$search
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-electric-pr2_calibration/doc_stacks/2013-03-01_16-35-11.769043/pr2_calibration/calibration_msgs/msg/CameraMeasurement.msg */ 00002 #ifndef CALIBRATION_MSGS_MESSAGE_CAMERAMEASUREMENT_H 00003 #define CALIBRATION_MSGS_MESSAGE_CAMERAMEASUREMENT_H 00004 #include <string> 00005 #include <vector> 00006 #include <map> 00007 #include <ostream> 00008 #include "ros/serialization.h" 00009 #include "ros/builtin_message_traits.h" 00010 #include "ros/message_operations.h" 00011 #include "ros/time.h" 00012 00013 #include "ros/macros.h" 00014 00015 #include "ros/assert.h" 00016 00017 #include "std_msgs/Header.h" 00018 #include "calibration_msgs/ImagePoint.h" 00019 #include "sensor_msgs/CameraInfo.h" 00020 #include "sensor_msgs/Image.h" 00021 #include "sensor_msgs/Image.h" 00022 #include "calibration_msgs/CalibrationPattern.h" 00023 00024 namespace calibration_msgs 00025 { 00026 template <class ContainerAllocator> 00027 struct CameraMeasurement_ { 00028 typedef CameraMeasurement_<ContainerAllocator> Type; 00029 00030 CameraMeasurement_() 00031 : header() 00032 , camera_id() 00033 , image_points() 00034 , cam_info() 00035 , verbose(false) 00036 , image() 00037 , image_rect() 00038 , features() 00039 { 00040 } 00041 00042 CameraMeasurement_(const ContainerAllocator& _alloc) 00043 : header(_alloc) 00044 , camera_id(_alloc) 00045 , image_points(_alloc) 00046 , cam_info(_alloc) 00047 , verbose(false) 00048 , image(_alloc) 00049 , image_rect(_alloc) 00050 , features(_alloc) 00051 { 00052 } 00053 00054 typedef ::std_msgs::Header_<ContainerAllocator> _header_type; 00055 ::std_msgs::Header_<ContainerAllocator> header; 00056 00057 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _camera_id_type; 00058 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > camera_id; 00059 00060 typedef std::vector< ::calibration_msgs::ImagePoint_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::calibration_msgs::ImagePoint_<ContainerAllocator> >::other > _image_points_type; 00061 std::vector< ::calibration_msgs::ImagePoint_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::calibration_msgs::ImagePoint_<ContainerAllocator> >::other > image_points; 00062 00063 typedef ::sensor_msgs::CameraInfo_<ContainerAllocator> _cam_info_type; 00064 ::sensor_msgs::CameraInfo_<ContainerAllocator> cam_info; 00065 00066 typedef uint8_t _verbose_type; 00067 uint8_t verbose; 00068 00069 typedef ::sensor_msgs::Image_<ContainerAllocator> _image_type; 00070 ::sensor_msgs::Image_<ContainerAllocator> image; 00071 00072 typedef ::sensor_msgs::Image_<ContainerAllocator> _image_rect_type; 00073 ::sensor_msgs::Image_<ContainerAllocator> image_rect; 00074 00075 typedef ::calibration_msgs::CalibrationPattern_<ContainerAllocator> _features_type; 00076 ::calibration_msgs::CalibrationPattern_<ContainerAllocator> features; 00077 00078 00079 ROS_DEPRECATED uint32_t get_image_points_size() const { return (uint32_t)image_points.size(); } 00080 ROS_DEPRECATED void set_image_points_size(uint32_t size) { image_points.resize((size_t)size); } 00081 ROS_DEPRECATED void get_image_points_vec(std::vector< ::calibration_msgs::ImagePoint_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::calibration_msgs::ImagePoint_<ContainerAllocator> >::other > & vec) const { vec = this->image_points; } 00082 ROS_DEPRECATED void set_image_points_vec(const std::vector< ::calibration_msgs::ImagePoint_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::calibration_msgs::ImagePoint_<ContainerAllocator> >::other > & vec) { this->image_points = vec; } 00083 private: 00084 static const char* __s_getDataType_() { return "calibration_msgs/CameraMeasurement"; } 00085 public: 00086 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); } 00087 00088 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); } 00089 00090 private: 00091 static const char* __s_getMD5Sum_() { return "82fd8e2ebaf7cfafd8e2a52b210c7523"; } 00092 public: 00093 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); } 00094 00095 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); } 00096 00097 private: 00098 static const char* __s_getMessageDefinition_() { return "Header header\n\ 00099 string camera_id\n\ 00100 ImagePoint[] image_points\n\ 00101 sensor_msgs/CameraInfo cam_info\n\ 00102 \n\ 00103 # True -> The extra debugging fields are populated\n\ 00104 bool verbose\n\ 00105 \n\ 00106 # Extra, partially processed data. Only needed for debugging\n\ 00107 sensor_msgs/Image image\n\ 00108 sensor_msgs/Image image_rect\n\ 00109 calibration_msgs/CalibrationPattern features\n\ 00110 \n\ 00111 ================================================================================\n\ 00112 MSG: std_msgs/Header\n\ 00113 # Standard metadata for higher-level stamped data types.\n\ 00114 # This is generally used to communicate timestamped data \n\ 00115 # in a particular coordinate frame.\n\ 00116 # \n\ 00117 # sequence ID: consecutively increasing ID \n\ 00118 uint32 seq\n\ 00119 #Two-integer timestamp that is expressed as:\n\ 00120 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00121 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00122 # time-handling sugar is provided by the client library\n\ 00123 time stamp\n\ 00124 #Frame this data is associated with\n\ 00125 # 0: no frame\n\ 00126 # 1: global frame\n\ 00127 string frame_id\n\ 00128 \n\ 00129 ================================================================================\n\ 00130 MSG: calibration_msgs/ImagePoint\n\ 00131 float32 x\n\ 00132 float32 y\n\ 00133 \n\ 00134 ================================================================================\n\ 00135 MSG: sensor_msgs/CameraInfo\n\ 00136 # This message defines meta information for a camera. It should be in a\n\ 00137 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00138 # image topics named:\n\ 00139 #\n\ 00140 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00141 # image - monochrome, distorted\n\ 00142 # image_color - color, distorted\n\ 00143 # image_rect - monochrome, rectified\n\ 00144 # image_rect_color - color, rectified\n\ 00145 #\n\ 00146 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00147 # for producing the four processed image topics from image_raw and\n\ 00148 # camera_info. The meaning of the camera parameters are described in\n\ 00149 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00150 #\n\ 00151 # The image_geometry package provides a user-friendly interface to\n\ 00152 # common operations using this meta information. If you want to, e.g.,\n\ 00153 # project a 3d point into image coordinates, we strongly recommend\n\ 00154 # using image_geometry.\n\ 00155 #\n\ 00156 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00157 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00158 # indicates an uncalibrated camera.\n\ 00159 \n\ 00160 #######################################################################\n\ 00161 # Image acquisition info #\n\ 00162 #######################################################################\n\ 00163 \n\ 00164 # Time of image acquisition, camera coordinate frame ID\n\ 00165 Header header # Header timestamp should be acquisition time of image\n\ 00166 # Header frame_id should be optical frame of camera\n\ 00167 # origin of frame should be optical center of camera\n\ 00168 # +x should point to the right in the image\n\ 00169 # +y should point down in the image\n\ 00170 # +z should point into the plane of the image\n\ 00171 \n\ 00172 \n\ 00173 #######################################################################\n\ 00174 # Calibration Parameters #\n\ 00175 #######################################################################\n\ 00176 # These are fixed during camera calibration. Their values will be the #\n\ 00177 # same in all messages until the camera is recalibrated. Note that #\n\ 00178 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00179 # #\n\ 00180 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00181 # to: #\n\ 00182 # 1. An undistorted image (requires D and K) #\n\ 00183 # 2. A rectified image (requires D, K, R) #\n\ 00184 # The projection matrix P projects 3D points into the rectified image.#\n\ 00185 #######################################################################\n\ 00186 \n\ 00187 # The image dimensions with which the camera was calibrated. Normally\n\ 00188 # this will be the full camera resolution in pixels.\n\ 00189 uint32 height\n\ 00190 uint32 width\n\ 00191 \n\ 00192 # The distortion model used. Supported models are listed in\n\ 00193 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00194 # simple model of radial and tangential distortion - is sufficent.\n\ 00195 string distortion_model\n\ 00196 \n\ 00197 # The distortion parameters, size depending on the distortion model.\n\ 00198 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00199 float64[] D\n\ 00200 \n\ 00201 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00202 # [fx 0 cx]\n\ 00203 # K = [ 0 fy cy]\n\ 00204 # [ 0 0 1]\n\ 00205 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00206 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00207 # (cx, cy).\n\ 00208 float64[9] K # 3x3 row-major matrix\n\ 00209 \n\ 00210 # Rectification matrix (stereo cameras only)\n\ 00211 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00212 # stereo image plane so that epipolar lines in both stereo images are\n\ 00213 # parallel.\n\ 00214 float64[9] R # 3x3 row-major matrix\n\ 00215 \n\ 00216 # Projection/camera matrix\n\ 00217 # [fx' 0 cx' Tx]\n\ 00218 # P = [ 0 fy' cy' Ty]\n\ 00219 # [ 0 0 1 0]\n\ 00220 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 00221 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 00222 # is the normal camera intrinsic matrix for the rectified image.\n\ 00223 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 00224 # coordinates using the focal lengths (fx', fy') and principal point\n\ 00225 # (cx', cy') - these may differ from the values in K.\n\ 00226 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 00227 # also have R = the identity and P[1:3,1:3] = K.\n\ 00228 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 00229 # position of the optical center of the second camera in the first\n\ 00230 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 00231 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 00232 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 00233 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 00234 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 00235 # the rectified image is given by:\n\ 00236 # [u v w]' = P * [X Y Z 1]'\n\ 00237 # x = u / w\n\ 00238 # y = v / w\n\ 00239 # This holds for both images of a stereo pair.\n\ 00240 float64[12] P # 3x4 row-major matrix\n\ 00241 \n\ 00242 \n\ 00243 #######################################################################\n\ 00244 # Operational Parameters #\n\ 00245 #######################################################################\n\ 00246 # These define the image region actually captured by the camera #\n\ 00247 # driver. Although they affect the geometry of the output image, they #\n\ 00248 # may be changed freely without recalibrating the camera. #\n\ 00249 #######################################################################\n\ 00250 \n\ 00251 # Binning refers here to any camera setting which combines rectangular\n\ 00252 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 00253 # resolution of the output image to\n\ 00254 # (width / binning_x) x (height / binning_y).\n\ 00255 # The default values binning_x = binning_y = 0 is considered the same\n\ 00256 # as binning_x = binning_y = 1 (no subsampling).\n\ 00257 uint32 binning_x\n\ 00258 uint32 binning_y\n\ 00259 \n\ 00260 # Region of interest (subwindow of full camera resolution), given in\n\ 00261 # full resolution (unbinned) image coordinates. A particular ROI\n\ 00262 # always denotes the same window of pixels on the camera sensor,\n\ 00263 # regardless of binning settings.\n\ 00264 # The default setting of roi (all values 0) is considered the same as\n\ 00265 # full resolution (roi.width = width, roi.height = height).\n\ 00266 RegionOfInterest roi\n\ 00267 \n\ 00268 ================================================================================\n\ 00269 MSG: sensor_msgs/RegionOfInterest\n\ 00270 # This message is used to specify a region of interest within an image.\n\ 00271 #\n\ 00272 # When used to specify the ROI setting of the camera when the image was\n\ 00273 # taken, the height and width fields should either match the height and\n\ 00274 # width fields for the associated image; or height = width = 0\n\ 00275 # indicates that the full resolution image was captured.\n\ 00276 \n\ 00277 uint32 x_offset # Leftmost pixel of the ROI\n\ 00278 # (0 if the ROI includes the left edge of the image)\n\ 00279 uint32 y_offset # Topmost pixel of the ROI\n\ 00280 # (0 if the ROI includes the top edge of the image)\n\ 00281 uint32 height # Height of ROI\n\ 00282 uint32 width # Width of ROI\n\ 00283 \n\ 00284 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 00285 # ROI in this message. Typically this should be False if the full image\n\ 00286 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 00287 # used).\n\ 00288 bool do_rectify\n\ 00289 \n\ 00290 ================================================================================\n\ 00291 MSG: sensor_msgs/Image\n\ 00292 # This message contains an uncompressed image\n\ 00293 # (0, 0) is at top-left corner of image\n\ 00294 #\n\ 00295 \n\ 00296 Header header # Header timestamp should be acquisition time of image\n\ 00297 # Header frame_id should be optical frame of camera\n\ 00298 # origin of frame should be optical center of cameara\n\ 00299 # +x should point to the right in the image\n\ 00300 # +y should point down in the image\n\ 00301 # +z should point into to plane of the image\n\ 00302 # If the frame_id here and the frame_id of the CameraInfo\n\ 00303 # message associated with the image conflict\n\ 00304 # the behavior is undefined\n\ 00305 \n\ 00306 uint32 height # image height, that is, number of rows\n\ 00307 uint32 width # image width, that is, number of columns\n\ 00308 \n\ 00309 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00310 # If you want to standardize a new string format, join\n\ 00311 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00312 \n\ 00313 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00314 # taken from the list of strings in src/image_encodings.cpp\n\ 00315 \n\ 00316 uint8 is_bigendian # is this data bigendian?\n\ 00317 uint32 step # Full row length in bytes\n\ 00318 uint8[] data # actual matrix data, size is (step * rows)\n\ 00319 \n\ 00320 ================================================================================\n\ 00321 MSG: calibration_msgs/CalibrationPattern\n\ 00322 Header header\n\ 00323 geometry_msgs/Point32[] object_points\n\ 00324 ImagePoint[] image_points\n\ 00325 uint8 success\n\ 00326 \n\ 00327 ================================================================================\n\ 00328 MSG: geometry_msgs/Point32\n\ 00329 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00330 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00331 # \n\ 00332 # This recommendation is to promote interoperability. \n\ 00333 #\n\ 00334 # This message is designed to take up less space when sending\n\ 00335 # lots of points at once, as in the case of a PointCloud. \n\ 00336 \n\ 00337 float32 x\n\ 00338 float32 y\n\ 00339 float32 z\n\ 00340 "; } 00341 public: 00342 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); } 00343 00344 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); } 00345 00346 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const 00347 { 00348 ros::serialization::OStream stream(write_ptr, 1000000000); 00349 ros::serialization::serialize(stream, header); 00350 ros::serialization::serialize(stream, camera_id); 00351 ros::serialization::serialize(stream, image_points); 00352 ros::serialization::serialize(stream, cam_info); 00353 ros::serialization::serialize(stream, verbose); 00354 ros::serialization::serialize(stream, image); 00355 ros::serialization::serialize(stream, image_rect); 00356 ros::serialization::serialize(stream, features); 00357 return stream.getData(); 00358 } 00359 00360 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr) 00361 { 00362 ros::serialization::IStream stream(read_ptr, 1000000000); 00363 ros::serialization::deserialize(stream, header); 00364 ros::serialization::deserialize(stream, camera_id); 00365 ros::serialization::deserialize(stream, image_points); 00366 ros::serialization::deserialize(stream, cam_info); 00367 ros::serialization::deserialize(stream, verbose); 00368 ros::serialization::deserialize(stream, image); 00369 ros::serialization::deserialize(stream, image_rect); 00370 ros::serialization::deserialize(stream, features); 00371 return stream.getData(); 00372 } 00373 00374 ROS_DEPRECATED virtual uint32_t serializationLength() const 00375 { 00376 uint32_t size = 0; 00377 size += ros::serialization::serializationLength(header); 00378 size += ros::serialization::serializationLength(camera_id); 00379 size += ros::serialization::serializationLength(image_points); 00380 size += ros::serialization::serializationLength(cam_info); 00381 size += ros::serialization::serializationLength(verbose); 00382 size += ros::serialization::serializationLength(image); 00383 size += ros::serialization::serializationLength(image_rect); 00384 size += ros::serialization::serializationLength(features); 00385 return size; 00386 } 00387 00388 typedef boost::shared_ptr< ::calibration_msgs::CameraMeasurement_<ContainerAllocator> > Ptr; 00389 typedef boost::shared_ptr< ::calibration_msgs::CameraMeasurement_<ContainerAllocator> const> ConstPtr; 00390 boost::shared_ptr<std::map<std::string, std::string> > __connection_header; 00391 }; // struct CameraMeasurement 00392 typedef ::calibration_msgs::CameraMeasurement_<std::allocator<void> > CameraMeasurement; 00393 00394 typedef boost::shared_ptr< ::calibration_msgs::CameraMeasurement> CameraMeasurementPtr; 00395 typedef boost::shared_ptr< ::calibration_msgs::CameraMeasurement const> CameraMeasurementConstPtr; 00396 00397 00398 template<typename ContainerAllocator> 00399 std::ostream& operator<<(std::ostream& s, const ::calibration_msgs::CameraMeasurement_<ContainerAllocator> & v) 00400 { 00401 ros::message_operations::Printer< ::calibration_msgs::CameraMeasurement_<ContainerAllocator> >::stream(s, "", v); 00402 return s;} 00403 00404 } // namespace calibration_msgs 00405 00406 namespace ros 00407 { 00408 namespace message_traits 00409 { 00410 template<class ContainerAllocator> struct IsMessage< ::calibration_msgs::CameraMeasurement_<ContainerAllocator> > : public TrueType {}; 00411 template<class ContainerAllocator> struct IsMessage< ::calibration_msgs::CameraMeasurement_<ContainerAllocator> const> : public TrueType {}; 00412 template<class ContainerAllocator> 00413 struct MD5Sum< ::calibration_msgs::CameraMeasurement_<ContainerAllocator> > { 00414 static const char* value() 00415 { 00416 return "82fd8e2ebaf7cfafd8e2a52b210c7523"; 00417 } 00418 00419 static const char* value(const ::calibration_msgs::CameraMeasurement_<ContainerAllocator> &) { return value(); } 00420 static const uint64_t static_value1 = 0x82fd8e2ebaf7cfafULL; 00421 static const uint64_t static_value2 = 0xd8e2a52b210c7523ULL; 00422 }; 00423 00424 template<class ContainerAllocator> 00425 struct DataType< ::calibration_msgs::CameraMeasurement_<ContainerAllocator> > { 00426 static const char* value() 00427 { 00428 return "calibration_msgs/CameraMeasurement"; 00429 } 00430 00431 static const char* value(const ::calibration_msgs::CameraMeasurement_<ContainerAllocator> &) { return value(); } 00432 }; 00433 00434 template<class ContainerAllocator> 00435 struct Definition< ::calibration_msgs::CameraMeasurement_<ContainerAllocator> > { 00436 static const char* value() 00437 { 00438 return "Header header\n\ 00439 string camera_id\n\ 00440 ImagePoint[] image_points\n\ 00441 sensor_msgs/CameraInfo cam_info\n\ 00442 \n\ 00443 # True -> The extra debugging fields are populated\n\ 00444 bool verbose\n\ 00445 \n\ 00446 # Extra, partially processed data. Only needed for debugging\n\ 00447 sensor_msgs/Image image\n\ 00448 sensor_msgs/Image image_rect\n\ 00449 calibration_msgs/CalibrationPattern features\n\ 00450 \n\ 00451 ================================================================================\n\ 00452 MSG: std_msgs/Header\n\ 00453 # Standard metadata for higher-level stamped data types.\n\ 00454 # This is generally used to communicate timestamped data \n\ 00455 # in a particular coordinate frame.\n\ 00456 # \n\ 00457 # sequence ID: consecutively increasing ID \n\ 00458 uint32 seq\n\ 00459 #Two-integer timestamp that is expressed as:\n\ 00460 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00461 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00462 # time-handling sugar is provided by the client library\n\ 00463 time stamp\n\ 00464 #Frame this data is associated with\n\ 00465 # 0: no frame\n\ 00466 # 1: global frame\n\ 00467 string frame_id\n\ 00468 \n\ 00469 ================================================================================\n\ 00470 MSG: calibration_msgs/ImagePoint\n\ 00471 float32 x\n\ 00472 float32 y\n\ 00473 \n\ 00474 ================================================================================\n\ 00475 MSG: sensor_msgs/CameraInfo\n\ 00476 # This message defines meta information for a camera. It should be in a\n\ 00477 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00478 # image topics named:\n\ 00479 #\n\ 00480 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00481 # image - monochrome, distorted\n\ 00482 # image_color - color, distorted\n\ 00483 # image_rect - monochrome, rectified\n\ 00484 # image_rect_color - color, rectified\n\ 00485 #\n\ 00486 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00487 # for producing the four processed image topics from image_raw and\n\ 00488 # camera_info. The meaning of the camera parameters are described in\n\ 00489 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00490 #\n\ 00491 # The image_geometry package provides a user-friendly interface to\n\ 00492 # common operations using this meta information. If you want to, e.g.,\n\ 00493 # project a 3d point into image coordinates, we strongly recommend\n\ 00494 # using image_geometry.\n\ 00495 #\n\ 00496 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00497 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00498 # indicates an uncalibrated camera.\n\ 00499 \n\ 00500 #######################################################################\n\ 00501 # Image acquisition info #\n\ 00502 #######################################################################\n\ 00503 \n\ 00504 # Time of image acquisition, camera coordinate frame ID\n\ 00505 Header header # Header timestamp should be acquisition time of image\n\ 00506 # Header frame_id should be optical frame of camera\n\ 00507 # origin of frame should be optical center of camera\n\ 00508 # +x should point to the right in the image\n\ 00509 # +y should point down in the image\n\ 00510 # +z should point into the plane of the image\n\ 00511 \n\ 00512 \n\ 00513 #######################################################################\n\ 00514 # Calibration Parameters #\n\ 00515 #######################################################################\n\ 00516 # These are fixed during camera calibration. Their values will be the #\n\ 00517 # same in all messages until the camera is recalibrated. Note that #\n\ 00518 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00519 # #\n\ 00520 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00521 # to: #\n\ 00522 # 1. An undistorted image (requires D and K) #\n\ 00523 # 2. A rectified image (requires D, K, R) #\n\ 00524 # The projection matrix P projects 3D points into the rectified image.#\n\ 00525 #######################################################################\n\ 00526 \n\ 00527 # The image dimensions with which the camera was calibrated. Normally\n\ 00528 # this will be the full camera resolution in pixels.\n\ 00529 uint32 height\n\ 00530 uint32 width\n\ 00531 \n\ 00532 # The distortion model used. Supported models are listed in\n\ 00533 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00534 # simple model of radial and tangential distortion - is sufficent.\n\ 00535 string distortion_model\n\ 00536 \n\ 00537 # The distortion parameters, size depending on the distortion model.\n\ 00538 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00539 float64[] D\n\ 00540 \n\ 00541 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00542 # [fx 0 cx]\n\ 00543 # K = [ 0 fy cy]\n\ 00544 # [ 0 0 1]\n\ 00545 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00546 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00547 # (cx, cy).\n\ 00548 float64[9] K # 3x3 row-major matrix\n\ 00549 \n\ 00550 # Rectification matrix (stereo cameras only)\n\ 00551 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00552 # stereo image plane so that epipolar lines in both stereo images are\n\ 00553 # parallel.\n\ 00554 float64[9] R # 3x3 row-major matrix\n\ 00555 \n\ 00556 # Projection/camera matrix\n\ 00557 # [fx' 0 cx' Tx]\n\ 00558 # P = [ 0 fy' cy' Ty]\n\ 00559 # [ 0 0 1 0]\n\ 00560 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 00561 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 00562 # is the normal camera intrinsic matrix for the rectified image.\n\ 00563 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 00564 # coordinates using the focal lengths (fx', fy') and principal point\n\ 00565 # (cx', cy') - these may differ from the values in K.\n\ 00566 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 00567 # also have R = the identity and P[1:3,1:3] = K.\n\ 00568 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 00569 # position of the optical center of the second camera in the first\n\ 00570 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 00571 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 00572 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 00573 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 00574 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 00575 # the rectified image is given by:\n\ 00576 # [u v w]' = P * [X Y Z 1]'\n\ 00577 # x = u / w\n\ 00578 # y = v / w\n\ 00579 # This holds for both images of a stereo pair.\n\ 00580 float64[12] P # 3x4 row-major matrix\n\ 00581 \n\ 00582 \n\ 00583 #######################################################################\n\ 00584 # Operational Parameters #\n\ 00585 #######################################################################\n\ 00586 # These define the image region actually captured by the camera #\n\ 00587 # driver. Although they affect the geometry of the output image, they #\n\ 00588 # may be changed freely without recalibrating the camera. #\n\ 00589 #######################################################################\n\ 00590 \n\ 00591 # Binning refers here to any camera setting which combines rectangular\n\ 00592 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 00593 # resolution of the output image to\n\ 00594 # (width / binning_x) x (height / binning_y).\n\ 00595 # The default values binning_x = binning_y = 0 is considered the same\n\ 00596 # as binning_x = binning_y = 1 (no subsampling).\n\ 00597 uint32 binning_x\n\ 00598 uint32 binning_y\n\ 00599 \n\ 00600 # Region of interest (subwindow of full camera resolution), given in\n\ 00601 # full resolution (unbinned) image coordinates. A particular ROI\n\ 00602 # always denotes the same window of pixels on the camera sensor,\n\ 00603 # regardless of binning settings.\n\ 00604 # The default setting of roi (all values 0) is considered the same as\n\ 00605 # full resolution (roi.width = width, roi.height = height).\n\ 00606 RegionOfInterest roi\n\ 00607 \n\ 00608 ================================================================================\n\ 00609 MSG: sensor_msgs/RegionOfInterest\n\ 00610 # This message is used to specify a region of interest within an image.\n\ 00611 #\n\ 00612 # When used to specify the ROI setting of the camera when the image was\n\ 00613 # taken, the height and width fields should either match the height and\n\ 00614 # width fields for the associated image; or height = width = 0\n\ 00615 # indicates that the full resolution image was captured.\n\ 00616 \n\ 00617 uint32 x_offset # Leftmost pixel of the ROI\n\ 00618 # (0 if the ROI includes the left edge of the image)\n\ 00619 uint32 y_offset # Topmost pixel of the ROI\n\ 00620 # (0 if the ROI includes the top edge of the image)\n\ 00621 uint32 height # Height of ROI\n\ 00622 uint32 width # Width of ROI\n\ 00623 \n\ 00624 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 00625 # ROI in this message. Typically this should be False if the full image\n\ 00626 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 00627 # used).\n\ 00628 bool do_rectify\n\ 00629 \n\ 00630 ================================================================================\n\ 00631 MSG: sensor_msgs/Image\n\ 00632 # This message contains an uncompressed image\n\ 00633 # (0, 0) is at top-left corner of image\n\ 00634 #\n\ 00635 \n\ 00636 Header header # Header timestamp should be acquisition time of image\n\ 00637 # Header frame_id should be optical frame of camera\n\ 00638 # origin of frame should be optical center of cameara\n\ 00639 # +x should point to the right in the image\n\ 00640 # +y should point down in the image\n\ 00641 # +z should point into to plane of the image\n\ 00642 # If the frame_id here and the frame_id of the CameraInfo\n\ 00643 # message associated with the image conflict\n\ 00644 # the behavior is undefined\n\ 00645 \n\ 00646 uint32 height # image height, that is, number of rows\n\ 00647 uint32 width # image width, that is, number of columns\n\ 00648 \n\ 00649 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00650 # If you want to standardize a new string format, join\n\ 00651 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00652 \n\ 00653 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00654 # taken from the list of strings in src/image_encodings.cpp\n\ 00655 \n\ 00656 uint8 is_bigendian # is this data bigendian?\n\ 00657 uint32 step # Full row length in bytes\n\ 00658 uint8[] data # actual matrix data, size is (step * rows)\n\ 00659 \n\ 00660 ================================================================================\n\ 00661 MSG: calibration_msgs/CalibrationPattern\n\ 00662 Header header\n\ 00663 geometry_msgs/Point32[] object_points\n\ 00664 ImagePoint[] image_points\n\ 00665 uint8 success\n\ 00666 \n\ 00667 ================================================================================\n\ 00668 MSG: geometry_msgs/Point32\n\ 00669 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00670 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00671 # \n\ 00672 # This recommendation is to promote interoperability. \n\ 00673 #\n\ 00674 # This message is designed to take up less space when sending\n\ 00675 # lots of points at once, as in the case of a PointCloud. \n\ 00676 \n\ 00677 float32 x\n\ 00678 float32 y\n\ 00679 float32 z\n\ 00680 "; 00681 } 00682 00683 static const char* value(const ::calibration_msgs::CameraMeasurement_<ContainerAllocator> &) { return value(); } 00684 }; 00685 00686 template<class ContainerAllocator> struct HasHeader< ::calibration_msgs::CameraMeasurement_<ContainerAllocator> > : public TrueType {}; 00687 template<class ContainerAllocator> struct HasHeader< const ::calibration_msgs::CameraMeasurement_<ContainerAllocator> > : public TrueType {}; 00688 } // namespace message_traits 00689 } // namespace ros 00690 00691 namespace ros 00692 { 00693 namespace serialization 00694 { 00695 00696 template<class ContainerAllocator> struct Serializer< ::calibration_msgs::CameraMeasurement_<ContainerAllocator> > 00697 { 00698 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m) 00699 { 00700 stream.next(m.header); 00701 stream.next(m.camera_id); 00702 stream.next(m.image_points); 00703 stream.next(m.cam_info); 00704 stream.next(m.verbose); 00705 stream.next(m.image); 00706 stream.next(m.image_rect); 00707 stream.next(m.features); 00708 } 00709 00710 ROS_DECLARE_ALLINONE_SERIALIZER; 00711 }; // struct CameraMeasurement_ 00712 } // namespace serialization 00713 } // namespace ros 00714 00715 namespace ros 00716 { 00717 namespace message_operations 00718 { 00719 00720 template<class ContainerAllocator> 00721 struct Printer< ::calibration_msgs::CameraMeasurement_<ContainerAllocator> > 00722 { 00723 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::calibration_msgs::CameraMeasurement_<ContainerAllocator> & v) 00724 { 00725 s << indent << "header: "; 00726 s << std::endl; 00727 Printer< ::std_msgs::Header_<ContainerAllocator> >::stream(s, indent + " ", v.header); 00728 s << indent << "camera_id: "; 00729 Printer<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::stream(s, indent + " ", v.camera_id); 00730 s << indent << "image_points[]" << std::endl; 00731 for (size_t i = 0; i < v.image_points.size(); ++i) 00732 { 00733 s << indent << " image_points[" << i << "]: "; 00734 s << std::endl; 00735 s << indent; 00736 Printer< ::calibration_msgs::ImagePoint_<ContainerAllocator> >::stream(s, indent + " ", v.image_points[i]); 00737 } 00738 s << indent << "cam_info: "; 00739 s << std::endl; 00740 Printer< ::sensor_msgs::CameraInfo_<ContainerAllocator> >::stream(s, indent + " ", v.cam_info); 00741 s << indent << "verbose: "; 00742 Printer<uint8_t>::stream(s, indent + " ", v.verbose); 00743 s << indent << "image: "; 00744 s << std::endl; 00745 Printer< ::sensor_msgs::Image_<ContainerAllocator> >::stream(s, indent + " ", v.image); 00746 s << indent << "image_rect: "; 00747 s << std::endl; 00748 Printer< ::sensor_msgs::Image_<ContainerAllocator> >::stream(s, indent + " ", v.image_rect); 00749 s << indent << "features: "; 00750 s << std::endl; 00751 Printer< ::calibration_msgs::CalibrationPattern_<ContainerAllocator> >::stream(s, indent + " ", v.features); 00752 } 00753 }; 00754 00755 00756 } // namespace message_operations 00757 } // namespace ros 00758 00759 #endif // CALIBRATION_MSGS_MESSAGE_CAMERAMEASUREMENT_H 00760