$search
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-electric-pr2_calibration/doc_stacks/2013-03-01_16-35-11.769043/pr2_calibration/calibration_msgs/msg/RobotMeasurement.msg */ 00002 #ifndef CALIBRATION_MSGS_MESSAGE_ROBOTMEASUREMENT_H 00003 #define CALIBRATION_MSGS_MESSAGE_ROBOTMEASUREMENT_H 00004 #include <string> 00005 #include <vector> 00006 #include <map> 00007 #include <ostream> 00008 #include "ros/serialization.h" 00009 #include "ros/builtin_message_traits.h" 00010 #include "ros/message_operations.h" 00011 #include "ros/time.h" 00012 00013 #include "ros/macros.h" 00014 00015 #include "ros/assert.h" 00016 00017 #include "calibration_msgs/CameraMeasurement.h" 00018 #include "calibration_msgs/LaserMeasurement.h" 00019 #include "calibration_msgs/ChainMeasurement.h" 00020 00021 namespace calibration_msgs 00022 { 00023 template <class ContainerAllocator> 00024 struct RobotMeasurement_ { 00025 typedef RobotMeasurement_<ContainerAllocator> Type; 00026 00027 RobotMeasurement_() 00028 : sample_id() 00029 , target_id() 00030 , chain_id() 00031 , M_cam() 00032 , M_laser() 00033 , M_chain() 00034 { 00035 } 00036 00037 RobotMeasurement_(const ContainerAllocator& _alloc) 00038 : sample_id(_alloc) 00039 , target_id(_alloc) 00040 , chain_id(_alloc) 00041 , M_cam(_alloc) 00042 , M_laser(_alloc) 00043 , M_chain(_alloc) 00044 { 00045 } 00046 00047 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _sample_id_type; 00048 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > sample_id; 00049 00050 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _target_id_type; 00051 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > target_id; 00052 00053 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _chain_id_type; 00054 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > chain_id; 00055 00056 typedef std::vector< ::calibration_msgs::CameraMeasurement_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::calibration_msgs::CameraMeasurement_<ContainerAllocator> >::other > _M_cam_type; 00057 std::vector< ::calibration_msgs::CameraMeasurement_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::calibration_msgs::CameraMeasurement_<ContainerAllocator> >::other > M_cam; 00058 00059 typedef std::vector< ::calibration_msgs::LaserMeasurement_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::calibration_msgs::LaserMeasurement_<ContainerAllocator> >::other > _M_laser_type; 00060 std::vector< ::calibration_msgs::LaserMeasurement_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::calibration_msgs::LaserMeasurement_<ContainerAllocator> >::other > M_laser; 00061 00062 typedef std::vector< ::calibration_msgs::ChainMeasurement_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::calibration_msgs::ChainMeasurement_<ContainerAllocator> >::other > _M_chain_type; 00063 std::vector< ::calibration_msgs::ChainMeasurement_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::calibration_msgs::ChainMeasurement_<ContainerAllocator> >::other > M_chain; 00064 00065 00066 ROS_DEPRECATED uint32_t get_M_cam_size() const { return (uint32_t)M_cam.size(); } 00067 ROS_DEPRECATED void set_M_cam_size(uint32_t size) { M_cam.resize((size_t)size); } 00068 ROS_DEPRECATED void get_M_cam_vec(std::vector< ::calibration_msgs::CameraMeasurement_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::calibration_msgs::CameraMeasurement_<ContainerAllocator> >::other > & vec) const { vec = this->M_cam; } 00069 ROS_DEPRECATED void set_M_cam_vec(const std::vector< ::calibration_msgs::CameraMeasurement_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::calibration_msgs::CameraMeasurement_<ContainerAllocator> >::other > & vec) { this->M_cam = vec; } 00070 ROS_DEPRECATED uint32_t get_M_laser_size() const { return (uint32_t)M_laser.size(); } 00071 ROS_DEPRECATED void set_M_laser_size(uint32_t size) { M_laser.resize((size_t)size); } 00072 ROS_DEPRECATED void get_M_laser_vec(std::vector< ::calibration_msgs::LaserMeasurement_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::calibration_msgs::LaserMeasurement_<ContainerAllocator> >::other > & vec) const { vec = this->M_laser; } 00073 ROS_DEPRECATED void set_M_laser_vec(const std::vector< ::calibration_msgs::LaserMeasurement_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::calibration_msgs::LaserMeasurement_<ContainerAllocator> >::other > & vec) { this->M_laser = vec; } 00074 ROS_DEPRECATED uint32_t get_M_chain_size() const { return (uint32_t)M_chain.size(); } 00075 ROS_DEPRECATED void set_M_chain_size(uint32_t size) { M_chain.resize((size_t)size); } 00076 ROS_DEPRECATED void get_M_chain_vec(std::vector< ::calibration_msgs::ChainMeasurement_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::calibration_msgs::ChainMeasurement_<ContainerAllocator> >::other > & vec) const { vec = this->M_chain; } 00077 ROS_DEPRECATED void set_M_chain_vec(const std::vector< ::calibration_msgs::ChainMeasurement_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::calibration_msgs::ChainMeasurement_<ContainerAllocator> >::other > & vec) { this->M_chain = vec; } 00078 private: 00079 static const char* __s_getDataType_() { return "calibration_msgs/RobotMeasurement"; } 00080 public: 00081 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); } 00082 00083 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); } 00084 00085 private: 00086 static const char* __s_getMD5Sum_() { return "5faeacd55902385628948423d864d702"; } 00087 public: 00088 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); } 00089 00090 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); } 00091 00092 private: 00093 static const char* __s_getMessageDefinition_() { return "string sample_id # Tag to figure out which yaml file this was generated from\n\ 00094 \n\ 00095 string target_id # Defines the target that we were sensing.\n\ 00096 string chain_id # Defines where this target was attached\n\ 00097 \n\ 00098 CameraMeasurement[] M_cam\n\ 00099 LaserMeasurement[] M_laser\n\ 00100 ChainMeasurement[] M_chain\n\ 00101 \n\ 00102 ================================================================================\n\ 00103 MSG: calibration_msgs/CameraMeasurement\n\ 00104 Header header\n\ 00105 string camera_id\n\ 00106 ImagePoint[] image_points\n\ 00107 sensor_msgs/CameraInfo cam_info\n\ 00108 \n\ 00109 # True -> The extra debugging fields are populated\n\ 00110 bool verbose\n\ 00111 \n\ 00112 # Extra, partially processed data. Only needed for debugging\n\ 00113 sensor_msgs/Image image\n\ 00114 sensor_msgs/Image image_rect\n\ 00115 calibration_msgs/CalibrationPattern features\n\ 00116 \n\ 00117 ================================================================================\n\ 00118 MSG: std_msgs/Header\n\ 00119 # Standard metadata for higher-level stamped data types.\n\ 00120 # This is generally used to communicate timestamped data \n\ 00121 # in a particular coordinate frame.\n\ 00122 # \n\ 00123 # sequence ID: consecutively increasing ID \n\ 00124 uint32 seq\n\ 00125 #Two-integer timestamp that is expressed as:\n\ 00126 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00127 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00128 # time-handling sugar is provided by the client library\n\ 00129 time stamp\n\ 00130 #Frame this data is associated with\n\ 00131 # 0: no frame\n\ 00132 # 1: global frame\n\ 00133 string frame_id\n\ 00134 \n\ 00135 ================================================================================\n\ 00136 MSG: calibration_msgs/ImagePoint\n\ 00137 float32 x\n\ 00138 float32 y\n\ 00139 \n\ 00140 ================================================================================\n\ 00141 MSG: sensor_msgs/CameraInfo\n\ 00142 # This message defines meta information for a camera. It should be in a\n\ 00143 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00144 # image topics named:\n\ 00145 #\n\ 00146 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00147 # image - monochrome, distorted\n\ 00148 # image_color - color, distorted\n\ 00149 # image_rect - monochrome, rectified\n\ 00150 # image_rect_color - color, rectified\n\ 00151 #\n\ 00152 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00153 # for producing the four processed image topics from image_raw and\n\ 00154 # camera_info. The meaning of the camera parameters are described in\n\ 00155 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00156 #\n\ 00157 # The image_geometry package provides a user-friendly interface to\n\ 00158 # common operations using this meta information. If you want to, e.g.,\n\ 00159 # project a 3d point into image coordinates, we strongly recommend\n\ 00160 # using image_geometry.\n\ 00161 #\n\ 00162 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00163 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00164 # indicates an uncalibrated camera.\n\ 00165 \n\ 00166 #######################################################################\n\ 00167 # Image acquisition info #\n\ 00168 #######################################################################\n\ 00169 \n\ 00170 # Time of image acquisition, camera coordinate frame ID\n\ 00171 Header header # Header timestamp should be acquisition time of image\n\ 00172 # Header frame_id should be optical frame of camera\n\ 00173 # origin of frame should be optical center of camera\n\ 00174 # +x should point to the right in the image\n\ 00175 # +y should point down in the image\n\ 00176 # +z should point into the plane of the image\n\ 00177 \n\ 00178 \n\ 00179 #######################################################################\n\ 00180 # Calibration Parameters #\n\ 00181 #######################################################################\n\ 00182 # These are fixed during camera calibration. Their values will be the #\n\ 00183 # same in all messages until the camera is recalibrated. Note that #\n\ 00184 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00185 # #\n\ 00186 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00187 # to: #\n\ 00188 # 1. An undistorted image (requires D and K) #\n\ 00189 # 2. A rectified image (requires D, K, R) #\n\ 00190 # The projection matrix P projects 3D points into the rectified image.#\n\ 00191 #######################################################################\n\ 00192 \n\ 00193 # The image dimensions with which the camera was calibrated. Normally\n\ 00194 # this will be the full camera resolution in pixels.\n\ 00195 uint32 height\n\ 00196 uint32 width\n\ 00197 \n\ 00198 # The distortion model used. Supported models are listed in\n\ 00199 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00200 # simple model of radial and tangential distortion - is sufficent.\n\ 00201 string distortion_model\n\ 00202 \n\ 00203 # The distortion parameters, size depending on the distortion model.\n\ 00204 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00205 float64[] D\n\ 00206 \n\ 00207 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00208 # [fx 0 cx]\n\ 00209 # K = [ 0 fy cy]\n\ 00210 # [ 0 0 1]\n\ 00211 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00212 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00213 # (cx, cy).\n\ 00214 float64[9] K # 3x3 row-major matrix\n\ 00215 \n\ 00216 # Rectification matrix (stereo cameras only)\n\ 00217 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00218 # stereo image plane so that epipolar lines in both stereo images are\n\ 00219 # parallel.\n\ 00220 float64[9] R # 3x3 row-major matrix\n\ 00221 \n\ 00222 # Projection/camera matrix\n\ 00223 # [fx' 0 cx' Tx]\n\ 00224 # P = [ 0 fy' cy' Ty]\n\ 00225 # [ 0 0 1 0]\n\ 00226 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 00227 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 00228 # is the normal camera intrinsic matrix for the rectified image.\n\ 00229 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 00230 # coordinates using the focal lengths (fx', fy') and principal point\n\ 00231 # (cx', cy') - these may differ from the values in K.\n\ 00232 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 00233 # also have R = the identity and P[1:3,1:3] = K.\n\ 00234 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 00235 # position of the optical center of the second camera in the first\n\ 00236 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 00237 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 00238 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 00239 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 00240 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 00241 # the rectified image is given by:\n\ 00242 # [u v w]' = P * [X Y Z 1]'\n\ 00243 # x = u / w\n\ 00244 # y = v / w\n\ 00245 # This holds for both images of a stereo pair.\n\ 00246 float64[12] P # 3x4 row-major matrix\n\ 00247 \n\ 00248 \n\ 00249 #######################################################################\n\ 00250 # Operational Parameters #\n\ 00251 #######################################################################\n\ 00252 # These define the image region actually captured by the camera #\n\ 00253 # driver. Although they affect the geometry of the output image, they #\n\ 00254 # may be changed freely without recalibrating the camera. #\n\ 00255 #######################################################################\n\ 00256 \n\ 00257 # Binning refers here to any camera setting which combines rectangular\n\ 00258 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 00259 # resolution of the output image to\n\ 00260 # (width / binning_x) x (height / binning_y).\n\ 00261 # The default values binning_x = binning_y = 0 is considered the same\n\ 00262 # as binning_x = binning_y = 1 (no subsampling).\n\ 00263 uint32 binning_x\n\ 00264 uint32 binning_y\n\ 00265 \n\ 00266 # Region of interest (subwindow of full camera resolution), given in\n\ 00267 # full resolution (unbinned) image coordinates. A particular ROI\n\ 00268 # always denotes the same window of pixels on the camera sensor,\n\ 00269 # regardless of binning settings.\n\ 00270 # The default setting of roi (all values 0) is considered the same as\n\ 00271 # full resolution (roi.width = width, roi.height = height).\n\ 00272 RegionOfInterest roi\n\ 00273 \n\ 00274 ================================================================================\n\ 00275 MSG: sensor_msgs/RegionOfInterest\n\ 00276 # This message is used to specify a region of interest within an image.\n\ 00277 #\n\ 00278 # When used to specify the ROI setting of the camera when the image was\n\ 00279 # taken, the height and width fields should either match the height and\n\ 00280 # width fields for the associated image; or height = width = 0\n\ 00281 # indicates that the full resolution image was captured.\n\ 00282 \n\ 00283 uint32 x_offset # Leftmost pixel of the ROI\n\ 00284 # (0 if the ROI includes the left edge of the image)\n\ 00285 uint32 y_offset # Topmost pixel of the ROI\n\ 00286 # (0 if the ROI includes the top edge of the image)\n\ 00287 uint32 height # Height of ROI\n\ 00288 uint32 width # Width of ROI\n\ 00289 \n\ 00290 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 00291 # ROI in this message. Typically this should be False if the full image\n\ 00292 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 00293 # used).\n\ 00294 bool do_rectify\n\ 00295 \n\ 00296 ================================================================================\n\ 00297 MSG: sensor_msgs/Image\n\ 00298 # This message contains an uncompressed image\n\ 00299 # (0, 0) is at top-left corner of image\n\ 00300 #\n\ 00301 \n\ 00302 Header header # Header timestamp should be acquisition time of image\n\ 00303 # Header frame_id should be optical frame of camera\n\ 00304 # origin of frame should be optical center of cameara\n\ 00305 # +x should point to the right in the image\n\ 00306 # +y should point down in the image\n\ 00307 # +z should point into to plane of the image\n\ 00308 # If the frame_id here and the frame_id of the CameraInfo\n\ 00309 # message associated with the image conflict\n\ 00310 # the behavior is undefined\n\ 00311 \n\ 00312 uint32 height # image height, that is, number of rows\n\ 00313 uint32 width # image width, that is, number of columns\n\ 00314 \n\ 00315 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00316 # If you want to standardize a new string format, join\n\ 00317 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00318 \n\ 00319 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00320 # taken from the list of strings in src/image_encodings.cpp\n\ 00321 \n\ 00322 uint8 is_bigendian # is this data bigendian?\n\ 00323 uint32 step # Full row length in bytes\n\ 00324 uint8[] data # actual matrix data, size is (step * rows)\n\ 00325 \n\ 00326 ================================================================================\n\ 00327 MSG: calibration_msgs/CalibrationPattern\n\ 00328 Header header\n\ 00329 geometry_msgs/Point32[] object_points\n\ 00330 ImagePoint[] image_points\n\ 00331 uint8 success\n\ 00332 \n\ 00333 ================================================================================\n\ 00334 MSG: geometry_msgs/Point32\n\ 00335 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00336 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00337 # \n\ 00338 # This recommendation is to promote interoperability. \n\ 00339 #\n\ 00340 # This message is designed to take up less space when sending\n\ 00341 # lots of points at once, as in the case of a PointCloud. \n\ 00342 \n\ 00343 float32 x\n\ 00344 float32 y\n\ 00345 float32 z\n\ 00346 ================================================================================\n\ 00347 MSG: calibration_msgs/LaserMeasurement\n\ 00348 Header header\n\ 00349 string laser_id\n\ 00350 sensor_msgs/JointState[] joint_points\n\ 00351 \n\ 00352 # True -> The extra debugging fields are populated\n\ 00353 bool verbose\n\ 00354 \n\ 00355 # Extra, partially processed data. Only needed for debugging\n\ 00356 calibration_msgs/DenseLaserSnapshot snapshot\n\ 00357 sensor_msgs/Image laser_image\n\ 00358 calibration_msgs/CalibrationPattern image_features\n\ 00359 calibration_msgs/JointStateCalibrationPattern joint_features\n\ 00360 \n\ 00361 ================================================================================\n\ 00362 MSG: sensor_msgs/JointState\n\ 00363 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\ 00364 #\n\ 00365 # The state of each joint (revolute or prismatic) is defined by:\n\ 00366 # * the position of the joint (rad or m),\n\ 00367 # * the velocity of the joint (rad/s or m/s) and \n\ 00368 # * the effort that is applied in the joint (Nm or N).\n\ 00369 #\n\ 00370 # Each joint is uniquely identified by its name\n\ 00371 # The header specifies the time at which the joint states were recorded. All the joint states\n\ 00372 # in one message have to be recorded at the same time.\n\ 00373 #\n\ 00374 # This message consists of a multiple arrays, one for each part of the joint state. \n\ 00375 # The goal is to make each of the fields optional. When e.g. your joints have no\n\ 00376 # effort associated with them, you can leave the effort array empty. \n\ 00377 #\n\ 00378 # All arrays in this message should have the same size, or be empty.\n\ 00379 # This is the only way to uniquely associate the joint name with the correct\n\ 00380 # states.\n\ 00381 \n\ 00382 \n\ 00383 Header header\n\ 00384 \n\ 00385 string[] name\n\ 00386 float64[] position\n\ 00387 float64[] velocity\n\ 00388 float64[] effort\n\ 00389 \n\ 00390 ================================================================================\n\ 00391 MSG: calibration_msgs/DenseLaserSnapshot\n\ 00392 # Provides all the state & sensor information for\n\ 00393 # a single sweep of laser attached to some mechanism.\n\ 00394 # Most likely, this will be used with PR2's tilting laser mechanism\n\ 00395 Header header\n\ 00396 \n\ 00397 # Store the laser intrinsics. This is very similar to the\n\ 00398 # intrinsics commonly stored in \n\ 00399 float32 angle_min # start angle of the scan [rad]\n\ 00400 float32 angle_max # end angle of the scan [rad]\n\ 00401 float32 angle_increment # angular distance between measurements [rad]\n\ 00402 float32 time_increment # time between measurements [seconds]\n\ 00403 float32 range_min # minimum range value [m]\n\ 00404 float32 range_max # maximum range value [m]\n\ 00405 \n\ 00406 # Define the size of the binary data\n\ 00407 uint32 readings_per_scan # (Width)\n\ 00408 uint32 num_scans # (Height)\n\ 00409 \n\ 00410 # 2D Arrays storing laser data.\n\ 00411 # We can think of each type data as being a single channel image.\n\ 00412 # Each row of the image has data from a single scan, and scans are\n\ 00413 # concatenated to form the entire 'image'.\n\ 00414 float32[] ranges # (Image data)\n\ 00415 float32[] intensities # (Image data)\n\ 00416 \n\ 00417 # Store the start time of each scan\n\ 00418 time[] scan_start\n\ 00419 \n\ 00420 ================================================================================\n\ 00421 MSG: calibration_msgs/JointStateCalibrationPattern\n\ 00422 Header header\n\ 00423 geometry_msgs/Point32[] object_points\n\ 00424 sensor_msgs/JointState[] joint_points\n\ 00425 \n\ 00426 \n\ 00427 ================================================================================\n\ 00428 MSG: calibration_msgs/ChainMeasurement\n\ 00429 Header header\n\ 00430 string chain_id\n\ 00431 sensor_msgs/JointState chain_state\n\ 00432 \n\ 00433 "; } 00434 public: 00435 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); } 00436 00437 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); } 00438 00439 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const 00440 { 00441 ros::serialization::OStream stream(write_ptr, 1000000000); 00442 ros::serialization::serialize(stream, sample_id); 00443 ros::serialization::serialize(stream, target_id); 00444 ros::serialization::serialize(stream, chain_id); 00445 ros::serialization::serialize(stream, M_cam); 00446 ros::serialization::serialize(stream, M_laser); 00447 ros::serialization::serialize(stream, M_chain); 00448 return stream.getData(); 00449 } 00450 00451 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr) 00452 { 00453 ros::serialization::IStream stream(read_ptr, 1000000000); 00454 ros::serialization::deserialize(stream, sample_id); 00455 ros::serialization::deserialize(stream, target_id); 00456 ros::serialization::deserialize(stream, chain_id); 00457 ros::serialization::deserialize(stream, M_cam); 00458 ros::serialization::deserialize(stream, M_laser); 00459 ros::serialization::deserialize(stream, M_chain); 00460 return stream.getData(); 00461 } 00462 00463 ROS_DEPRECATED virtual uint32_t serializationLength() const 00464 { 00465 uint32_t size = 0; 00466 size += ros::serialization::serializationLength(sample_id); 00467 size += ros::serialization::serializationLength(target_id); 00468 size += ros::serialization::serializationLength(chain_id); 00469 size += ros::serialization::serializationLength(M_cam); 00470 size += ros::serialization::serializationLength(M_laser); 00471 size += ros::serialization::serializationLength(M_chain); 00472 return size; 00473 } 00474 00475 typedef boost::shared_ptr< ::calibration_msgs::RobotMeasurement_<ContainerAllocator> > Ptr; 00476 typedef boost::shared_ptr< ::calibration_msgs::RobotMeasurement_<ContainerAllocator> const> ConstPtr; 00477 boost::shared_ptr<std::map<std::string, std::string> > __connection_header; 00478 }; // struct RobotMeasurement 00479 typedef ::calibration_msgs::RobotMeasurement_<std::allocator<void> > RobotMeasurement; 00480 00481 typedef boost::shared_ptr< ::calibration_msgs::RobotMeasurement> RobotMeasurementPtr; 00482 typedef boost::shared_ptr< ::calibration_msgs::RobotMeasurement const> RobotMeasurementConstPtr; 00483 00484 00485 template<typename ContainerAllocator> 00486 std::ostream& operator<<(std::ostream& s, const ::calibration_msgs::RobotMeasurement_<ContainerAllocator> & v) 00487 { 00488 ros::message_operations::Printer< ::calibration_msgs::RobotMeasurement_<ContainerAllocator> >::stream(s, "", v); 00489 return s;} 00490 00491 } // namespace calibration_msgs 00492 00493 namespace ros 00494 { 00495 namespace message_traits 00496 { 00497 template<class ContainerAllocator> struct IsMessage< ::calibration_msgs::RobotMeasurement_<ContainerAllocator> > : public TrueType {}; 00498 template<class ContainerAllocator> struct IsMessage< ::calibration_msgs::RobotMeasurement_<ContainerAllocator> const> : public TrueType {}; 00499 template<class ContainerAllocator> 00500 struct MD5Sum< ::calibration_msgs::RobotMeasurement_<ContainerAllocator> > { 00501 static const char* value() 00502 { 00503 return "5faeacd55902385628948423d864d702"; 00504 } 00505 00506 static const char* value(const ::calibration_msgs::RobotMeasurement_<ContainerAllocator> &) { return value(); } 00507 static const uint64_t static_value1 = 0x5faeacd559023856ULL; 00508 static const uint64_t static_value2 = 0x28948423d864d702ULL; 00509 }; 00510 00511 template<class ContainerAllocator> 00512 struct DataType< ::calibration_msgs::RobotMeasurement_<ContainerAllocator> > { 00513 static const char* value() 00514 { 00515 return "calibration_msgs/RobotMeasurement"; 00516 } 00517 00518 static const char* value(const ::calibration_msgs::RobotMeasurement_<ContainerAllocator> &) { return value(); } 00519 }; 00520 00521 template<class ContainerAllocator> 00522 struct Definition< ::calibration_msgs::RobotMeasurement_<ContainerAllocator> > { 00523 static const char* value() 00524 { 00525 return "string sample_id # Tag to figure out which yaml file this was generated from\n\ 00526 \n\ 00527 string target_id # Defines the target that we were sensing.\n\ 00528 string chain_id # Defines where this target was attached\n\ 00529 \n\ 00530 CameraMeasurement[] M_cam\n\ 00531 LaserMeasurement[] M_laser\n\ 00532 ChainMeasurement[] M_chain\n\ 00533 \n\ 00534 ================================================================================\n\ 00535 MSG: calibration_msgs/CameraMeasurement\n\ 00536 Header header\n\ 00537 string camera_id\n\ 00538 ImagePoint[] image_points\n\ 00539 sensor_msgs/CameraInfo cam_info\n\ 00540 \n\ 00541 # True -> The extra debugging fields are populated\n\ 00542 bool verbose\n\ 00543 \n\ 00544 # Extra, partially processed data. Only needed for debugging\n\ 00545 sensor_msgs/Image image\n\ 00546 sensor_msgs/Image image_rect\n\ 00547 calibration_msgs/CalibrationPattern features\n\ 00548 \n\ 00549 ================================================================================\n\ 00550 MSG: std_msgs/Header\n\ 00551 # Standard metadata for higher-level stamped data types.\n\ 00552 # This is generally used to communicate timestamped data \n\ 00553 # in a particular coordinate frame.\n\ 00554 # \n\ 00555 # sequence ID: consecutively increasing ID \n\ 00556 uint32 seq\n\ 00557 #Two-integer timestamp that is expressed as:\n\ 00558 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00559 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00560 # time-handling sugar is provided by the client library\n\ 00561 time stamp\n\ 00562 #Frame this data is associated with\n\ 00563 # 0: no frame\n\ 00564 # 1: global frame\n\ 00565 string frame_id\n\ 00566 \n\ 00567 ================================================================================\n\ 00568 MSG: calibration_msgs/ImagePoint\n\ 00569 float32 x\n\ 00570 float32 y\n\ 00571 \n\ 00572 ================================================================================\n\ 00573 MSG: sensor_msgs/CameraInfo\n\ 00574 # This message defines meta information for a camera. It should be in a\n\ 00575 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00576 # image topics named:\n\ 00577 #\n\ 00578 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00579 # image - monochrome, distorted\n\ 00580 # image_color - color, distorted\n\ 00581 # image_rect - monochrome, rectified\n\ 00582 # image_rect_color - color, rectified\n\ 00583 #\n\ 00584 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00585 # for producing the four processed image topics from image_raw and\n\ 00586 # camera_info. The meaning of the camera parameters are described in\n\ 00587 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00588 #\n\ 00589 # The image_geometry package provides a user-friendly interface to\n\ 00590 # common operations using this meta information. If you want to, e.g.,\n\ 00591 # project a 3d point into image coordinates, we strongly recommend\n\ 00592 # using image_geometry.\n\ 00593 #\n\ 00594 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00595 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00596 # indicates an uncalibrated camera.\n\ 00597 \n\ 00598 #######################################################################\n\ 00599 # Image acquisition info #\n\ 00600 #######################################################################\n\ 00601 \n\ 00602 # Time of image acquisition, camera coordinate frame ID\n\ 00603 Header header # Header timestamp should be acquisition time of image\n\ 00604 # Header frame_id should be optical frame of camera\n\ 00605 # origin of frame should be optical center of camera\n\ 00606 # +x should point to the right in the image\n\ 00607 # +y should point down in the image\n\ 00608 # +z should point into the plane of the image\n\ 00609 \n\ 00610 \n\ 00611 #######################################################################\n\ 00612 # Calibration Parameters #\n\ 00613 #######################################################################\n\ 00614 # These are fixed during camera calibration. Their values will be the #\n\ 00615 # same in all messages until the camera is recalibrated. Note that #\n\ 00616 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00617 # #\n\ 00618 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00619 # to: #\n\ 00620 # 1. An undistorted image (requires D and K) #\n\ 00621 # 2. A rectified image (requires D, K, R) #\n\ 00622 # The projection matrix P projects 3D points into the rectified image.#\n\ 00623 #######################################################################\n\ 00624 \n\ 00625 # The image dimensions with which the camera was calibrated. Normally\n\ 00626 # this will be the full camera resolution in pixels.\n\ 00627 uint32 height\n\ 00628 uint32 width\n\ 00629 \n\ 00630 # The distortion model used. Supported models are listed in\n\ 00631 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00632 # simple model of radial and tangential distortion - is sufficent.\n\ 00633 string distortion_model\n\ 00634 \n\ 00635 # The distortion parameters, size depending on the distortion model.\n\ 00636 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00637 float64[] D\n\ 00638 \n\ 00639 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00640 # [fx 0 cx]\n\ 00641 # K = [ 0 fy cy]\n\ 00642 # [ 0 0 1]\n\ 00643 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00644 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00645 # (cx, cy).\n\ 00646 float64[9] K # 3x3 row-major matrix\n\ 00647 \n\ 00648 # Rectification matrix (stereo cameras only)\n\ 00649 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00650 # stereo image plane so that epipolar lines in both stereo images are\n\ 00651 # parallel.\n\ 00652 float64[9] R # 3x3 row-major matrix\n\ 00653 \n\ 00654 # Projection/camera matrix\n\ 00655 # [fx' 0 cx' Tx]\n\ 00656 # P = [ 0 fy' cy' Ty]\n\ 00657 # [ 0 0 1 0]\n\ 00658 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 00659 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 00660 # is the normal camera intrinsic matrix for the rectified image.\n\ 00661 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 00662 # coordinates using the focal lengths (fx', fy') and principal point\n\ 00663 # (cx', cy') - these may differ from the values in K.\n\ 00664 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 00665 # also have R = the identity and P[1:3,1:3] = K.\n\ 00666 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 00667 # position of the optical center of the second camera in the first\n\ 00668 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 00669 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 00670 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 00671 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 00672 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 00673 # the rectified image is given by:\n\ 00674 # [u v w]' = P * [X Y Z 1]'\n\ 00675 # x = u / w\n\ 00676 # y = v / w\n\ 00677 # This holds for both images of a stereo pair.\n\ 00678 float64[12] P # 3x4 row-major matrix\n\ 00679 \n\ 00680 \n\ 00681 #######################################################################\n\ 00682 # Operational Parameters #\n\ 00683 #######################################################################\n\ 00684 # These define the image region actually captured by the camera #\n\ 00685 # driver. Although they affect the geometry of the output image, they #\n\ 00686 # may be changed freely without recalibrating the camera. #\n\ 00687 #######################################################################\n\ 00688 \n\ 00689 # Binning refers here to any camera setting which combines rectangular\n\ 00690 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 00691 # resolution of the output image to\n\ 00692 # (width / binning_x) x (height / binning_y).\n\ 00693 # The default values binning_x = binning_y = 0 is considered the same\n\ 00694 # as binning_x = binning_y = 1 (no subsampling).\n\ 00695 uint32 binning_x\n\ 00696 uint32 binning_y\n\ 00697 \n\ 00698 # Region of interest (subwindow of full camera resolution), given in\n\ 00699 # full resolution (unbinned) image coordinates. A particular ROI\n\ 00700 # always denotes the same window of pixels on the camera sensor,\n\ 00701 # regardless of binning settings.\n\ 00702 # The default setting of roi (all values 0) is considered the same as\n\ 00703 # full resolution (roi.width = width, roi.height = height).\n\ 00704 RegionOfInterest roi\n\ 00705 \n\ 00706 ================================================================================\n\ 00707 MSG: sensor_msgs/RegionOfInterest\n\ 00708 # This message is used to specify a region of interest within an image.\n\ 00709 #\n\ 00710 # When used to specify the ROI setting of the camera when the image was\n\ 00711 # taken, the height and width fields should either match the height and\n\ 00712 # width fields for the associated image; or height = width = 0\n\ 00713 # indicates that the full resolution image was captured.\n\ 00714 \n\ 00715 uint32 x_offset # Leftmost pixel of the ROI\n\ 00716 # (0 if the ROI includes the left edge of the image)\n\ 00717 uint32 y_offset # Topmost pixel of the ROI\n\ 00718 # (0 if the ROI includes the top edge of the image)\n\ 00719 uint32 height # Height of ROI\n\ 00720 uint32 width # Width of ROI\n\ 00721 \n\ 00722 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 00723 # ROI in this message. Typically this should be False if the full image\n\ 00724 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 00725 # used).\n\ 00726 bool do_rectify\n\ 00727 \n\ 00728 ================================================================================\n\ 00729 MSG: sensor_msgs/Image\n\ 00730 # This message contains an uncompressed image\n\ 00731 # (0, 0) is at top-left corner of image\n\ 00732 #\n\ 00733 \n\ 00734 Header header # Header timestamp should be acquisition time of image\n\ 00735 # Header frame_id should be optical frame of camera\n\ 00736 # origin of frame should be optical center of cameara\n\ 00737 # +x should point to the right in the image\n\ 00738 # +y should point down in the image\n\ 00739 # +z should point into to plane of the image\n\ 00740 # If the frame_id here and the frame_id of the CameraInfo\n\ 00741 # message associated with the image conflict\n\ 00742 # the behavior is undefined\n\ 00743 \n\ 00744 uint32 height # image height, that is, number of rows\n\ 00745 uint32 width # image width, that is, number of columns\n\ 00746 \n\ 00747 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00748 # If you want to standardize a new string format, join\n\ 00749 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00750 \n\ 00751 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00752 # taken from the list of strings in src/image_encodings.cpp\n\ 00753 \n\ 00754 uint8 is_bigendian # is this data bigendian?\n\ 00755 uint32 step # Full row length in bytes\n\ 00756 uint8[] data # actual matrix data, size is (step * rows)\n\ 00757 \n\ 00758 ================================================================================\n\ 00759 MSG: calibration_msgs/CalibrationPattern\n\ 00760 Header header\n\ 00761 geometry_msgs/Point32[] object_points\n\ 00762 ImagePoint[] image_points\n\ 00763 uint8 success\n\ 00764 \n\ 00765 ================================================================================\n\ 00766 MSG: geometry_msgs/Point32\n\ 00767 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00768 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00769 # \n\ 00770 # This recommendation is to promote interoperability. \n\ 00771 #\n\ 00772 # This message is designed to take up less space when sending\n\ 00773 # lots of points at once, as in the case of a PointCloud. \n\ 00774 \n\ 00775 float32 x\n\ 00776 float32 y\n\ 00777 float32 z\n\ 00778 ================================================================================\n\ 00779 MSG: calibration_msgs/LaserMeasurement\n\ 00780 Header header\n\ 00781 string laser_id\n\ 00782 sensor_msgs/JointState[] joint_points\n\ 00783 \n\ 00784 # True -> The extra debugging fields are populated\n\ 00785 bool verbose\n\ 00786 \n\ 00787 # Extra, partially processed data. Only needed for debugging\n\ 00788 calibration_msgs/DenseLaserSnapshot snapshot\n\ 00789 sensor_msgs/Image laser_image\n\ 00790 calibration_msgs/CalibrationPattern image_features\n\ 00791 calibration_msgs/JointStateCalibrationPattern joint_features\n\ 00792 \n\ 00793 ================================================================================\n\ 00794 MSG: sensor_msgs/JointState\n\ 00795 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\ 00796 #\n\ 00797 # The state of each joint (revolute or prismatic) is defined by:\n\ 00798 # * the position of the joint (rad or m),\n\ 00799 # * the velocity of the joint (rad/s or m/s) and \n\ 00800 # * the effort that is applied in the joint (Nm or N).\n\ 00801 #\n\ 00802 # Each joint is uniquely identified by its name\n\ 00803 # The header specifies the time at which the joint states were recorded. All the joint states\n\ 00804 # in one message have to be recorded at the same time.\n\ 00805 #\n\ 00806 # This message consists of a multiple arrays, one for each part of the joint state. \n\ 00807 # The goal is to make each of the fields optional. When e.g. your joints have no\n\ 00808 # effort associated with them, you can leave the effort array empty. \n\ 00809 #\n\ 00810 # All arrays in this message should have the same size, or be empty.\n\ 00811 # This is the only way to uniquely associate the joint name with the correct\n\ 00812 # states.\n\ 00813 \n\ 00814 \n\ 00815 Header header\n\ 00816 \n\ 00817 string[] name\n\ 00818 float64[] position\n\ 00819 float64[] velocity\n\ 00820 float64[] effort\n\ 00821 \n\ 00822 ================================================================================\n\ 00823 MSG: calibration_msgs/DenseLaserSnapshot\n\ 00824 # Provides all the state & sensor information for\n\ 00825 # a single sweep of laser attached to some mechanism.\n\ 00826 # Most likely, this will be used with PR2's tilting laser mechanism\n\ 00827 Header header\n\ 00828 \n\ 00829 # Store the laser intrinsics. This is very similar to the\n\ 00830 # intrinsics commonly stored in \n\ 00831 float32 angle_min # start angle of the scan [rad]\n\ 00832 float32 angle_max # end angle of the scan [rad]\n\ 00833 float32 angle_increment # angular distance between measurements [rad]\n\ 00834 float32 time_increment # time between measurements [seconds]\n\ 00835 float32 range_min # minimum range value [m]\n\ 00836 float32 range_max # maximum range value [m]\n\ 00837 \n\ 00838 # Define the size of the binary data\n\ 00839 uint32 readings_per_scan # (Width)\n\ 00840 uint32 num_scans # (Height)\n\ 00841 \n\ 00842 # 2D Arrays storing laser data.\n\ 00843 # We can think of each type data as being a single channel image.\n\ 00844 # Each row of the image has data from a single scan, and scans are\n\ 00845 # concatenated to form the entire 'image'.\n\ 00846 float32[] ranges # (Image data)\n\ 00847 float32[] intensities # (Image data)\n\ 00848 \n\ 00849 # Store the start time of each scan\n\ 00850 time[] scan_start\n\ 00851 \n\ 00852 ================================================================================\n\ 00853 MSG: calibration_msgs/JointStateCalibrationPattern\n\ 00854 Header header\n\ 00855 geometry_msgs/Point32[] object_points\n\ 00856 sensor_msgs/JointState[] joint_points\n\ 00857 \n\ 00858 \n\ 00859 ================================================================================\n\ 00860 MSG: calibration_msgs/ChainMeasurement\n\ 00861 Header header\n\ 00862 string chain_id\n\ 00863 sensor_msgs/JointState chain_state\n\ 00864 \n\ 00865 "; 00866 } 00867 00868 static const char* value(const ::calibration_msgs::RobotMeasurement_<ContainerAllocator> &) { return value(); } 00869 }; 00870 00871 } // namespace message_traits 00872 } // namespace ros 00873 00874 namespace ros 00875 { 00876 namespace serialization 00877 { 00878 00879 template<class ContainerAllocator> struct Serializer< ::calibration_msgs::RobotMeasurement_<ContainerAllocator> > 00880 { 00881 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m) 00882 { 00883 stream.next(m.sample_id); 00884 stream.next(m.target_id); 00885 stream.next(m.chain_id); 00886 stream.next(m.M_cam); 00887 stream.next(m.M_laser); 00888 stream.next(m.M_chain); 00889 } 00890 00891 ROS_DECLARE_ALLINONE_SERIALIZER; 00892 }; // struct RobotMeasurement_ 00893 } // namespace serialization 00894 } // namespace ros 00895 00896 namespace ros 00897 { 00898 namespace message_operations 00899 { 00900 00901 template<class ContainerAllocator> 00902 struct Printer< ::calibration_msgs::RobotMeasurement_<ContainerAllocator> > 00903 { 00904 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::calibration_msgs::RobotMeasurement_<ContainerAllocator> & v) 00905 { 00906 s << indent << "sample_id: "; 00907 Printer<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::stream(s, indent + " ", v.sample_id); 00908 s << indent << "target_id: "; 00909 Printer<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::stream(s, indent + " ", v.target_id); 00910 s << indent << "chain_id: "; 00911 Printer<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::stream(s, indent + " ", v.chain_id); 00912 s << indent << "M_cam[]" << std::endl; 00913 for (size_t i = 0; i < v.M_cam.size(); ++i) 00914 { 00915 s << indent << " M_cam[" << i << "]: "; 00916 s << std::endl; 00917 s << indent; 00918 Printer< ::calibration_msgs::CameraMeasurement_<ContainerAllocator> >::stream(s, indent + " ", v.M_cam[i]); 00919 } 00920 s << indent << "M_laser[]" << std::endl; 00921 for (size_t i = 0; i < v.M_laser.size(); ++i) 00922 { 00923 s << indent << " M_laser[" << i << "]: "; 00924 s << std::endl; 00925 s << indent; 00926 Printer< ::calibration_msgs::LaserMeasurement_<ContainerAllocator> >::stream(s, indent + " ", v.M_laser[i]); 00927 } 00928 s << indent << "M_chain[]" << std::endl; 00929 for (size_t i = 0; i < v.M_chain.size(); ++i) 00930 { 00931 s << indent << " M_chain[" << i << "]: "; 00932 s << std::endl; 00933 s << indent; 00934 Printer< ::calibration_msgs::ChainMeasurement_<ContainerAllocator> >::stream(s, indent + " ", v.M_chain[i]); 00935 } 00936 } 00937 }; 00938 00939 00940 } // namespace message_operations 00941 } // namespace ros 00942 00943 #endif // CALIBRATION_MSGS_MESSAGE_ROBOTMEASUREMENT_H 00944