here to any camera setting which combines rectangular\n\
00534 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00535 # resolution of the output image to\n\
00536 # (width / binning_x) x (height / binning_y).\n\
00537 # The default values binning_x = binning_y = 0 is considered the same\n\
00538 # as binning_x = binning_y = 1 (no subsampling).\n\
00539 uint32 binning_x\n\
00540 uint32 binning_y\n\
00541 \n\
00542 # Region of interest (subwindow of full camera resolution), given in\n\
00543 # full resolution (unbinned) image coordinates. A particular ROI\n\
00544 # always denotes the same window of pixels on the camera sensor,\n\
00545 # regardless of binning settings.\n\
00546 # The default setting of roi (all values 0) is considered the same as\n\
00547 # full resolution (roi.width = width, roi.height = height).\n\
00548 RegionOfInterest roi\n\
00549 \n\
00550 ================================================================================\n\
00551 MSG: sensor_msgs/RegionOfInterest\n\
00552 # This message is used to specify a region of interest within an image.\n\
00553 #\n\
00554 # When used to specify the ROI setting of the camera when the image was\n\
00555 # taken, the height and width fields should either match the height and\n\
00556 # width fields for the associated image; or height = width = 0\n\
00557 # indicates that the full resolution image was captured.\n\
00558 \n\
00559 uint32 x_offset # Leftmost pixel of the ROI\n\
00560 # (0 if the ROI includes the left edge of the image)\n\
00561 uint32 y_offset # Topmost pixel of the ROI\n\
00562 # (0 if the ROI includes the top edge of the image)\n\
00563 uint32 height # Height of ROI\n\
00564 uint32 width # Width of ROI\n\
00565 \n\
00566 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00567 # ROI in this message. Typically this should be False if the full image\n\
00568 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00569 # used).\n\
00570 bool do_rectify\n\
00571 \n\
00572 ================================================================================\n\
00573 MSG: geometry_msgs/Vector3\n\
00574 # This represents a vector in free space. \n\
00575 \n\
00576 float64 x\n\
00577 float64 y\n\
00578 float64 z\n\
00579 "; }
00580 public:
00581 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); }
00582
00583 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); }
00584
00585 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const
00586 {
00587 ros::serialization::OStream stream(write_ptr, 1000000000);
00588 ros::serialization::serialize(stream, header);
00589 ros::serialization::serialize(stream, goal_id);
00590 ros::serialization::serialize(stream, goal);
00591 return stream.getData();
00592 }
00593
00594 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr)
00595 {
00596 ros::serialization::IStream stream(read_ptr, 1000000000);
00597 ros::serialization::deserialize(stream, header);
00598 ros::serialization::deserialize(stream, goal_id);
00599 ros::serialization::deserialize(stream, goal);
00600 return stream.getData();
00601 }
00602
00603 ROS_DEPRECATED virtual uint32_t serializationLength() const
00604 {
00605 uint32_t size = 0;
00606 size += ros::serialization::serializationLength(header);
00607 size += ros::serialization::serializationLength(goal_id);
00608 size += ros::serialization::serializationLength(goal);
00609 return size;
00610 }
00611
00612 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspHandPostureExecutionActionGoal_<ContainerAllocator> > Ptr;
00613 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspHandPostureExecutionActionGoal_<ContainerAllocator> const> ConstPtr;
00614 boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00615 };
00616 typedef ::object_manipulation_msgs::GraspHandPostureExecutionActionGoal_<std::allocator<void> > GraspHandPostureExecutionActionGoal;
00617
00618 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspHandPostureExecutionActionGoal> GraspHandPostureExecutionActionGoalPtr;
00619 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspHandPostureExecutionActionGoal const> GraspHandPostureExecutionActionGoalConstPtr;
00620
00621
00622 template<typename ContainerAllocator>
00623 std::ostream& operator<<(std::ostream& s, const ::object_manipulation_msgs::GraspHandPostureExecutionActionGoal_<ContainerAllocator> & v)
00624 {
00625 ros::message_operations::Printer< ::object_manipulation_msgs::GraspHandPostureExecutionActionGoal_<ContainerAllocator> >::stream(s, "", v);
00626 return s;}
00627
00628 }
00629
00630 namespace ros
00631 {
00632 namespace message_traits
00633 {
00634 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::GraspHandPostureExecutionActionGoal_<ContainerAllocator> > : public TrueType {};
00635 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::GraspHandPostureExecutionActionGoal_<ContainerAllocator> const> : public TrueType {};
00636 template<class ContainerAllocator>
00637 struct MD5Sum< ::object_manipulation_msgs::GraspHandPostureExecutionActionGoal_<ContainerAllocator> > {
00638 static const char* value()
00639 {
00640 return "37a3c654e517374e8dbb5861abf034f4";
00641 }
00642
00643 static const char* value(const ::object_manipulation_msgs::GraspHandPostureExecutionActionGoal_<ContainerAllocator> &) { return value(); }
00644 static const uint64_t static_value1 = 0x37a3c654e517374eULL;
00645 static const uint64_t static_value2 = 0x8dbb5861abf034f4ULL;
00646 };
00647
00648 template<class ContainerAllocator>
00649 struct DataType< ::object_manipulation_msgs::GraspHandPostureExecutionActionGoal_<ContainerAllocator> > {
00650 static const char* value()
00651 {
00652 return "object_manipulation_msgs/GraspHandPostureExecutionActionGoal";
00653 }
00654
00655 static const char* value(const ::object_manipulation_msgs::GraspHandPostureExecutionActionGoal_<ContainerAllocator> &) { return value(); }
00656 };
00657
00658 template<class ContainerAllocator>
00659 struct Definition< ::object_manipulation_msgs::GraspHandPostureExecutionActionGoal_<ContainerAllocator> > {
00660 static const char* value()
00661 {
00662 return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00663 \n\
00664 Header header\n\
00665 actionlib_msgs/GoalID goal_id\n\
00666 GraspHandPostureExecutionGoal goal\n\
00667 \n\
00668 ================================================================================\n\
00669 MSG: std_msgs/Header\n\
00670 # Standard metadata for higher-level stamped data types.\n\
00671 # This is generally used to communicate timestamped data \n\
00672 # in a particular coordinate frame.\n\
00673 # \n\
00674 # sequence ID: consecutively increasing ID \n\
00675 uint32 seq\n\
00676 #Two-integer timestamp that is expressed as:\n\
00677 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00678 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00679 # time-handling sugar is provided by the client library\n\
00680 time stamp\n\
00681 #Frame this data is associated with\n\
00682 # 0: no frame\n\
00683 # 1: global frame\n\
00684 string frame_id\n\
00685 \n\
00686 ================================================================================\n\
00687 MSG: actionlib_msgs/GoalID\n\
00688 # The stamp should store the time at which this goal was requested.\n\
00689 # It is used by an action server when it tries to preempt all\n\
00690 # goals that were requested before a certain time\n\
00691 time stamp\n\
00692 \n\
00693 # The id provides a way to associate feedback and\n\
00694 # result message with specific goal requests. The id\n\
00695 # specified must be unique.\n\
00696 string id\n\
00697 \n\
00698 \n\
00699 ================================================================================\n\
00700 MSG: object_manipulation_msgs/GraspHandPostureExecutionGoal\n\
00701 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00702 # an action for requesting the finger posture part of grasp be physically carried out by a hand\n\
00703 # the name of the arm being used is not in here, as this will be sent to a specific action server\n\
00704 # for each arm\n\
00705 \n\
00706 # the grasp to be executed\n\
00707 Grasp grasp\n\
00708 \n\
00709 # the goal of this action\n\
00710 # requests that the hand be set in the pre-grasp posture\n\
00711 int32 PRE_GRASP=1\n\
00712 # requests that the hand execute the actual grasp\n\
00713 int32 GRASP=2\n\
00714 # requests that the hand open to release the object\n\
00715 int32 RELEASE=3\n\
00716 int32 goal\n\
00717 \n\
00718 # the max contact force to use (<=0 if no desired max)\n\
00719 float32 max_contact_force\n\
00720 \n\
00721 \n\
00722 ================================================================================\n\
00723 MSG: object_manipulation_msgs/Grasp\n\
00724 \n\
00725 # The internal posture of the hand for the pre-grasp\n\
00726 # only positions are used\n\
00727 sensor_msgs/JointState pre_grasp_posture\n\
00728 \n\
00729 # The internal posture of the hand for the grasp\n\
00730 # positions and efforts are used\n\
00731 sensor_msgs/JointState grasp_posture\n\
00732 \n\
00733 # The position of the end-effector for the grasp relative to a reference frame \n\
00734 # (that is always specified elsewhere, not in this message)\n\
00735 geometry_msgs/Pose grasp_pose\n\
00736 \n\
00737 # The estimated probability of success for this grasp\n\
00738 float64 success_probability\n\
00739 \n\
00740 # Debug flag to indicate that this grasp would be the best in its cluster\n\
00741 bool cluster_rep\n\
00742 \n\
00743 # how far the pre-grasp should ideally be away from the grasp\n\
00744 float32 desired_approach_distance\n\
00745 \n\
00746 # how much distance between pre-grasp and grasp must actually be feasible \n\
00747 # for the grasp not to be rejected\n\
00748 float32 min_approach_distance\n\
00749 \n\
00750 # an optional list of obstacles that we have semantic information about\n\
00751 # and that we expect might move in the course of executing this grasp\n\
00752 # the grasp planner is expected to make sure they move in an OK way; during\n\
00753 # execution, grasp executors will not check for collisions against these objects\n\
00754 GraspableObject[] moved_obstacles\n\
00755 \n\
00756 ================================================================================\n\
00757 MSG: sensor_msgs/JointState\n\
00758 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
00759 #\n\
00760 # The state of each joint (revolute or prismatic) is defined by:\n\
00761 # * the position of the joint (rad or m),\n\
00762 # * the velocity of the joint (rad/s or m/s) and \n\
00763 # * the effort that is applied in the joint (Nm or N).\n\
00764 #\n\
00765 # Each joint is uniquely identified by its name\n\
00766 # The header specifies the time at which the joint states were recorded. All the joint states\n\
00767 # in one message have to be recorded at the same time.\n\
00768 #\n\
00769 # This message consists of a multiple arrays, one for each part of the joint state. \n\
00770 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
00771 # effort associated with them, you can leave the effort array empty. \n\
00772 #\n\
00773 # All arrays in this message should have the same size, or be empty.\n\
00774 # This is the only way to uniquely associate the joint name with the correct\n\
00775 # states.\n\
00776 \n\
00777 \n\
00778 Header header\n\
00779 \n\
00780 string[] name\n\
00781 float64[] position\n\
00782 float64[] velocity\n\
00783 float64[] effort\n\
00784 \n\
00785 ================================================================================\n\
00786 MSG: geometry_msgs/Pose\n\
00787 # A representation of pose in free space, composed of postion and orientation. \n\
00788 Point position\n\
00789 Quaternion orientation\n\
00790 \n\
00791 ================================================================================\n\
00792 MSG: geometry_msgs/Point\n\
00793 # This contains the position of a point in free space\n\
00794 float64 x\n\
00795 float64 y\n\
00796 float64 z\n\
00797 \n\
00798 ================================================================================\n\
00799 MSG: geometry_msgs/Quaternion\n\
00800 # This represents an orientation in free space in quaternion form.\n\
00801 \n\
00802 float64 x\n\
00803 float64 y\n\
00804 float64 z\n\
00805 float64 w\n\
00806 \n\
00807 ================================================================================\n\
00808 MSG: object_manipulation_msgs/GraspableObject\n\
00809 # an object that the object_manipulator can work on\n\
00810 \n\
00811 # a graspable object can be represented in multiple ways. This message\n\
00812 # can contain all of them. Which one is actually used is up to the receiver\n\
00813 # of this message. When adding new representations, one must be careful that\n\
00814 # they have reasonable lightweight defaults indicating that that particular\n\
00815 # representation is not available.\n\
00816 \n\
00817 # the tf frame to be used as a reference frame when combining information from\n\
00818 # the different representations below\n\
00819 string reference_frame_id\n\
00820 \n\
00821 # potential recognition results from a database of models\n\
00822 # all poses are relative to the object reference pose\n\
00823 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00824 \n\
00825 # the point cloud itself\n\
00826 sensor_msgs/PointCloud cluster\n\
00827 \n\
00828 # a region of a PointCloud2 of interest\n\
00829 object_manipulation_msgs/SceneRegion region\n\
00830 \n\
00831 # the name that this object has in the collision environment\n\
00832 string collision_name\n\
00833 ================================================================================\n\
00834 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00835 # Informs that a specific model from the Model Database has been \n\
00836 # identified at a certain location\n\
00837 \n\
00838 # the database id of the model\n\
00839 int32 model_id\n\
00840 \n\
00841 # the pose that it can be found in\n\
00842 geometry_msgs/PoseStamped pose\n\
00843 \n\
00844 # a measure of the confidence level in this detection result\n\
00845 float32 confidence\n\
00846 \n\
00847 # the name of the object detector that generated this detection result\n\
00848 string detector_name\n\
00849 \n\
00850 ================================================================================\n\
00851 MSG: geometry_msgs/PoseStamped\n\
00852 # A Pose with reference coordinate frame and timestamp\n\
00853 Header header\n\
00854 Pose pose\n\
00855 \n\
00856 ================================================================================\n\
00857 MSG: sensor_msgs/PointCloud\n\
00858 # This message holds a collection of 3d points, plus optional additional\n\
00859 # information about each point.\n\
00860 \n\
00861 # Time of sensor data acquisition, coordinate frame ID.\n\
00862 Header header\n\
00863 \n\
00864 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00865 # in the frame given in the header.\n\
00866 geometry_msgs/Point32[] points\n\
00867 \n\
00868 # Each channel should have the same number of elements as points array,\n\
00869 # and the data in each channel should correspond 1:1 with each point.\n\
00870 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00871 ChannelFloat32[] channels\n\
00872 \n\
00873 ================================================================================\n\
00874 MSG: geometry_msgs/Point32\n\
00875 # This contains the position of a point in free space(with 32 bits of precision).\n\
00876 # It is recommeded to use Point wherever possible instead of Point32. \n\
00877 # \n\
00878 # This recommendation is to promote interoperability. \n\
00879 #\n\
00880 # This message is designed to take up less space when sending\n\
00881 # lots of points at once, as in the case of a PointCloud. \n\
00882 \n\
00883 float32 x\n\
00884 float32 y\n\
00885 float32 z\n\
00886 ================================================================================\n\
00887 MSG: sensor_msgs/ChannelFloat32\n\
00888 # This message is used by the PointCloud message to hold optional data\n\
00889 # associated with each point in the cloud. The length of the values\n\
00890 # array should be the same as the length of the points array in the\n\
00891 # PointCloud, and each value should be associated with the corresponding\n\
00892 # point.\n\
00893 \n\
00894 # Channel names in existing practice include:\n\
00895 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00896 # This is opposite to usual conventions but remains for\n\
00897 # historical reasons. The newer PointCloud2 message has no\n\
00898 # such problem.\n\
00899 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00900 # (R,G,B) values packed into the least significant 24 bits,\n\
00901 # in order.\n\
00902 # \"intensity\" - laser or pixel intensity.\n\
00903 # \"distance\"\n\
00904 \n\
00905 # The channel name should give semantics of the channel (e.g.\n\
00906 # \"intensity\" instead of \"value\").\n\
00907 string name\n\
00908 \n\
00909 # The values array should be 1-1 with the elements of the associated\n\
00910 # PointCloud.\n\
00911 float32[] values\n\
00912 \n\
00913 ================================================================================\n\
00914 MSG: object_manipulation_msgs/SceneRegion\n\
00915 # Point cloud\n\
00916 sensor_msgs/PointCloud2 cloud\n\
00917 \n\
00918 # Indices for the region of interest\n\
00919 int32[] mask\n\
00920 \n\
00921 # One of the corresponding 2D images, if applicable\n\
00922 sensor_msgs/Image image\n\
00923 \n\
00924 # The disparity image, if applicable\n\
00925 sensor_msgs/Image disparity_image\n\
00926 \n\
00927 # Camera info for the camera that took the image\n\
00928 sensor_msgs/CameraInfo cam_info\n\
00929 \n\
00930 # a 3D region of interest for grasp planning\n\
00931 geometry_msgs/PoseStamped roi_box_pose\n\
00932 geometry_msgs/Vector3 roi_box_dims\n\
00933 \n\
00934 ================================================================================\n\
00935 MSG: sensor_msgs/PointCloud2\n\
00936 # This message holds a collection of N-dimensional points, which may\n\
00937 # contain additional information such as normals, intensity, etc. The\n\
00938 # point data is stored as a binary blob, its layout described by the\n\
00939 # contents of the \"fields\" array.\n\
00940 \n\
00941 # The point cloud data may be organized 2d (image-like) or 1d\n\
00942 # (unordered). Point clouds organized as 2d images may be produced by\n\
00943 # camera depth sensors such as stereo or time-of-flight.\n\
00944 \n\
00945 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00946 # points).\n\
00947 Header header\n\
00948 \n\
00949 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00950 # 1 and width is the length of the point cloud.\n\
00951 uint32 height\n\
00952 uint32 width\n\
00953 \n\
00954 # Describes the channels and their layout in the binary data blob.\n\
00955 PointField[] fields\n\
00956 \n\
00957 bool is_bigendian # Is this data bigendian?\n\
00958 uint32 point_step # Length of a point in bytes\n\
00959 uint32 row_step # Length of a row in bytes\n\
00960 uint8[] data # Actual point data, size is (row_step*height)\n\
00961 \n\
00962 bool is_dense # True if there are no invalid points\n\
00963 \n\
00964 ================================================================================\n\
00965 MSG: sensor_msgs/PointField\n\
00966 # This message holds the description of one point entry in the\n\
00967 # PointCloud2 message format.\n\
00968 uint8 INT8 = 1\n\
00969 uint8 UINT8 = 2\n\
00970 uint8 INT16 = 3\n\
00971 uint8 UINT16 = 4\n\
00972 uint8 INT32 = 5\n\
00973 uint8 UINT32 = 6\n\
00974 uint8 FLOAT32 = 7\n\
00975 uint8 FLOAT64 = 8\n\
00976 \n\
00977 string name # Name of field\n\
00978 uint32 offset # Offset from start of point struct\n\
00979 uint8 datatype # Datatype enumeration, see above\n\
00980 uint32 count # How many elements in the field\n\
00981 \n\
00982 ================================================================================\n\
00983 MSG: sensor_msgs/Image\n\
00984 # This message contains an uncompressed image\n\
00985 # (0, 0) is at top-left corner of image\n\
00986 #\n\
00987 \n\
00988 Header header # Header timestamp should be acquisition time of image\n\
00989 # Header frame_id should be optical frame of camera\n\
00990 # origin of frame should be optical center of cameara\n\
00991 # +x should point to the right in the image\n\
00992 # +y should point down in the image\n\
00993 # +z should point into to plane of the image\n\
00994 # If the frame_id here and the frame_id of the CameraInfo\n\
00995 # message associated with the image conflict\n\
00996 # the behavior is undefined\n\
00997 \n\
00998 uint32 height # image height, that is, number of rows\n\
00999 uint32 width # image width, that is, number of columns\n\
01000 \n\
01001 # The legal values for encoding are in file src/image_encodings.cpp\n\
01002 # If you want to standardize a new string format, join\n\
01003 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
01004 \n\
01005 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
01006 # taken from the list of strings in src/image_encodings.cpp\n\
01007 \n\
01008 uint8 is_bigendian # is this data bigendian?\n\
01009 uint32 step # Full row length in bytes\n\
01010 uint8[] data # actual matrix data, size is (step * rows)\n\
01011 \n\
01012 ================================================================================\n\
01013 MSG: sensor_msgs/CameraInfo\n\
01014 # This message defines meta information for a camera. It should be in a\n\
01015 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
01016 # image topics named:\n\
01017 #\n\
01018 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
01019 # image - monochrome, distorted\n\
01020 # image_color - color, distorted\n\
01021 # image_rect - monochrome, rectified\n\
01022 # image_rect_color - color, rectified\n\
01023 #\n\
01024 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
01025 # for producing the four processed image topics from image_raw and\n\
01026 # camera_info. The meaning of the camera parameters are described in\n\
01027 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
01028 #\n\
01029 # The image_geometry package provides a user-friendly interface to\n\
01030 # common operations using this meta information. If you want to, e.g.,\n\
01031 # project a 3d point into image coordinates, we strongly recommend\n\
01032 # using image_geometry.\n\
01033 #\n\
01034 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
01035 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
01036 # indicates an uncalibrated camera.\n\
01037 \n\
01038 #######################################################################\n\
01039 # Image acquisition info #\n\
01040 #######################################################################\n\
01041 \n\
01042 # Time of image acquisition, camera coordinate frame ID\n\
01043 Header header # Header timestamp should be acquisition time of image\n\
01044 # Header frame_id should be optical frame of camera\n\
01045 # origin of frame should be optical center of camera\n\
01046 # +x should point to the right in the image\n\
01047 # +y should point down in the image\n\
01048 # +z should point into the plane of the image\n\
01049 \n\
01050 \n\
01051 #######################################################################\n\
01052 # Calibration Parameters #\n\
01053 #######################################################################\n\
01054 # These are fixed during camera calibration. Their values will be the #\n\
01055 # same in all messages until the camera is recalibrated. Note that #\n\
01056 # self-calibrating systems may \"recalibrate\" frequently. #\n\
01057 # #\n\
01058 # The internal parameters can be used to warp a raw (distorted) image #\n\
01059 # to: #\n\
01060 # 1. An undistorted image (requires D and K) #\n\
01061 # 2. A rectified image (requires D, K, R) #\n\
01062 # The projection matrix P projects 3D points into the rectified image.#\n\
01063 #######################################################################\n\
01064 \n\
01065 # The image dimensions with which the camera was calibrated. Normally\n\
01066 # this will be the full camera resolution in pixels.\n\
01067 uint32 height\n\
01068 uint32 width\n\
01069 \n\
01070 # The distortion model used. Supported models are listed in\n\
01071 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
01072 # simple model of radial and tangential distortion - is sufficent.\n\
01073 string distortion_model\n\
01074 \n\
01075 # The distortion parameters, size depending on the distortion model.\n\
01076 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
01077 float64[] D\n\
01078 \n\
01079 # Intrinsic camera matrix for the raw (distorted) images.\n\
01080 # [fx 0 cx]\n\
01081 # K = [ 0 fy cy]\n\
01082 # [ 0 0 1]\n\
01083 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
01084 # coordinates using the focal lengths (fx, fy) and principal point\n\
01085 # (cx, cy).\n\
01086 float64[9] K # 3x3 row-major matrix\n\
01087 \n\
01088 # Rectification matrix (stereo cameras only)\n\
01089 # A rotation matrix aligning the camera coordinate system to the ideal\n\
01090 # stereo image plane so that epipolar lines in both stereo images are\n\
01091 # parallel.\n\
01092 float64[9] R # 3x3 row-major matrix\n\
01093 \n\
01094 # Projection/camera matrix\n\
01095 # [fx' 0 cx' Tx]\n\
01096 # P = [ 0 fy' cy' Ty]\n\
01097 # [ 0 0 1 0]\n\
01098 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
01099 # of the processed (rectified) image. That is, the left 3x3 portion\n\
01100 # is the normal camera intrinsic matrix for the rectified image.\n\
01101 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
01102 # coordinates using the focal lengths (fx', fy') and principal point\n\
01103 # (cx', cy') - these may differ from the values in K.\n\
01104 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
01105 # also have R = the identity and P[1:3,1:3] = K.\n\
01106 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
01107 # position of the optical center of the second camera in the first\n\
01108 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
01109 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
01110 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
01111 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
01112 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
01113 # the rectified image is given by:\n\
01114 # [u v w]' = P * [X Y Z 1]'\n\
01115 # x = u / w\n\
01116 # y = v / w\n\
01117 # This holds for both images of a stereo pair.\n\
01118 float64[12] P # 3x4 row-major matrix\n\
01119 \n\
01120 \n\
01121 #######################################################################\n\
01122 # Operational Parameters #\n\
01123 #######################################################################\n\
01124 # These define the image region actually captured by the camera #\n\
01125 # driver. Although they affect the geometry of the output image, they #\n\
01126 # may be changed freely without recalibrating the camera. #\n\
01127 #######################################################################\n\
01128 \n\
01129 # Binning refers here to any camera setting which combines rectangular\n\
01130 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
01131 # resolution of the output image to\n\
01132 # (width / binning_x) x (height / binning_y).\n\
01133 # The default values binning_x = binning_y = 0 is considered the same\n\
01134 # as binning_x = binning_y = 1 (no subsampling).\n\
01135 uint32 binning_x\n\
01136 uint32 binning_y\n\
01137 \n\
01138 # Region of interest (subwindow of full camera resolution), given in\n\
01139 # full resolution (unbinned) image coordinates. A particular ROI\n\
01140 # always denotes the same window of pixels on the camera sensor,\n\
01141 # regardless of binning settings.\n\
01142 # The default setting of roi (all values 0) is considered the same as\n\
01143 # full resolution (roi.width = width, roi.height = height).\n\
01144 RegionOfInterest roi\n\
01145 \n\
01146 ================================================================================\n\
01147 MSG: sensor_msgs/RegionOfInterest\n\
01148 # This message is used to specify a region of interest within an image.\n\
01149 #\n\
01150 # When used to specify the ROI setting of the camera when the image was\n\
01151 # taken, the height and width fields should either match the height and\n\
01152 # width fields for the associated image; or height = width = 0\n\
01153 # indicates that the full resolution image was captured.\n\
01154 \n\
01155 uint32 x_offset # Leftmost pixel of the ROI\n\
01156 # (0 if the ROI includes the left edge of the image)\n\
01157 uint32 y_offset # Topmost pixel of the ROI\n\
01158 # (0 if the ROI includes the top edge of the image)\n\
01159 uint32 height # Height of ROI\n\
01160 uint32 width # Width of ROI\n\
01161 \n\
01162 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
01163 # ROI in this message. Typically this should be False if the full image\n\
01164 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
01165 # used).\n\
01166 bool do_rectify\n\
01167 \n\
01168 ================================================================================\n\
01169 MSG: geometry_msgs/Vector3\n\
01170 # This represents a vector in free space. \n\
01171 \n\
01172 float64 x\n\
01173 float64 y\n\
01174 float64 z\n\
01175 ";
01176 }
01177
01178 static const char* value(const ::object_manipulation_msgs::GraspHandPostureExecutionActionGoal_<ContainerAllocator> &) { return value(); }
01179 };
01180
01181 template<class ContainerAllocator> struct HasHeader< ::object_manipulation_msgs::GraspHandPostureExecutionActionGoal_<ContainerAllocator> > : public TrueType {};
01182 template<class ContainerAllocator> struct HasHeader< const ::object_manipulation_msgs::GraspHandPostureExecutionActionGoal_<ContainerAllocator> > : public TrueType {};
01183 }
01184 }
01185
01186 namespace ros
01187 {
01188 namespace serialization
01189 {
01190
01191 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::GraspHandPostureExecutionActionGoal_<ContainerAllocator> >
01192 {
01193 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
01194 {
01195 stream.next(m.header);
01196 stream.next(m.goal_id);
01197 stream.next(m.goal);
01198 }
01199
01200 ROS_DECLARE_ALLINONE_SERIALIZER;
01201 };
01202 }
01203 }
01204
01205 namespace ros
01206 {
01207 namespace message_operations
01208 {
01209
01210 template<class ContainerAllocator>
01211 struct Printer< ::object_manipulation_msgs::GraspHandPostureExecutionActionGoal_<ContainerAllocator> >
01212 {
01213 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_manipulation_msgs::GraspHandPostureExecutionActionGoal_<ContainerAllocator> & v)
01214 {
01215 s << indent << "header: ";
01216 s << std::endl;
01217 Printer< ::std_msgs::Header_<ContainerAllocator> >::stream(s, indent + " ", v.header);
01218 s << indent << "goal_id: ";
01219 s << std::endl;
01220 Printer< ::actionlib_msgs::GoalID_<ContainerAllocator> >::stream(s, indent + " ", v.goal_id);
01221 s << indent << "goal: ";
01222 s << std::endl;
01223 Printer< ::object_manipulation_msgs::GraspHandPostureExecutionGoal_<ContainerAllocator> >::stream(s, indent + " ", v.goal);
01224 }
01225 };
01226
01227
01228 }
01229 }
01230
01231 #endif // OBJECT_MANIPULATION_MSGS_MESSAGE_GRASPHANDPOSTUREEXECUTIONACTIONGOAL_H
01232