cloud_kdtree::KdTree Class Reference
#include <kdtree.h>
List of all members.
Public Member Functions |
| KdTree (const sensor_msgs::PointCloud &points, const std::vector< int > &indices) |
| Constructor for KdTree.
|
| KdTree (const sensor_msgs::PointCloud &points) |
| Constructor for KdTree.
|
| KdTree () |
| Empty constructor for KdTree. Sets some internal values to their defaults.
|
virtual void | nearestKSearch (int index, int k, std::vector< int > &k_indices, std::vector< float > &k_distances)=0 |
virtual void | nearestKSearch (const sensor_msgs::PointCloud &points, int index, int k, std::vector< int > &k_indices, std::vector< float > &k_distances)=0 |
virtual void | nearestKSearch (const geometry_msgs::Point32 &p_q, int k, std::vector< int > &k_indices, std::vector< float > &k_distances)=0 |
virtual bool | radiusSearch (int index, double radius, std::vector< int > &k_indices, std::vector< float > &k_distances, int max_nn=INT_MAX)=0 |
virtual bool | radiusSearch (const sensor_msgs::PointCloud &points, int index, double radius, std::vector< int > &k_indices, std::vector< float > &k_distances, int max_nn=INT_MAX)=0 |
virtual bool | radiusSearch (const geometry_msgs::Point32 &p_q, double radius, std::vector< int > &k_indices, std::vector< float > &k_distances, int max_nn=INT_MAX)=0 |
virtual | ~KdTree () |
| Destructor for KdTree. Deletes all allocated data arrays and destroys the kd-tree structures.
|
Protected Attributes |
double | epsilon_ |
| Epsilon precision (error bound) for nearest neighbors searches.
|
Detailed Description
Definition at line 42 of file kdtree.h.
Constructor & Destructor Documentation
cloud_kdtree::KdTree::KdTree |
( |
|
) |
[inline] |
Empty constructor for KdTree. Sets some internal values to their defaults.
Definition at line 49 of file kdtree.h.
cloud_kdtree::KdTree::KdTree |
( |
const sensor_msgs::PointCloud & |
points |
) |
|
Constructor for KdTree.
- Parameters:
-
| points | the ROS point cloud data array |
cloud_kdtree::KdTree::KdTree |
( |
const sensor_msgs::PointCloud & |
points, |
|
|
const std::vector< int > & |
indices | |
|
) |
| | |
Constructor for KdTree.
- Note:
- ATTENTION: This method breaks the 1-1 mapping between the indices returned using getNeighborsIndices and the ones from the points message ! When using this method, make sure to get the underlying point data using the getPoint method
- Parameters:
-
| points | the ROS point cloud data array |
| indices | the point cloud indices |
virtual cloud_kdtree::KdTree::~KdTree |
( |
|
) |
[inline, virtual] |
Destructor for KdTree. Deletes all allocated data arrays and destroys the kd-tree structures.
Definition at line 72 of file kdtree.h.
Member Function Documentation
virtual void cloud_kdtree::KdTree::nearestKSearch |
( |
int |
index, |
|
|
int |
k, |
|
|
std::vector< int > & |
k_indices, |
|
|
std::vector< float > & |
k_distances | |
|
) |
| | [pure virtual] |
virtual void cloud_kdtree::KdTree::nearestKSearch |
( |
const sensor_msgs::PointCloud & |
points, |
|
|
int |
index, |
|
|
int |
k, |
|
|
std::vector< int > & |
k_indices, |
|
|
std::vector< float > & |
k_distances | |
|
) |
| | [pure virtual] |
virtual void cloud_kdtree::KdTree::nearestKSearch |
( |
const geometry_msgs::Point32 & |
p_q, |
|
|
int |
k, |
|
|
std::vector< int > & |
k_indices, |
|
|
std::vector< float > & |
k_distances | |
|
) |
| | [pure virtual] |
virtual bool cloud_kdtree::KdTree::radiusSearch |
( |
int |
index, |
|
|
double |
radius, |
|
|
std::vector< int > & |
k_indices, |
|
|
std::vector< float > & |
k_distances, |
|
|
int |
max_nn = INT_MAX | |
|
) |
| | [pure virtual] |
virtual bool cloud_kdtree::KdTree::radiusSearch |
( |
const sensor_msgs::PointCloud & |
points, |
|
|
int |
index, |
|
|
double |
radius, |
|
|
std::vector< int > & |
k_indices, |
|
|
std::vector< float > & |
k_distances, |
|
|
int |
max_nn = INT_MAX | |
|
) |
| | [pure virtual] |
virtual bool cloud_kdtree::KdTree::radiusSearch |
( |
const geometry_msgs::Point32 & |
p_q, |
|
|
double |
radius, |
|
|
std::vector< int > & |
k_indices, |
|
|
std::vector< float > & |
k_distances, |
|
|
int |
max_nn = INT_MAX | |
|
) |
| | [pure virtual] |
Member Data Documentation
Epsilon precision (error bound) for nearest neighbors searches.
Definition at line 88 of file kdtree.h.
The documentation for this class was generated from the following file: