00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025 #ifndef EIGEN_SVD_H
00026 #define EIGEN_SVD_H
00027
00043 template<typename MatrixType> class SVD
00044 {
00045 private:
00046 typedef typename MatrixType::Scalar Scalar;
00047 typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
00048
00049 enum {
00050 PacketSize = ei_packet_traits<Scalar>::size,
00051 AlignmentMask = int(PacketSize)-1,
00052 MinSize = EIGEN_SIZE_MIN(MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime)
00053 };
00054
00055 typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> ColVector;
00056 typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> RowVector;
00057
00058 typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MinSize> MatrixUType;
00059 typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> MatrixVType;
00060 typedef Matrix<Scalar, MinSize, 1> SingularValuesType;
00061
00062 public:
00063
00064 SVD() {}
00065
00066 SVD(const MatrixType& matrix)
00067 : m_matU(matrix.rows(), std::min(matrix.rows(), matrix.cols())),
00068 m_matV(matrix.cols(),matrix.cols()),
00069 m_sigma(std::min(matrix.rows(),matrix.cols()))
00070 {
00071 compute(matrix);
00072 }
00073
00074 template<typename OtherDerived, typename ResultType>
00075 bool solve(const MatrixBase<OtherDerived> &b, ResultType* result) const;
00076
00077 const MatrixUType& matrixU() const { return m_matU; }
00078 const SingularValuesType& singularValues() const { return m_sigma; }
00079 const MatrixVType& matrixV() const { return m_matV; }
00080
00081 void compute(const MatrixType& matrix);
00082 SVD& sort();
00083
00084 template<typename UnitaryType, typename PositiveType>
00085 void computeUnitaryPositive(UnitaryType *unitary, PositiveType *positive) const;
00086 template<typename PositiveType, typename UnitaryType>
00087 void computePositiveUnitary(PositiveType *positive, UnitaryType *unitary) const;
00088 template<typename RotationType, typename ScalingType>
00089 void computeRotationScaling(RotationType *unitary, ScalingType *positive) const;
00090 template<typename ScalingType, typename RotationType>
00091 void computeScalingRotation(ScalingType *positive, RotationType *unitary) const;
00092
00093 protected:
00095 MatrixUType m_matU;
00097 MatrixVType m_matV;
00099 SingularValuesType m_sigma;
00100 };
00101
00106 template<typename MatrixType>
00107 void SVD<MatrixType>::compute(const MatrixType& matrix)
00108 {
00109 const int m = matrix.rows();
00110 const int n = matrix.cols();
00111 const int nu = std::min(m,n);
00112 ei_assert(m>=n && "In Eigen 2.0, SVD only works for MxN matrices with M>=N. Sorry!");
00113 ei_assert(m>1 && "In Eigen 2.0, SVD doesn't work on 1x1 matrices");
00114
00115 m_matU.resize(m, nu);
00116 m_matU.setZero();
00117 m_sigma.resize(std::min(m,n));
00118 m_matV.resize(n,n);
00119
00120 RowVector e(n);
00121 ColVector work(m);
00122 MatrixType matA(matrix);
00123 const bool wantu = true;
00124 const bool wantv = true;
00125 int i=0, j=0, k=0;
00126
00127
00128
00129 int nct = std::min(m-1,n);
00130 int nrt = std::max(0,std::min(n-2,m));
00131 for (k = 0; k < std::max(nct,nrt); ++k)
00132 {
00133 if (k < nct)
00134 {
00135
00136
00137 m_sigma[k] = matA.col(k).end(m-k).norm();
00138 if (m_sigma[k] != 0.0)
00139 {
00140 if (matA(k,k) < 0.0)
00141 m_sigma[k] = -m_sigma[k];
00142 matA.col(k).end(m-k) /= m_sigma[k];
00143 matA(k,k) += 1.0;
00144 }
00145 m_sigma[k] = -m_sigma[k];
00146 }
00147
00148 for (j = k+1; j < n; ++j)
00149 {
00150 if ((k < nct) && (m_sigma[k] != 0.0))
00151 {
00152
00153 Scalar t = matA.col(k).end(m-k).dot(matA.col(j).end(m-k));
00154 t = -t/matA(k,k);
00155 matA.col(j).end(m-k) += t * matA.col(k).end(m-k);
00156 }
00157
00158
00159
00160 e[j] = matA(k,j);
00161 }
00162
00163
00164 if (wantu & (k < nct))
00165 m_matU.col(k).end(m-k) = matA.col(k).end(m-k);
00166
00167 if (k < nrt)
00168 {
00169
00170
00171 e[k] = e.end(n-k-1).norm();
00172 if (e[k] != 0.0)
00173 {
00174 if (e[k+1] < 0.0)
00175 e[k] = -e[k];
00176 e.end(n-k-1) /= e[k];
00177 e[k+1] += 1.0;
00178 }
00179 e[k] = -e[k];
00180 if ((k+1 < m) & (e[k] != 0.0))
00181 {
00182
00183 work.end(m-k-1) = matA.corner(BottomRight,m-k-1,n-k-1) * e.end(n-k-1);
00184 for (j = k+1; j < n; ++j)
00185 matA.col(j).end(m-k-1) += (-e[j]/e[k+1]) * work.end(m-k-1);
00186 }
00187
00188
00189 if (wantv)
00190 m_matV.col(k).end(n-k-1) = e.end(n-k-1);
00191 }
00192 }
00193
00194
00195
00196 int p = std::min(n,m+1);
00197 if (nct < n)
00198 m_sigma[nct] = matA(nct,nct);
00199 if (m < p)
00200 m_sigma[p-1] = 0.0;
00201 if (nrt+1 < p)
00202 e[nrt] = matA(nrt,p-1);
00203 e[p-1] = 0.0;
00204
00205
00206 if (wantu)
00207 {
00208 for (j = nct; j < nu; ++j)
00209 {
00210 m_matU.col(j).setZero();
00211 m_matU(j,j) = 1.0;
00212 }
00213 for (k = nct-1; k >= 0; k--)
00214 {
00215 if (m_sigma[k] != 0.0)
00216 {
00217 for (j = k+1; j < nu; ++j)
00218 {
00219 Scalar t = m_matU.col(k).end(m-k).dot(m_matU.col(j).end(m-k));
00220 t = -t/m_matU(k,k);
00221 m_matU.col(j).end(m-k) += t * m_matU.col(k).end(m-k);
00222 }
00223 m_matU.col(k).end(m-k) = - m_matU.col(k).end(m-k);
00224 m_matU(k,k) = Scalar(1) + m_matU(k,k);
00225 if (k-1>0)
00226 m_matU.col(k).start(k-1).setZero();
00227 }
00228 else
00229 {
00230 m_matU.col(k).setZero();
00231 m_matU(k,k) = 1.0;
00232 }
00233 }
00234 }
00235
00236
00237 if (wantv)
00238 {
00239 for (k = n-1; k >= 0; k--)
00240 {
00241 if ((k < nrt) & (e[k] != 0.0))
00242 {
00243 for (j = k+1; j < nu; ++j)
00244 {
00245 Scalar t = m_matV.col(k).end(n-k-1).dot(m_matV.col(j).end(n-k-1));
00246 t = -t/m_matV(k+1,k);
00247 m_matV.col(j).end(n-k-1) += t * m_matV.col(k).end(n-k-1);
00248 }
00249 }
00250 m_matV.col(k).setZero();
00251 m_matV(k,k) = 1.0;
00252 }
00253 }
00254
00255
00256 int pp = p-1;
00257 int iter = 0;
00258 Scalar eps = ei_pow(Scalar(2),ei_is_same_type<Scalar,float>::ret ? Scalar(-23) : Scalar(-52));
00259 while (p > 0)
00260 {
00261 int k=0;
00262 int kase=0;
00263
00264
00265
00266
00267
00268
00269
00270
00271
00272
00273
00274
00275
00276 for (k = p-2; k >= -1; --k)
00277 {
00278 if (k == -1)
00279 break;
00280 if (ei_abs(e[k]) <= eps*(ei_abs(m_sigma[k]) + ei_abs(m_sigma[k+1])))
00281 {
00282 e[k] = 0.0;
00283 break;
00284 }
00285 }
00286 if (k == p-2)
00287 {
00288 kase = 4;
00289 }
00290 else
00291 {
00292 int ks;
00293 for (ks = p-1; ks >= k; --ks)
00294 {
00295 if (ks == k)
00296 break;
00297 Scalar t = (ks != p ? ei_abs(e[ks]) : Scalar(0)) + (ks != k+1 ? ei_abs(e[ks-1]) : Scalar(0));
00298 if (ei_abs(m_sigma[ks]) <= eps*t)
00299 {
00300 m_sigma[ks] = 0.0;
00301 break;
00302 }
00303 }
00304 if (ks == k)
00305 {
00306 kase = 3;
00307 }
00308 else if (ks == p-1)
00309 {
00310 kase = 1;
00311 }
00312 else
00313 {
00314 kase = 2;
00315 k = ks;
00316 }
00317 }
00318 ++k;
00319
00320
00321 switch (kase)
00322 {
00323
00324
00325 case 1:
00326 {
00327 Scalar f(e[p-2]);
00328 e[p-2] = 0.0;
00329 for (j = p-2; j >= k; --j)
00330 {
00331 Scalar t(ei_hypot(m_sigma[j],f));
00332 Scalar cs(m_sigma[j]/t);
00333 Scalar sn(f/t);
00334 m_sigma[j] = t;
00335 if (j != k)
00336 {
00337 f = -sn*e[j-1];
00338 e[j-1] = cs*e[j-1];
00339 }
00340 if (wantv)
00341 {
00342 for (i = 0; i < n; ++i)
00343 {
00344 t = cs*m_matV(i,j) + sn*m_matV(i,p-1);
00345 m_matV(i,p-1) = -sn*m_matV(i,j) + cs*m_matV(i,p-1);
00346 m_matV(i,j) = t;
00347 }
00348 }
00349 }
00350 }
00351 break;
00352
00353
00354 case 2:
00355 {
00356 Scalar f(e[k-1]);
00357 e[k-1] = 0.0;
00358 for (j = k; j < p; ++j)
00359 {
00360 Scalar t(ei_hypot(m_sigma[j],f));
00361 Scalar cs( m_sigma[j]/t);
00362 Scalar sn(f/t);
00363 m_sigma[j] = t;
00364 f = -sn*e[j];
00365 e[j] = cs*e[j];
00366 if (wantu)
00367 {
00368 for (i = 0; i < m; ++i)
00369 {
00370 t = cs*m_matU(i,j) + sn*m_matU(i,k-1);
00371 m_matU(i,k-1) = -sn*m_matU(i,j) + cs*m_matU(i,k-1);
00372 m_matU(i,j) = t;
00373 }
00374 }
00375 }
00376 }
00377 break;
00378
00379
00380 case 3:
00381 {
00382
00383 Scalar scale = std::max(std::max(std::max(std::max(
00384 ei_abs(m_sigma[p-1]),ei_abs(m_sigma[p-2])),ei_abs(e[p-2])),
00385 ei_abs(m_sigma[k])),ei_abs(e[k]));
00386 Scalar sp = m_sigma[p-1]/scale;
00387 Scalar spm1 = m_sigma[p-2]/scale;
00388 Scalar epm1 = e[p-2]/scale;
00389 Scalar sk = m_sigma[k]/scale;
00390 Scalar ek = e[k]/scale;
00391 Scalar b = ((spm1 + sp)*(spm1 - sp) + epm1*epm1)/Scalar(2);
00392 Scalar c = (sp*epm1)*(sp*epm1);
00393 Scalar shift = 0.0;
00394 if ((b != 0.0) || (c != 0.0))
00395 {
00396 shift = ei_sqrt(b*b + c);
00397 if (b < 0.0)
00398 shift = -shift;
00399 shift = c/(b + shift);
00400 }
00401 Scalar f = (sk + sp)*(sk - sp) + shift;
00402 Scalar g = sk*ek;
00403
00404
00405
00406 for (j = k; j < p-1; ++j)
00407 {
00408 Scalar t = ei_hypot(f,g);
00409 Scalar cs = f/t;
00410 Scalar sn = g/t;
00411 if (j != k)
00412 e[j-1] = t;
00413 f = cs*m_sigma[j] + sn*e[j];
00414 e[j] = cs*e[j] - sn*m_sigma[j];
00415 g = sn*m_sigma[j+1];
00416 m_sigma[j+1] = cs*m_sigma[j+1];
00417 if (wantv)
00418 {
00419 for (i = 0; i < n; ++i)
00420 {
00421 t = cs*m_matV(i,j) + sn*m_matV(i,j+1);
00422 m_matV(i,j+1) = -sn*m_matV(i,j) + cs*m_matV(i,j+1);
00423 m_matV(i,j) = t;
00424 }
00425 }
00426 t = ei_hypot(f,g);
00427 cs = f/t;
00428 sn = g/t;
00429 m_sigma[j] = t;
00430 f = cs*e[j] + sn*m_sigma[j+1];
00431 m_sigma[j+1] = -sn*e[j] + cs*m_sigma[j+1];
00432 g = sn*e[j+1];
00433 e[j+1] = cs*e[j+1];
00434 if (wantu && (j < m-1))
00435 {
00436 for (i = 0; i < m; ++i)
00437 {
00438 t = cs*m_matU(i,j) + sn*m_matU(i,j+1);
00439 m_matU(i,j+1) = -sn*m_matU(i,j) + cs*m_matU(i,j+1);
00440 m_matU(i,j) = t;
00441 }
00442 }
00443 }
00444 e[p-2] = f;
00445 iter = iter + 1;
00446 }
00447 break;
00448
00449
00450 case 4:
00451 {
00452
00453 if (m_sigma[k] <= 0.0)
00454 {
00455 m_sigma[k] = m_sigma[k] < Scalar(0) ? -m_sigma[k] : Scalar(0);
00456 if (wantv)
00457 m_matV.col(k).start(pp+1) = -m_matV.col(k).start(pp+1);
00458 }
00459
00460
00461 while (k < pp)
00462 {
00463 if (m_sigma[k] >= m_sigma[k+1])
00464 break;
00465 Scalar t = m_sigma[k];
00466 m_sigma[k] = m_sigma[k+1];
00467 m_sigma[k+1] = t;
00468 if (wantv && (k < n-1))
00469 m_matV.col(k).swap(m_matV.col(k+1));
00470 if (wantu && (k < m-1))
00471 m_matU.col(k).swap(m_matU.col(k+1));
00472 ++k;
00473 }
00474 iter = 0;
00475 p--;
00476 }
00477 break;
00478 }
00479 }
00480 }
00481
00482 template<typename MatrixType>
00483 SVD<MatrixType>& SVD<MatrixType>::sort()
00484 {
00485 int mu = m_matU.rows();
00486 int mv = m_matV.rows();
00487 int n = m_matU.cols();
00488
00489 for (int i=0; i<n; ++i)
00490 {
00491 int k = i;
00492 Scalar p = m_sigma.coeff(i);
00493
00494 for (int j=i+1; j<n; ++j)
00495 {
00496 if (m_sigma.coeff(j) > p)
00497 {
00498 k = j;
00499 p = m_sigma.coeff(j);
00500 }
00501 }
00502 if (k != i)
00503 {
00504 m_sigma.coeffRef(k) = m_sigma.coeff(i);
00505 m_sigma.coeffRef(i) = p;
00506
00507 int j = mu;
00508 for(int s=0; j!=0; ++s, --j)
00509 std::swap(m_matU.coeffRef(s,i), m_matU.coeffRef(s,k));
00510
00511 j = mv;
00512 for (int s=0; j!=0; ++s, --j)
00513 std::swap(m_matV.coeffRef(s,i), m_matV.coeffRef(s,k));
00514 }
00515 }
00516 return *this;
00517 }
00518
00524 template<typename MatrixType>
00525 template<typename OtherDerived, typename ResultType>
00526 bool SVD<MatrixType>::solve(const MatrixBase<OtherDerived> &b, ResultType* result) const
00527 {
00528 const int rows = m_matU.rows();
00529 ei_assert(b.rows() == rows);
00530
00531 Scalar maxVal = m_sigma.cwise().abs().maxCoeff();
00532 for (int j=0; j<b.cols(); ++j)
00533 {
00534 Matrix<Scalar,MatrixUType::RowsAtCompileTime,1> aux = m_matU.transpose() * b.col(j);
00535
00536 for (int i = 0; i <m_matU.cols(); ++i)
00537 {
00538 Scalar si = m_sigma.coeff(i);
00539 if (ei_isMuchSmallerThan(ei_abs(si),maxVal))
00540 aux.coeffRef(i) = 0;
00541 else
00542 aux.coeffRef(i) /= si;
00543 }
00544
00545 result->col(j) = m_matV * aux;
00546 }
00547 return true;
00548 }
00549
00558 template<typename MatrixType>
00559 template<typename UnitaryType, typename PositiveType>
00560 void SVD<MatrixType>::computeUnitaryPositive(UnitaryType *unitary,
00561 PositiveType *positive) const
00562 {
00563 ei_assert(m_matU.cols() == m_matV.cols() && "Polar decomposition is only for square matrices");
00564 if(unitary) *unitary = m_matU * m_matV.adjoint();
00565 if(positive) *positive = m_matV * m_sigma.asDiagonal() * m_matV.adjoint();
00566 }
00567
00576 template<typename MatrixType>
00577 template<typename UnitaryType, typename PositiveType>
00578 void SVD<MatrixType>::computePositiveUnitary(UnitaryType *positive,
00579 PositiveType *unitary) const
00580 {
00581 ei_assert(m_matU.rows() == m_matV.rows() && "Polar decomposition is only for square matrices");
00582 if(unitary) *unitary = m_matU * m_matV.adjoint();
00583 if(positive) *positive = m_matU * m_sigma.asDiagonal() * m_matU.adjoint();
00584 }
00585
00595 template<typename MatrixType>
00596 template<typename RotationType, typename ScalingType>
00597 void SVD<MatrixType>::computeRotationScaling(RotationType *rotation, ScalingType *scaling) const
00598 {
00599 ei_assert(m_matU.rows() == m_matV.rows() && "Polar decomposition is only for square matrices");
00600 Scalar x = (m_matU * m_matV.adjoint()).determinant();
00601 Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> sv(m_sigma);
00602 sv.coeffRef(0) *= x;
00603 if(scaling) scaling->lazyAssign(m_matV * sv.asDiagonal() * m_matV.adjoint());
00604 if(rotation)
00605 {
00606 MatrixType m(m_matU);
00607 m.col(0) /= x;
00608 rotation->lazyAssign(m * m_matV.adjoint());
00609 }
00610 }
00611
00621 template<typename MatrixType>
00622 template<typename ScalingType, typename RotationType>
00623 void SVD<MatrixType>::computeScalingRotation(ScalingType *scaling, RotationType *rotation) const
00624 {
00625 ei_assert(m_matU.rows() == m_matV.rows() && "Polar decomposition is only for square matrices");
00626 Scalar x = (m_matU * m_matV.adjoint()).determinant();
00627 Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> sv(m_sigma);
00628 sv.coeffRef(0) *= x;
00629 if(scaling) scaling->lazyAssign(m_matU * sv.asDiagonal() * m_matU.adjoint());
00630 if(rotation)
00631 {
00632 MatrixType m(m_matU);
00633 m.col(0) /= x;
00634 rotation->lazyAssign(m * m_matV.adjoint());
00635 }
00636 }
00637
00638
00642 template<typename Derived>
00643 inline SVD<typename MatrixBase<Derived>::PlainMatrixType>
00644 MatrixBase<Derived>::svd() const
00645 {
00646 return SVD<PlainMatrixType>(derived());
00647 }
00648
00649 #endif // EIGEN_SVD_H