$search
00001 /********************************************************************* 00002 * 00003 * Software License Agreement (BSD License) 00004 * 00005 * Copyright (c) 2011, Robert Bosch LLC. 00006 * All rights reserved. 00007 * 00008 * Redistribution and use in source and binary forms, with or without 00009 * modification, are permitted provided that the following conditions 00010 * are met: 00011 * 00012 * * Redistributions of source code must retain the above copyright 00013 * notice, this list of conditions and the following disclaimer. 00014 * * Redistributions in binary form must reproduce the above 00015 * copyright notice, this list of conditions and the following 00016 * disclaimer in the documentation and/or other materials provided 00017 * with the distribution. 00018 * * Neither the name of the Robert Bosch nor the names of its 00019 * contributors may be used to endorse or promote products derived 00020 * from this software without specific prior written permission. 00021 * 00022 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 00023 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 00024 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 00025 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 00026 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 00027 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 00028 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 00029 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 00030 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 00031 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 00032 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 00033 * POSSIBILITY OF SUCH DAMAGE. 00034 * 00035 *********************************************************************/ 00036 00037 #include "image_segmentation_demo/table_detector.h" 00038 00039 #include <pcl/ros/conversions.h> 00040 #include <pcl/point_types.h> 00041 #include <pcl_ros/transforms.h> 00042 #include <pcl/point_cloud.h> 00043 #include <pcl/point_types.h> 00044 #include <pcl/io/io.h> 00045 #include <pcl/filters/voxel_grid.h> 00046 #include <pcl/filters/passthrough.h> 00047 #include <pcl/filters/extract_indices.h> 00048 #include <pcl/features/normal_3d.h> 00049 #include <pcl/kdtree/kdtree_flann.h> 00050 #include <pcl/sample_consensus/method_types.h> 00051 #include <pcl/sample_consensus/model_types.h> 00052 #include <pcl/segmentation/sac_segmentation.h> 00053 #include <pcl/filters/project_inliers.h> 00054 #include <pcl/surface/convex_hull.h> 00055 #include <pcl/segmentation/extract_polygonal_prism_data.h> 00056 #include <pcl/segmentation/extract_clusters.h> 00057 00058 namespace image_segmentation_demo { 00059 00060 TableDetector::TableDetector() : current_marker_id_(0) 00061 { 00062 //initialize operational flags 00063 inlier_threshold_ = 300; 00064 plane_detection_voxel_size_ = 0.01; 00065 clustering_voxel_size_ = 0.003; 00066 z_filter_min_ = 0.4; 00067 z_filter_max_ = 1.25; 00068 table_z_filter_min_ = 0.01; 00069 table_z_filter_max_ = 0.50; 00070 cluster_distance_ = 0.03; 00071 min_cluster_size_ = 30; 00072 processing_frame_ = ""; 00073 up_direction_ = 1.0; 00074 } 00075 00076 TableDetector::~TableDetector() 00077 { 00078 } 00079 00080 bool TableDetector::detectTable(const sensor_msgs::PointCloud2 &cloud, tabletop_object_detector::Table& table) 00081 { 00082 ROS_INFO("Starting process on new cloud"); 00083 ROS_INFO("In frame %s", cloud.header.frame_id.c_str()); 00084 00085 // PCL objects 00086 KdTreePtr normals_tree_, clusters_tree_; 00087 pcl::VoxelGrid<Point> grid_, grid_objects_; 00088 pcl::PassThrough<Point> pass_; 00089 pcl::NormalEstimation<Point, pcl::Normal> n3d_; 00090 pcl::SACSegmentationFromNormals<Point, pcl::Normal> seg_; 00091 pcl::ProjectInliers<Point> proj_; 00092 pcl::ConvexHull<Point> hull_; 00093 pcl::ExtractPolygonalPrismData<Point> prism_; 00094 pcl::EuclideanClusterExtraction<Point> pcl_cluster_; 00095 00096 // Filtering parameters 00097 grid_.setLeafSize (plane_detection_voxel_size_, plane_detection_voxel_size_, plane_detection_voxel_size_); 00098 grid_objects_.setLeafSize (clustering_voxel_size_, clustering_voxel_size_, clustering_voxel_size_); 00099 grid_.setFilterFieldName ("z"); 00100 pass_.setFilterFieldName ("z"); 00101 00102 pass_.setFilterLimits (z_filter_min_, z_filter_max_); 00103 grid_.setFilterLimits (z_filter_min_, z_filter_max_); 00104 grid_.setDownsampleAllData (false); 00105 grid_objects_.setDownsampleAllData (false); 00106 00107 normals_tree_ = boost::make_shared<pcl::KdTreeFLANN<Point> > (); 00108 clusters_tree_ = boost::make_shared<pcl::KdTreeFLANN<Point> > (); 00109 00110 // Normal estimation parameters 00111 n3d_.setKSearch (10); 00112 n3d_.setSearchMethod (normals_tree_); 00113 // Table model fitting parameters 00114 seg_.setDistanceThreshold (0.05); 00115 seg_.setMaxIterations (10000); 00116 seg_.setNormalDistanceWeight (0.1); 00117 seg_.setOptimizeCoefficients (true); 00118 seg_.setModelType (pcl::SACMODEL_NORMAL_PLANE); 00119 seg_.setMethodType (pcl::SAC_RANSAC); 00120 seg_.setProbability (0.99); 00121 00122 proj_.setModelType (pcl::SACMODEL_PLANE); 00123 00124 // Consider only objects in a given layer above the table 00125 prism_.setHeightLimits (table_z_filter_min_, table_z_filter_max_); 00126 00127 // Clustering parameters 00128 pcl_cluster_.setClusterTolerance (cluster_distance_); 00129 pcl_cluster_.setMinClusterSize (min_cluster_size_); 00130 pcl_cluster_.setSearchMethod (clusters_tree_); 00131 00132 // Step 1 : Filter, remove NaNs and downsample 00133 pcl::PointCloud<Point> cloud_t; 00134 pcl::fromROSMsg (cloud, cloud_t); 00135 pcl::PointCloud<Point>::ConstPtr cloud_ptr = boost::make_shared<const pcl::PointCloud<Point> > (cloud_t); 00136 00137 pcl::PointCloud<Point> cloud_filtered; 00138 pass_.setInputCloud (cloud_ptr); 00139 pass_.filter (cloud_filtered); 00140 pcl::PointCloud<Point>::ConstPtr cloud_filtered_ptr = 00141 boost::make_shared<const pcl::PointCloud<Point> > (cloud_filtered); 00142 ROS_INFO("Step 1 done"); 00143 if (cloud_filtered.points.size() < (unsigned int)min_cluster_size_) 00144 { 00145 ROS_INFO("Filtered cloud only has %d points", (int)cloud_filtered.points.size()); 00146 return false; 00147 } 00148 00149 pcl::PointCloud<Point> cloud_downsampled; 00150 grid_.setInputCloud (cloud_filtered_ptr); 00151 grid_.filter (cloud_downsampled); 00152 pcl::PointCloud<Point>::ConstPtr cloud_downsampled_ptr = 00153 boost::make_shared<const pcl::PointCloud<Point> > (cloud_downsampled); 00154 if (cloud_downsampled.points.size() < (unsigned int)min_cluster_size_) 00155 { 00156 ROS_INFO("Downsampled cloud only has %d points", (int)cloud_downsampled.points.size()); 00157 return false; 00158 } 00159 00160 // Step 2 : Estimate normals 00161 pcl::PointCloud<pcl::Normal> cloud_normals; 00162 n3d_.setInputCloud (cloud_downsampled_ptr); 00163 n3d_.compute (cloud_normals); 00164 pcl::PointCloud<pcl::Normal>::ConstPtr cloud_normals_ptr = 00165 boost::make_shared<const pcl::PointCloud<pcl::Normal> > (cloud_normals); 00166 ROS_INFO("Step 2 done"); 00167 00168 // Step 3 : Perform planar segmentation 00169 pcl::PointIndices table_inliers; pcl::ModelCoefficients table_coefficients; 00170 seg_.setInputCloud (cloud_downsampled_ptr); 00171 seg_.setInputNormals (cloud_normals_ptr); 00172 seg_.segment (table_inliers, table_coefficients); 00173 pcl::PointIndices::ConstPtr table_inliers_ptr = boost::make_shared<const pcl::PointIndices> (table_inliers); 00174 pcl::ModelCoefficients::ConstPtr table_coefficients_ptr = 00175 boost::make_shared<const pcl::ModelCoefficients> (table_coefficients); 00176 00177 if (table_coefficients.values.size () <=3) 00178 { 00179 ROS_INFO("Failed to detect table in scan"); 00180 return false; 00181 } 00182 00183 if ( table_inliers.indices.size() < (unsigned int)inlier_threshold_) 00184 { 00185 ROS_INFO("Plane detection has %d inliers, below min threshold of %d", (int)table_inliers.indices.size(), 00186 inlier_threshold_); 00187 return false; 00188 } 00189 00190 ROS_INFO ("[TableObjectDetector::input_callback] Model found with %d inliers: [%f %f %f %f].", 00191 (int)table_inliers.indices.size (), 00192 table_coefficients.values[0], table_coefficients.values[1], 00193 table_coefficients.values[2], table_coefficients.values[3]); 00194 ROS_INFO("Step 3 done"); 00195 00196 // Step 4 : Project the table inliers on the table 00197 pcl::PointCloud<Point> table_projected; 00198 proj_.setInputCloud (cloud_downsampled_ptr); 00199 proj_.setIndices (table_inliers_ptr); 00200 proj_.setModelCoefficients (table_coefficients_ptr); 00201 proj_.filter (table_projected); 00202 pcl::PointCloud<Point>::ConstPtr table_projected_ptr = 00203 boost::make_shared<const pcl::PointCloud<Point> > (table_projected); 00204 ROS_INFO("Step 4 done"); 00205 00206 sensor_msgs::PointCloud table_points; 00207 tf::Transform table_plane_trans = getPlaneTransform (table_coefficients, up_direction_); 00208 //takes the points projected on the table and transforms them into the PointCloud message 00209 //while also transforming them into the table's coordinate system 00210 if (!getPlanePoints(table_projected, table_plane_trans, table_points)) 00211 { 00212 return false; 00213 } 00214 ROS_INFO("Table computed"); 00215 00216 table = getTable(cloud.header, table_plane_trans, table_points); 00217 return true; 00218 } 00219 00220 tabletop_object_detector::Table 00221 TableDetector::getTable(const std_msgs::Header& cloud_header, const tf::Transform &table_plane_trans, const sensor_msgs::PointCloud &table_points) 00222 { 00223 tabletop_object_detector::Table table; 00224 00225 //get the extents of the table 00226 if (!table_points.points.empty()) 00227 { 00228 table.x_min = table_points.points[0].x; 00229 table.x_max = table_points.points[0].x; 00230 table.y_min = table_points.points[0].y; 00231 table.y_max = table_points.points[0].y; 00232 } 00233 for (size_t i=1; i<table_points.points.size(); ++i) 00234 { 00235 if (table_points.points[i].x<table.x_min && table_points.points[i].x>-3.0) table.x_min = table_points.points[i].x; 00236 if (table_points.points[i].x>table.x_max && table_points.points[i].x< 3.0) table.x_max = table_points.points[i].x; 00237 if (table_points.points[i].y<table.y_min && table_points.points[i].y>-3.0) table.y_min = table_points.points[i].y; 00238 if (table_points.points[i].y>table.y_max && table_points.points[i].y< 3.0) table.y_max = table_points.points[i].y; 00239 } 00240 00241 geometry_msgs::Pose table_pose; 00242 tf::poseTFToMsg(table_plane_trans, table_pose); 00243 table.pose.pose = table_pose; 00244 table.pose.header.frame_id = cloud_header.frame_id; 00245 table.pose.header.stamp = ros::Time::now(); 00246 return table; 00247 } 00248 00255 visualization_msgs::Marker TableDetector::getTableMarker(const tabletop_object_detector::Table& table) 00256 { 00257 visualization_msgs::Marker marker; 00258 marker.header.frame_id = table.pose.header.frame_id; 00259 marker.header.stamp = ros::Time::now(); 00260 marker.pose = table.pose.pose; 00261 marker.ns = "table_detector"; 00262 marker.id = current_marker_id_++; 00263 00264 marker.action = visualization_msgs::Marker::ADD; 00265 marker.type = visualization_msgs::Marker::LINE_STRIP; 00266 marker.lifetime = ros::Duration(); 00267 00268 //create the marker in the table reference frame 00269 //the caller is responsible for setting the pose of the marker to match 00270 00271 marker.scale.x = 0.001; 00272 marker.scale.y = 0.001; 00273 marker.scale.z = 0.001; 00274 00275 marker.points.resize(5); 00276 marker.points[0].x = table.x_min; 00277 marker.points[0].y = table.y_min; 00278 marker.points[0].z = 0; 00279 00280 marker.points[1].x = table.x_min; 00281 marker.points[1].y = table.y_max; 00282 marker.points[1].z = 0; 00283 00284 marker.points[2].x = table.x_max; 00285 marker.points[2].y = table.y_max; 00286 marker.points[2].z = 0; 00287 00288 marker.points[3].x = table.x_max; 00289 marker.points[3].y = table.y_min; 00290 marker.points[3].z = 0; 00291 00292 marker.points[4].x = table.x_min; 00293 marker.points[4].y = table.y_min; 00294 marker.points[4].z = 0; 00295 00296 marker.points.resize(6); 00297 marker.points[5].x = table.x_min; 00298 marker.points[5].y = table.y_min; 00299 marker.points[5].z = 0.02; 00300 00301 marker.color.r = 1.0; 00302 marker.color.g = 1.0; 00303 marker.color.b = 0.0; 00304 marker.color.a = 1.0; 00305 00306 return marker; 00307 } 00308 00310 tf::Transform TableDetector::getPlaneTransform (pcl::ModelCoefficients coeffs, double up_direction) 00311 { 00312 ROS_ASSERT(coeffs.values.size() > 3); 00313 double a = coeffs.values[0], b = coeffs.values[1], c = coeffs.values[2], d = coeffs.values[3]; 00314 //asume plane coefficients are normalized 00315 btVector3 position(-a*d, -b*d, -c*d); 00316 btVector3 z(a, b, c); 00317 //make sure z points "up" 00318 ROS_DEBUG("z.dot: %0.3f", z.dot(btVector3(0,0,1))); 00319 ROS_DEBUG("in getPlaneTransform, z: %0.3f, %0.3f, %0.3f", z[0], z[1], z[2]); 00320 if ( z.dot( btVector3(0, 0, up_direction) ) < 0) 00321 { 00322 z = -1.0 * z; 00323 ROS_INFO("flipped z"); 00324 } 00325 ROS_DEBUG("in getPlaneTransform, z: %0.3f, %0.3f, %0.3f", z[0], z[1], z[2]); 00326 00327 //try to align the x axis with the x axis of the original frame 00328 //or the y axis if z and x are too close too each other 00329 btVector3 x(1, 0, 0); 00330 if ( fabs(z.dot(x)) > 1.0 - 1.0e-4) x = btVector3(0, 1, 0); 00331 btVector3 y = z.cross(x).normalized(); 00332 x = y.cross(z).normalized(); 00333 00334 btMatrix3x3 rotation; 00335 rotation[0] = x; // x 00336 rotation[1] = y; // y 00337 rotation[2] = z; // z 00338 rotation = rotation.transpose(); 00339 btQuaternion orientation; 00340 rotation.getRotation(orientation); 00341 return tf::Transform(orientation, position); 00342 } 00343 00344 bool TableDetector::getPlanePoints (const pcl::PointCloud<Point> &table, 00345 const tf::Transform& table_plane_trans, 00346 sensor_msgs::PointCloud &table_points) 00347 { 00348 // Prepare the output 00349 table_points.header.frame_id = table.header.frame_id; 00350 table_points.header.stamp = table.header.stamp; 00351 table_points.points.resize (table.points.size ()); 00352 for (size_t i = 0; i < table.points.size (); ++i) 00353 { 00354 table_points.points[i].x = table.points[i].x; 00355 table_points.points[i].y = table.points[i].y; 00356 table_points.points[i].z = table.points[i].z; 00357 } 00358 00359 // Transform the data 00360 tf::TransformListener listener; 00361 tf::StampedTransform table_pose_frame(table_plane_trans, table.header.stamp, 00362 table.header.frame_id, "table_frame"); 00363 listener.setTransform(table_pose_frame); 00364 std::string error_msg; 00365 if (!listener.canTransform("table_frame", table_points.header.frame_id, table_points.header.stamp, &error_msg)) 00366 { 00367 ROS_ERROR("Can not transform point cloud from frame %s to table frame; error %s", 00368 table_points.header.frame_id.c_str(), error_msg.c_str()); 00369 return false; 00370 } 00371 try 00372 { 00373 listener.transformPointCloud("table_frame", table_points, table_points); 00374 } 00375 catch (tf::TransformException ex) 00376 { 00377 ROS_ERROR("Failed to transform point cloud from frame %s into table_frame; error %s", 00378 table_points.header.frame_id.c_str(), ex.what()); 00379 return false; 00380 } 00381 table_points.header.stamp = ros::Time::now(); 00382 table_points.header.frame_id = "table_frame"; 00383 return true; 00384 } 00385 00386 00387 } // object_segmentation_gui 00388 00389