$search
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-electric-cob_calibration/doc_stacks/2013-03-01_14-35-30.713658/cob_calibration/cob_calibration_msgs/msg/RobotMeasurement.msg */ 00002 #ifndef COB_CALIBRATION_MSGS_MESSAGE_ROBOTMEASUREMENT_H 00003 #define COB_CALIBRATION_MSGS_MESSAGE_ROBOTMEASUREMENT_H 00004 #include <string> 00005 #include <vector> 00006 #include <map> 00007 #include <ostream> 00008 #include "ros/serialization.h" 00009 #include "ros/builtin_message_traits.h" 00010 #include "ros/message_operations.h" 00011 #include "ros/time.h" 00012 00013 #include "ros/macros.h" 00014 00015 #include "ros/assert.h" 00016 00017 #include "cob_calibration_msgs/CameraMeasurement.h" 00018 #include "cob_calibration_msgs/ChainMeasurement.h" 00019 00020 namespace cob_calibration_msgs 00021 { 00022 template <class ContainerAllocator> 00023 struct RobotMeasurement_ { 00024 typedef RobotMeasurement_<ContainerAllocator> Type; 00025 00026 RobotMeasurement_() 00027 : sample_id() 00028 , target_id() 00029 , chain_id() 00030 , M_cam() 00031 , M_chain() 00032 { 00033 } 00034 00035 RobotMeasurement_(const ContainerAllocator& _alloc) 00036 : sample_id(_alloc) 00037 , target_id(_alloc) 00038 , chain_id(_alloc) 00039 , M_cam(_alloc) 00040 , M_chain(_alloc) 00041 { 00042 } 00043 00044 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _sample_id_type; 00045 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > sample_id; 00046 00047 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _target_id_type; 00048 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > target_id; 00049 00050 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _chain_id_type; 00051 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > chain_id; 00052 00053 typedef std::vector< ::cob_calibration_msgs::CameraMeasurement_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::cob_calibration_msgs::CameraMeasurement_<ContainerAllocator> >::other > _M_cam_type; 00054 std::vector< ::cob_calibration_msgs::CameraMeasurement_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::cob_calibration_msgs::CameraMeasurement_<ContainerAllocator> >::other > M_cam; 00055 00056 typedef std::vector< ::cob_calibration_msgs::ChainMeasurement_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::cob_calibration_msgs::ChainMeasurement_<ContainerAllocator> >::other > _M_chain_type; 00057 std::vector< ::cob_calibration_msgs::ChainMeasurement_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::cob_calibration_msgs::ChainMeasurement_<ContainerAllocator> >::other > M_chain; 00058 00059 00060 ROS_DEPRECATED uint32_t get_M_cam_size() const { return (uint32_t)M_cam.size(); } 00061 ROS_DEPRECATED void set_M_cam_size(uint32_t size) { M_cam.resize((size_t)size); } 00062 ROS_DEPRECATED void get_M_cam_vec(std::vector< ::cob_calibration_msgs::CameraMeasurement_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::cob_calibration_msgs::CameraMeasurement_<ContainerAllocator> >::other > & vec) const { vec = this->M_cam; } 00063 ROS_DEPRECATED void set_M_cam_vec(const std::vector< ::cob_calibration_msgs::CameraMeasurement_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::cob_calibration_msgs::CameraMeasurement_<ContainerAllocator> >::other > & vec) { this->M_cam = vec; } 00064 ROS_DEPRECATED uint32_t get_M_chain_size() const { return (uint32_t)M_chain.size(); } 00065 ROS_DEPRECATED void set_M_chain_size(uint32_t size) { M_chain.resize((size_t)size); } 00066 ROS_DEPRECATED void get_M_chain_vec(std::vector< ::cob_calibration_msgs::ChainMeasurement_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::cob_calibration_msgs::ChainMeasurement_<ContainerAllocator> >::other > & vec) const { vec = this->M_chain; } 00067 ROS_DEPRECATED void set_M_chain_vec(const std::vector< ::cob_calibration_msgs::ChainMeasurement_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::cob_calibration_msgs::ChainMeasurement_<ContainerAllocator> >::other > & vec) { this->M_chain = vec; } 00068 private: 00069 static const char* __s_getDataType_() { return "cob_calibration_msgs/RobotMeasurement"; } 00070 public: 00071 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); } 00072 00073 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); } 00074 00075 private: 00076 static const char* __s_getMD5Sum_() { return "48d4a626e19c4ac4e886191032058bb2"; } 00077 public: 00078 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); } 00079 00080 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); } 00081 00082 private: 00083 static const char* __s_getMessageDefinition_() { return "string sample_id # Tag to figure out which yaml file this was generated from\n\ 00084 \n\ 00085 string target_id # Defines the target that we were sensing.\n\ 00086 string chain_id # Defines where this target was attached\n\ 00087 \n\ 00088 CameraMeasurement[] M_cam\n\ 00089 ChainMeasurement[] M_chain\n\ 00090 \n\ 00091 ================================================================================\n\ 00092 MSG: cob_calibration_msgs/CameraMeasurement\n\ 00093 Header header\n\ 00094 string camera_id\n\ 00095 ImagePoint[] image_points\n\ 00096 sensor_msgs/CameraInfo cam_info\n\ 00097 \n\ 00098 # True -> The extra debugging fields are populated\n\ 00099 bool verbose\n\ 00100 \n\ 00101 # Extra, partially processed data. Only needed for debugging\n\ 00102 sensor_msgs/Image image\n\ 00103 sensor_msgs/Image image_rect\n\ 00104 cob_calibration_msgs/CalibrationPattern features\n\ 00105 \n\ 00106 ================================================================================\n\ 00107 MSG: std_msgs/Header\n\ 00108 # Standard metadata for higher-level stamped data types.\n\ 00109 # This is generally used to communicate timestamped data \n\ 00110 # in a particular coordinate frame.\n\ 00111 # \n\ 00112 # sequence ID: consecutively increasing ID \n\ 00113 uint32 seq\n\ 00114 #Two-integer timestamp that is expressed as:\n\ 00115 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00116 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00117 # time-handling sugar is provided by the client library\n\ 00118 time stamp\n\ 00119 #Frame this data is associated with\n\ 00120 # 0: no frame\n\ 00121 # 1: global frame\n\ 00122 string frame_id\n\ 00123 \n\ 00124 ================================================================================\n\ 00125 MSG: cob_calibration_msgs/ImagePoint\n\ 00126 float32 x\n\ 00127 float32 y\n\ 00128 \n\ 00129 ================================================================================\n\ 00130 MSG: sensor_msgs/CameraInfo\n\ 00131 # This message defines meta information for a camera. It should be in a\n\ 00132 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00133 # image topics named:\n\ 00134 #\n\ 00135 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00136 # image - monochrome, distorted\n\ 00137 # image_color - color, distorted\n\ 00138 # image_rect - monochrome, rectified\n\ 00139 # image_rect_color - color, rectified\n\ 00140 #\n\ 00141 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00142 # for producing the four processed image topics from image_raw and\n\ 00143 # camera_info. The meaning of the camera parameters are described in\n\ 00144 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00145 #\n\ 00146 # The image_geometry package provides a user-friendly interface to\n\ 00147 # common operations using this meta information. If you want to, e.g.,\n\ 00148 # project a 3d point into image coordinates, we strongly recommend\n\ 00149 # using image_geometry.\n\ 00150 #\n\ 00151 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00152 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00153 # indicates an uncalibrated camera.\n\ 00154 \n\ 00155 #######################################################################\n\ 00156 # Image acquisition info #\n\ 00157 #######################################################################\n\ 00158 \n\ 00159 # Time of image acquisition, camera coordinate frame ID\n\ 00160 Header header # Header timestamp should be acquisition time of image\n\ 00161 # Header frame_id should be optical frame of camera\n\ 00162 # origin of frame should be optical center of camera\n\ 00163 # +x should point to the right in the image\n\ 00164 # +y should point down in the image\n\ 00165 # +z should point into the plane of the image\n\ 00166 \n\ 00167 \n\ 00168 #######################################################################\n\ 00169 # Calibration Parameters #\n\ 00170 #######################################################################\n\ 00171 # These are fixed during camera calibration. Their values will be the #\n\ 00172 # same in all messages until the camera is recalibrated. Note that #\n\ 00173 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00174 # #\n\ 00175 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00176 # to: #\n\ 00177 # 1. An undistorted image (requires D and K) #\n\ 00178 # 2. A rectified image (requires D, K, R) #\n\ 00179 # The projection matrix P projects 3D points into the rectified image.#\n\ 00180 #######################################################################\n\ 00181 \n\ 00182 # The image dimensions with which the camera was calibrated. Normally\n\ 00183 # this will be the full camera resolution in pixels.\n\ 00184 uint32 height\n\ 00185 uint32 width\n\ 00186 \n\ 00187 # The distortion model used. Supported models are listed in\n\ 00188 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00189 # simple model of radial and tangential distortion - is sufficent.\n\ 00190 string distortion_model\n\ 00191 \n\ 00192 # The distortion parameters, size depending on the distortion model.\n\ 00193 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00194 float64[] D\n\ 00195 \n\ 00196 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00197 # [fx 0 cx]\n\ 00198 # K = [ 0 fy cy]\n\ 00199 # [ 0 0 1]\n\ 00200 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00201 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00202 # (cx, cy).\n\ 00203 float64[9] K # 3x3 row-major matrix\n\ 00204 \n\ 00205 # Rectification matrix (stereo cameras only)\n\ 00206 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00207 # stereo image plane so that epipolar lines in both stereo images are\n\ 00208 # parallel.\n\ 00209 float64[9] R # 3x3 row-major matrix\n\ 00210 \n\ 00211 # Projection/camera matrix\n\ 00212 # [fx' 0 cx' Tx]\n\ 00213 # P = [ 0 fy' cy' Ty]\n\ 00214 # [ 0 0 1 0]\n\ 00215 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 00216 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 00217 # is the normal camera intrinsic matrix for the rectified image.\n\ 00218 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 00219 # coordinates using the focal lengths (fx', fy') and principal point\n\ 00220 # (cx', cy') - these may differ from the values in K.\n\ 00221 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 00222 # also have R = the identity and P[1:3,1:3] = K.\n\ 00223 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 00224 # position of the optical center of the second camera in the first\n\ 00225 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 00226 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 00227 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 00228 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 00229 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 00230 # the rectified image is given by:\n\ 00231 # [u v w]' = P * [X Y Z 1]'\n\ 00232 # x = u / w\n\ 00233 # y = v / w\n\ 00234 # This holds for both images of a stereo pair.\n\ 00235 float64[12] P # 3x4 row-major matrix\n\ 00236 \n\ 00237 \n\ 00238 #######################################################################\n\ 00239 # Operational Parameters #\n\ 00240 #######################################################################\n\ 00241 # These define the image region actually captured by the camera #\n\ 00242 # driver. Although they affect the geometry of the output image, they #\n\ 00243 # may be changed freely without recalibrating the camera. #\n\ 00244 #######################################################################\n\ 00245 \n\ 00246 # Binning refers here to any camera setting which combines rectangular\n\ 00247 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 00248 # resolution of the output image to\n\ 00249 # (width / binning_x) x (height / binning_y).\n\ 00250 # The default values binning_x = binning_y = 0 is considered the same\n\ 00251 # as binning_x = binning_y = 1 (no subsampling).\n\ 00252 uint32 binning_x\n\ 00253 uint32 binning_y\n\ 00254 \n\ 00255 # Region of interest (subwindow of full camera resolution), given in\n\ 00256 # full resolution (unbinned) image coordinates. A particular ROI\n\ 00257 # always denotes the same window of pixels on the camera sensor,\n\ 00258 # regardless of binning settings.\n\ 00259 # The default setting of roi (all values 0) is considered the same as\n\ 00260 # full resolution (roi.width = width, roi.height = height).\n\ 00261 RegionOfInterest roi\n\ 00262 \n\ 00263 ================================================================================\n\ 00264 MSG: sensor_msgs/RegionOfInterest\n\ 00265 # This message is used to specify a region of interest within an image.\n\ 00266 #\n\ 00267 # When used to specify the ROI setting of the camera when the image was\n\ 00268 # taken, the height and width fields should either match the height and\n\ 00269 # width fields for the associated image; or height = width = 0\n\ 00270 # indicates that the full resolution image was captured.\n\ 00271 \n\ 00272 uint32 x_offset # Leftmost pixel of the ROI\n\ 00273 # (0 if the ROI includes the left edge of the image)\n\ 00274 uint32 y_offset # Topmost pixel of the ROI\n\ 00275 # (0 if the ROI includes the top edge of the image)\n\ 00276 uint32 height # Height of ROI\n\ 00277 uint32 width # Width of ROI\n\ 00278 \n\ 00279 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 00280 # ROI in this message. Typically this should be False if the full image\n\ 00281 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 00282 # used).\n\ 00283 bool do_rectify\n\ 00284 \n\ 00285 ================================================================================\n\ 00286 MSG: sensor_msgs/Image\n\ 00287 # This message contains an uncompressed image\n\ 00288 # (0, 0) is at top-left corner of image\n\ 00289 #\n\ 00290 \n\ 00291 Header header # Header timestamp should be acquisition time of image\n\ 00292 # Header frame_id should be optical frame of camera\n\ 00293 # origin of frame should be optical center of cameara\n\ 00294 # +x should point to the right in the image\n\ 00295 # +y should point down in the image\n\ 00296 # +z should point into to plane of the image\n\ 00297 # If the frame_id here and the frame_id of the CameraInfo\n\ 00298 # message associated with the image conflict\n\ 00299 # the behavior is undefined\n\ 00300 \n\ 00301 uint32 height # image height, that is, number of rows\n\ 00302 uint32 width # image width, that is, number of columns\n\ 00303 \n\ 00304 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00305 # If you want to standardize a new string format, join\n\ 00306 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00307 \n\ 00308 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00309 # taken from the list of strings in src/image_encodings.cpp\n\ 00310 \n\ 00311 uint8 is_bigendian # is this data bigendian?\n\ 00312 uint32 step # Full row length in bytes\n\ 00313 uint8[] data # actual matrix data, size is (step * rows)\n\ 00314 \n\ 00315 ================================================================================\n\ 00316 MSG: cob_calibration_msgs/CalibrationPattern\n\ 00317 Header header\n\ 00318 geometry_msgs/Point32[] object_points\n\ 00319 ImagePoint[] image_points\n\ 00320 uint8 success\n\ 00321 \n\ 00322 ================================================================================\n\ 00323 MSG: geometry_msgs/Point32\n\ 00324 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00325 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00326 # \n\ 00327 # This recommendation is to promote interoperability. \n\ 00328 #\n\ 00329 # This message is designed to take up less space when sending\n\ 00330 # lots of points at once, as in the case of a PointCloud. \n\ 00331 \n\ 00332 float32 x\n\ 00333 float32 y\n\ 00334 float32 z\n\ 00335 ================================================================================\n\ 00336 MSG: cob_calibration_msgs/ChainMeasurement\n\ 00337 Header header\n\ 00338 string chain_id\n\ 00339 sensor_msgs/JointState chain_state\n\ 00340 \n\ 00341 ================================================================================\n\ 00342 MSG: sensor_msgs/JointState\n\ 00343 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\ 00344 #\n\ 00345 # The state of each joint (revolute or prismatic) is defined by:\n\ 00346 # * the position of the joint (rad or m),\n\ 00347 # * the velocity of the joint (rad/s or m/s) and \n\ 00348 # * the effort that is applied in the joint (Nm or N).\n\ 00349 #\n\ 00350 # Each joint is uniquely identified by its name\n\ 00351 # The header specifies the time at which the joint states were recorded. All the joint states\n\ 00352 # in one message have to be recorded at the same time.\n\ 00353 #\n\ 00354 # This message consists of a multiple arrays, one for each part of the joint state. \n\ 00355 # The goal is to make each of the fields optional. When e.g. your joints have no\n\ 00356 # effort associated with them, you can leave the effort array empty. \n\ 00357 #\n\ 00358 # All arrays in this message should have the same size, or be empty.\n\ 00359 # This is the only way to uniquely associate the joint name with the correct\n\ 00360 # states.\n\ 00361 \n\ 00362 \n\ 00363 Header header\n\ 00364 \n\ 00365 string[] name\n\ 00366 float64[] position\n\ 00367 float64[] velocity\n\ 00368 float64[] effort\n\ 00369 \n\ 00370 "; } 00371 public: 00372 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); } 00373 00374 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); } 00375 00376 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const 00377 { 00378 ros::serialization::OStream stream(write_ptr, 1000000000); 00379 ros::serialization::serialize(stream, sample_id); 00380 ros::serialization::serialize(stream, target_id); 00381 ros::serialization::serialize(stream, chain_id); 00382 ros::serialization::serialize(stream, M_cam); 00383 ros::serialization::serialize(stream, M_chain); 00384 return stream.getData(); 00385 } 00386 00387 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr) 00388 { 00389 ros::serialization::IStream stream(read_ptr, 1000000000); 00390 ros::serialization::deserialize(stream, sample_id); 00391 ros::serialization::deserialize(stream, target_id); 00392 ros::serialization::deserialize(stream, chain_id); 00393 ros::serialization::deserialize(stream, M_cam); 00394 ros::serialization::deserialize(stream, M_chain); 00395 return stream.getData(); 00396 } 00397 00398 ROS_DEPRECATED virtual uint32_t serializationLength() const 00399 { 00400 uint32_t size = 0; 00401 size += ros::serialization::serializationLength(sample_id); 00402 size += ros::serialization::serializationLength(target_id); 00403 size += ros::serialization::serializationLength(chain_id); 00404 size += ros::serialization::serializationLength(M_cam); 00405 size += ros::serialization::serializationLength(M_chain); 00406 return size; 00407 } 00408 00409 typedef boost::shared_ptr< ::cob_calibration_msgs::RobotMeasurement_<ContainerAllocator> > Ptr; 00410 typedef boost::shared_ptr< ::cob_calibration_msgs::RobotMeasurement_<ContainerAllocator> const> ConstPtr; 00411 boost::shared_ptr<std::map<std::string, std::string> > __connection_header; 00412 }; // struct RobotMeasurement 00413 typedef ::cob_calibration_msgs::RobotMeasurement_<std::allocator<void> > RobotMeasurement; 00414 00415 typedef boost::shared_ptr< ::cob_calibration_msgs::RobotMeasurement> RobotMeasurementPtr; 00416 typedef boost::shared_ptr< ::cob_calibration_msgs::RobotMeasurement const> RobotMeasurementConstPtr; 00417 00418 00419 template<typename ContainerAllocator> 00420 std::ostream& operator<<(std::ostream& s, const ::cob_calibration_msgs::RobotMeasurement_<ContainerAllocator> & v) 00421 { 00422 ros::message_operations::Printer< ::cob_calibration_msgs::RobotMeasurement_<ContainerAllocator> >::stream(s, "", v); 00423 return s;} 00424 00425 } // namespace cob_calibration_msgs 00426 00427 namespace ros 00428 { 00429 namespace message_traits 00430 { 00431 template<class ContainerAllocator> struct IsMessage< ::cob_calibration_msgs::RobotMeasurement_<ContainerAllocator> > : public TrueType {}; 00432 template<class ContainerAllocator> struct IsMessage< ::cob_calibration_msgs::RobotMeasurement_<ContainerAllocator> const> : public TrueType {}; 00433 template<class ContainerAllocator> 00434 struct MD5Sum< ::cob_calibration_msgs::RobotMeasurement_<ContainerAllocator> > { 00435 static const char* value() 00436 { 00437 return "48d4a626e19c4ac4e886191032058bb2"; 00438 } 00439 00440 static const char* value(const ::cob_calibration_msgs::RobotMeasurement_<ContainerAllocator> &) { return value(); } 00441 static const uint64_t static_value1 = 0x48d4a626e19c4ac4ULL; 00442 static const uint64_t static_value2 = 0xe886191032058bb2ULL; 00443 }; 00444 00445 template<class ContainerAllocator> 00446 struct DataType< ::cob_calibration_msgs::RobotMeasurement_<ContainerAllocator> > { 00447 static const char* value() 00448 { 00449 return "cob_calibration_msgs/RobotMeasurement"; 00450 } 00451 00452 static const char* value(const ::cob_calibration_msgs::RobotMeasurement_<ContainerAllocator> &) { return value(); } 00453 }; 00454 00455 template<class ContainerAllocator> 00456 struct Definition< ::cob_calibration_msgs::RobotMeasurement_<ContainerAllocator> > { 00457 static const char* value() 00458 { 00459 return "string sample_id # Tag to figure out which yaml file this was generated from\n\ 00460 \n\ 00461 string target_id # Defines the target that we were sensing.\n\ 00462 string chain_id # Defines where this target was attached\n\ 00463 \n\ 00464 CameraMeasurement[] M_cam\n\ 00465 ChainMeasurement[] M_chain\n\ 00466 \n\ 00467 ================================================================================\n\ 00468 MSG: cob_calibration_msgs/CameraMeasurement\n\ 00469 Header header\n\ 00470 string camera_id\n\ 00471 ImagePoint[] image_points\n\ 00472 sensor_msgs/CameraInfo cam_info\n\ 00473 \n\ 00474 # True -> The extra debugging fields are populated\n\ 00475 bool verbose\n\ 00476 \n\ 00477 # Extra, partially processed data. Only needed for debugging\n\ 00478 sensor_msgs/Image image\n\ 00479 sensor_msgs/Image image_rect\n\ 00480 cob_calibration_msgs/CalibrationPattern features\n\ 00481 \n\ 00482 ================================================================================\n\ 00483 MSG: std_msgs/Header\n\ 00484 # Standard metadata for higher-level stamped data types.\n\ 00485 # This is generally used to communicate timestamped data \n\ 00486 # in a particular coordinate frame.\n\ 00487 # \n\ 00488 # sequence ID: consecutively increasing ID \n\ 00489 uint32 seq\n\ 00490 #Two-integer timestamp that is expressed as:\n\ 00491 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00492 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00493 # time-handling sugar is provided by the client library\n\ 00494 time stamp\n\ 00495 #Frame this data is associated with\n\ 00496 # 0: no frame\n\ 00497 # 1: global frame\n\ 00498 string frame_id\n\ 00499 \n\ 00500 ================================================================================\n\ 00501 MSG: cob_calibration_msgs/ImagePoint\n\ 00502 float32 x\n\ 00503 float32 y\n\ 00504 \n\ 00505 ================================================================================\n\ 00506 MSG: sensor_msgs/CameraInfo\n\ 00507 # This message defines meta information for a camera. It should be in a\n\ 00508 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00509 # image topics named:\n\ 00510 #\n\ 00511 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00512 # image - monochrome, distorted\n\ 00513 # image_color - color, distorted\n\ 00514 # image_rect - monochrome, rectified\n\ 00515 # image_rect_color - color, rectified\n\ 00516 #\n\ 00517 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00518 # for producing the four processed image topics from image_raw and\n\ 00519 # camera_info. The meaning of the camera parameters are described in\n\ 00520 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00521 #\n\ 00522 # The image_geometry package provides a user-friendly interface to\n\ 00523 # common operations using this meta information. If you want to, e.g.,\n\ 00524 # project a 3d point into image coordinates, we strongly recommend\n\ 00525 # using image_geometry.\n\ 00526 #\n\ 00527 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00528 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00529 # indicates an uncalibrated camera.\n\ 00530 \n\ 00531 #######################################################################\n\ 00532 # Image acquisition info #\n\ 00533 #######################################################################\n\ 00534 \n\ 00535 # Time of image acquisition, camera coordinate frame ID\n\ 00536 Header header # Header timestamp should be acquisition time of image\n\ 00537 # Header frame_id should be optical frame of camera\n\ 00538 # origin of frame should be optical center of camera\n\ 00539 # +x should point to the right in the image\n\ 00540 # +y should point down in the image\n\ 00541 # +z should point into the plane of the image\n\ 00542 \n\ 00543 \n\ 00544 #######################################################################\n\ 00545 # Calibration Parameters #\n\ 00546 #######################################################################\n\ 00547 # These are fixed during camera calibration. Their values will be the #\n\ 00548 # same in all messages until the camera is recalibrated. Note that #\n\ 00549 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00550 # #\n\ 00551 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00552 # to: #\n\ 00553 # 1. An undistorted image (requires D and K) #\n\ 00554 # 2. A rectified image (requires D, K, R) #\n\ 00555 # The projection matrix P projects 3D points into the rectified image.#\n\ 00556 #######################################################################\n\ 00557 \n\ 00558 # The image dimensions with which the camera was calibrated. Normally\n\ 00559 # this will be the full camera resolution in pixels.\n\ 00560 uint32 height\n\ 00561 uint32 width\n\ 00562 \n\ 00563 # The distortion model used. Supported models are listed in\n\ 00564 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00565 # simple model of radial and tangential distortion - is sufficent.\n\ 00566 string distortion_model\n\ 00567 \n\ 00568 # The distortion parameters, size depending on the distortion model.\n\ 00569 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00570 float64[] D\n\ 00571 \n\ 00572 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00573 # [fx 0 cx]\n\ 00574 # K = [ 0 fy cy]\n\ 00575 # [ 0 0 1]\n\ 00576 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00577 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00578 # (cx, cy).\n\ 00579 float64[9] K # 3x3 row-major matrix\n\ 00580 \n\ 00581 # Rectification matrix (stereo cameras only)\n\ 00582 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00583 # stereo image plane so that epipolar lines in both stereo images are\n\ 00584 # parallel.\n\ 00585 float64[9] R # 3x3 row-major matrix\n\ 00586 \n\ 00587 # Projection/camera matrix\n\ 00588 # [fx' 0 cx' Tx]\n\ 00589 # P = [ 0 fy' cy' Ty]\n\ 00590 # [ 0 0 1 0]\n\ 00591 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 00592 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 00593 # is the normal camera intrinsic matrix for the rectified image.\n\ 00594 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 00595 # coordinates using the focal lengths (fx', fy') and principal point\n\ 00596 # (cx', cy') - these may differ from the values in K.\n\ 00597 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 00598 # also have R = the identity and P[1:3,1:3] = K.\n\ 00599 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 00600 # position of the optical center of the second camera in the first\n\ 00601 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 00602 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 00603 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 00604 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 00605 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 00606 # the rectified image is given by:\n\ 00607 # [u v w]' = P * [X Y Z 1]'\n\ 00608 # x = u / w\n\ 00609 # y = v / w\n\ 00610 # This holds for both images of a stereo pair.\n\ 00611 float64[12] P # 3x4 row-major matrix\n\ 00612 \n\ 00613 \n\ 00614 #######################################################################\n\ 00615 # Operational Parameters #\n\ 00616 #######################################################################\n\ 00617 # These define the image region actually captured by the camera #\n\ 00618 # driver. Although they affect the geometry of the output image, they #\n\ 00619 # may be changed freely without recalibrating the camera. #\n\ 00620 #######################################################################\n\ 00621 \n\ 00622 # Binning refers here to any camera setting which combines rectangular\n\ 00623 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 00624 # resolution of the output image to\n\ 00625 # (width / binning_x) x (height / binning_y).\n\ 00626 # The default values binning_x = binning_y = 0 is considered the same\n\ 00627 # as binning_x = binning_y = 1 (no subsampling).\n\ 00628 uint32 binning_x\n\ 00629 uint32 binning_y\n\ 00630 \n\ 00631 # Region of interest (subwindow of full camera resolution), given in\n\ 00632 # full resolution (unbinned) image coordinates. A particular ROI\n\ 00633 # always denotes the same window of pixels on the camera sensor,\n\ 00634 # regardless of binning settings.\n\ 00635 # The default setting of roi (all values 0) is considered the same as\n\ 00636 # full resolution (roi.width = width, roi.height = height).\n\ 00637 RegionOfInterest roi\n\ 00638 \n\ 00639 ================================================================================\n\ 00640 MSG: sensor_msgs/RegionOfInterest\n\ 00641 # This message is used to specify a region of interest within an image.\n\ 00642 #\n\ 00643 # When used to specify the ROI setting of the camera when the image was\n\ 00644 # taken, the height and width fields should either match the height and\n\ 00645 # width fields for the associated image; or height = width = 0\n\ 00646 # indicates that the full resolution image was captured.\n\ 00647 \n\ 00648 uint32 x_offset # Leftmost pixel of the ROI\n\ 00649 # (0 if the ROI includes the left edge of the image)\n\ 00650 uint32 y_offset # Topmost pixel of the ROI\n\ 00651 # (0 if the ROI includes the top edge of the image)\n\ 00652 uint32 height # Height of ROI\n\ 00653 uint32 width # Width of ROI\n\ 00654 \n\ 00655 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 00656 # ROI in this message. Typically this should be False if the full image\n\ 00657 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 00658 # used).\n\ 00659 bool do_rectify\n\ 00660 \n\ 00661 ================================================================================\n\ 00662 MSG: sensor_msgs/Image\n\ 00663 # This message contains an uncompressed image\n\ 00664 # (0, 0) is at top-left corner of image\n\ 00665 #\n\ 00666 \n\ 00667 Header header # Header timestamp should be acquisition time of image\n\ 00668 # Header frame_id should be optical frame of camera\n\ 00669 # origin of frame should be optical center of cameara\n\ 00670 # +x should point to the right in the image\n\ 00671 # +y should point down in the image\n\ 00672 # +z should point into to plane of the image\n\ 00673 # If the frame_id here and the frame_id of the CameraInfo\n\ 00674 # message associated with the image conflict\n\ 00675 # the behavior is undefined\n\ 00676 \n\ 00677 uint32 height # image height, that is, number of rows\n\ 00678 uint32 width # image width, that is, number of columns\n\ 00679 \n\ 00680 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00681 # If you want to standardize a new string format, join\n\ 00682 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00683 \n\ 00684 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00685 # taken from the list of strings in src/image_encodings.cpp\n\ 00686 \n\ 00687 uint8 is_bigendian # is this data bigendian?\n\ 00688 uint32 step # Full row length in bytes\n\ 00689 uint8[] data # actual matrix data, size is (step * rows)\n\ 00690 \n\ 00691 ================================================================================\n\ 00692 MSG: cob_calibration_msgs/CalibrationPattern\n\ 00693 Header header\n\ 00694 geometry_msgs/Point32[] object_points\n\ 00695 ImagePoint[] image_points\n\ 00696 uint8 success\n\ 00697 \n\ 00698 ================================================================================\n\ 00699 MSG: geometry_msgs/Point32\n\ 00700 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00701 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00702 # \n\ 00703 # This recommendation is to promote interoperability. \n\ 00704 #\n\ 00705 # This message is designed to take up less space when sending\n\ 00706 # lots of points at once, as in the case of a PointCloud. \n\ 00707 \n\ 00708 float32 x\n\ 00709 float32 y\n\ 00710 float32 z\n\ 00711 ================================================================================\n\ 00712 MSG: cob_calibration_msgs/ChainMeasurement\n\ 00713 Header header\n\ 00714 string chain_id\n\ 00715 sensor_msgs/JointState chain_state\n\ 00716 \n\ 00717 ================================================================================\n\ 00718 MSG: sensor_msgs/JointState\n\ 00719 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\ 00720 #\n\ 00721 # The state of each joint (revolute or prismatic) is defined by:\n\ 00722 # * the position of the joint (rad or m),\n\ 00723 # * the velocity of the joint (rad/s or m/s) and \n\ 00724 # * the effort that is applied in the joint (Nm or N).\n\ 00725 #\n\ 00726 # Each joint is uniquely identified by its name\n\ 00727 # The header specifies the time at which the joint states were recorded. All the joint states\n\ 00728 # in one message have to be recorded at the same time.\n\ 00729 #\n\ 00730 # This message consists of a multiple arrays, one for each part of the joint state. \n\ 00731 # The goal is to make each of the fields optional. When e.g. your joints have no\n\ 00732 # effort associated with them, you can leave the effort array empty. \n\ 00733 #\n\ 00734 # All arrays in this message should have the same size, or be empty.\n\ 00735 # This is the only way to uniquely associate the joint name with the correct\n\ 00736 # states.\n\ 00737 \n\ 00738 \n\ 00739 Header header\n\ 00740 \n\ 00741 string[] name\n\ 00742 float64[] position\n\ 00743 float64[] velocity\n\ 00744 float64[] effort\n\ 00745 \n\ 00746 "; 00747 } 00748 00749 static const char* value(const ::cob_calibration_msgs::RobotMeasurement_<ContainerAllocator> &) { return value(); } 00750 }; 00751 00752 } // namespace message_traits 00753 } // namespace ros 00754 00755 namespace ros 00756 { 00757 namespace serialization 00758 { 00759 00760 template<class ContainerAllocator> struct Serializer< ::cob_calibration_msgs::RobotMeasurement_<ContainerAllocator> > 00761 { 00762 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m) 00763 { 00764 stream.next(m.sample_id); 00765 stream.next(m.target_id); 00766 stream.next(m.chain_id); 00767 stream.next(m.M_cam); 00768 stream.next(m.M_chain); 00769 } 00770 00771 ROS_DECLARE_ALLINONE_SERIALIZER; 00772 }; // struct RobotMeasurement_ 00773 } // namespace serialization 00774 } // namespace ros 00775 00776 namespace ros 00777 { 00778 namespace message_operations 00779 { 00780 00781 template<class ContainerAllocator> 00782 struct Printer< ::cob_calibration_msgs::RobotMeasurement_<ContainerAllocator> > 00783 { 00784 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::cob_calibration_msgs::RobotMeasurement_<ContainerAllocator> & v) 00785 { 00786 s << indent << "sample_id: "; 00787 Printer<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::stream(s, indent + " ", v.sample_id); 00788 s << indent << "target_id: "; 00789 Printer<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::stream(s, indent + " ", v.target_id); 00790 s << indent << "chain_id: "; 00791 Printer<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::stream(s, indent + " ", v.chain_id); 00792 s << indent << "M_cam[]" << std::endl; 00793 for (size_t i = 0; i < v.M_cam.size(); ++i) 00794 { 00795 s << indent << " M_cam[" << i << "]: "; 00796 s << std::endl; 00797 s << indent; 00798 Printer< ::cob_calibration_msgs::CameraMeasurement_<ContainerAllocator> >::stream(s, indent + " ", v.M_cam[i]); 00799 } 00800 s << indent << "M_chain[]" << std::endl; 00801 for (size_t i = 0; i < v.M_chain.size(); ++i) 00802 { 00803 s << indent << " M_chain[" << i << "]: "; 00804 s << std::endl; 00805 s << indent; 00806 Printer< ::cob_calibration_msgs::ChainMeasurement_<ContainerAllocator> >::stream(s, indent + " ", v.M_chain[i]); 00807 } 00808 } 00809 }; 00810 00811 00812 } // namespace message_operations 00813 } // namespace ros 00814 00815 #endif // COB_CALIBRATION_MSGS_MESSAGE_ROBOTMEASUREMENT_H 00816