00001
00002 #ifndef PR2_INTERACTIVE_OBJECT_DETECTION_MESSAGE_GRASPABLEOBJECTLIST_H
00003 #define PR2_INTERACTIVE_OBJECT_DETECTION_MESSAGE_GRASPABLEOBJECTLIST_H
00004 #include <string>
00005 #include <vector>
00006 #include <ostream>
00007 #include "ros/serialization.h"
00008 #include "ros/builtin_message_traits.h"
00009 #include "ros/message_operations.h"
00010 #include "ros/message.h"
00011 #include "ros/time.h"
00012
00013 #include "object_manipulation_msgs/GraspableObject.h"
00014 #include "sensor_msgs/Image.h"
00015 #include "sensor_msgs/CameraInfo.h"
00016 #include "geometric_shapes_msgs/Shape.h"
00017 #include "geometry_msgs/Pose.h"
00018
00019 namespace pr2_interactive_object_detection
00020 {
00021 template <class ContainerAllocator>
00022 struct GraspableObjectList_ : public ros::Message
00023 {
00024 typedef GraspableObjectList_<ContainerAllocator> Type;
00025
00026 GraspableObjectList_()
00027 : graspable_objects()
00028 , image()
00029 , camera_info()
00030 , meshes()
00031 , reference_to_camera()
00032 {
00033 }
00034
00035 GraspableObjectList_(const ContainerAllocator& _alloc)
00036 : graspable_objects(_alloc)
00037 , image(_alloc)
00038 , camera_info(_alloc)
00039 , meshes(_alloc)
00040 , reference_to_camera(_alloc)
00041 {
00042 }
00043
00044 typedef std::vector< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::other > _graspable_objects_type;
00045 std::vector< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::other > graspable_objects;
00046
00047 typedef ::sensor_msgs::Image_<ContainerAllocator> _image_type;
00048 ::sensor_msgs::Image_<ContainerAllocator> image;
00049
00050 typedef ::sensor_msgs::CameraInfo_<ContainerAllocator> _camera_info_type;
00051 ::sensor_msgs::CameraInfo_<ContainerAllocator> camera_info;
00052
00053 typedef std::vector< ::geometric_shapes_msgs::Shape_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::geometric_shapes_msgs::Shape_<ContainerAllocator> >::other > _meshes_type;
00054 std::vector< ::geometric_shapes_msgs::Shape_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::geometric_shapes_msgs::Shape_<ContainerAllocator> >::other > meshes;
00055
00056 typedef ::geometry_msgs::Pose_<ContainerAllocator> _reference_to_camera_type;
00057 ::geometry_msgs::Pose_<ContainerAllocator> reference_to_camera;
00058
00059
00060 ROS_DEPRECATED uint32_t get_graspable_objects_size() const { return (uint32_t)graspable_objects.size(); }
00061 ROS_DEPRECATED void set_graspable_objects_size(uint32_t size) { graspable_objects.resize((size_t)size); }
00062 ROS_DEPRECATED void get_graspable_objects_vec(std::vector< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::other > & vec) const { vec = this->graspable_objects; }
00063 ROS_DEPRECATED void set_graspable_objects_vec(const std::vector< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::other > & vec) { this->graspable_objects = vec; }
00064 ROS_DEPRECATED uint32_t get_meshes_size() const { return (uint32_t)meshes.size(); }
00065 ROS_DEPRECATED void set_meshes_size(uint32_t size) { meshes.resize((size_t)size); }
00066 ROS_DEPRECATED void get_meshes_vec(std::vector< ::geometric_shapes_msgs::Shape_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::geometric_shapes_msgs::Shape_<ContainerAllocator> >::other > & vec) const { vec = this->meshes; }
00067 ROS_DEPRECATED void set_meshes_vec(const std::vector< ::geometric_shapes_msgs::Shape_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::geometric_shapes_msgs::Shape_<ContainerAllocator> >::other > & vec) { this->meshes = vec; }
00068 private:
00069 static const char* __s_getDataType_() { return "pr2_interactive_object_detection/GraspableObjectList"; }
00070 public:
00071 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); }
00072
00073 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); }
00074
00075 private:
00076 static const char* __s_getMD5Sum_() { return "277963630ff8051c108cfa2119923767"; }
00077 public:
00078 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); }
00079
00080 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); }
00081
00082 private:
00083 static const char* __s_getMessageDefinition_() { return "object_manipulation_msgs/GraspableObject[] graspable_objects\n\
00084 \n\
00085 #Information required for visualization\n\
00086 \n\
00087 sensor_msgs/Image image\n\
00088 sensor_msgs/CameraInfo camera_info\n\
00089 \n\
00090 #Holds a single mesh for each recognized graspable object, an empty mesh otherwise\n\
00091 geometric_shapes_msgs/Shape[] meshes\n\
00092 \n\
00093 #pose to transform the frame of the clusters/object poses into camera coordinates\n\
00094 geometry_msgs/Pose reference_to_camera\n\
00095 \n\
00096 ================================================================================\n\
00097 MSG: object_manipulation_msgs/GraspableObject\n\
00098 # an object that the object_manipulator can work on\n\
00099 \n\
00100 # a graspable object can be represented in multiple ways. This message\n\
00101 # can contain all of them. Which one is actually used is up to the receiver\n\
00102 # of this message. When adding new representations, one must be careful that\n\
00103 # they have reasonable lightweight defaults indicating that that particular\n\
00104 # representation is not available.\n\
00105 \n\
00106 # the tf frame to be used as a reference frame when combining information from\n\
00107 # the different representations below\n\
00108 string reference_frame_id\n\
00109 \n\
00110 # potential recognition results from a database of models\n\
00111 # all poses are relative to the object reference pose\n\
00112 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00113 \n\
00114 # the point cloud itself\n\
00115 sensor_msgs/PointCloud cluster\n\
00116 \n\
00117 # a region of a PointCloud2 of interest\n\
00118 object_manipulation_msgs/SceneRegion region\n\
00119 \n\
00120 \n\
00121 ================================================================================\n\
00122 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00123 # Informs that a specific model from the Model Database has been \n\
00124 # identified at a certain location\n\
00125 \n\
00126 # the database id of the model\n\
00127 int32 model_id\n\
00128 \n\
00129 # the pose that it can be found in\n\
00130 geometry_msgs/PoseStamped pose\n\
00131 \n\
00132 # a measure of the confidence level in this detection result\n\
00133 float32 confidence\n\
00134 ================================================================================\n\
00135 MSG: geometry_msgs/PoseStamped\n\
00136 # A Pose with reference coordinate frame and timestamp\n\
00137 Header header\n\
00138 Pose pose\n\
00139 \n\
00140 ================================================================================\n\
00141 MSG: std_msgs/Header\n\
00142 # Standard metadata for higher-level stamped data types.\n\
00143 # This is generally used to communicate timestamped data \n\
00144 # in a particular coordinate frame.\n\
00145 # \n\
00146 # sequence ID: consecutively increasing ID \n\
00147 uint32 seq\n\
00148 #Two-integer timestamp that is expressed as:\n\
00149 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00150 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00151 # time-handling sugar is provided by the client library\n\
00152 time stamp\n\
00153 #Frame this data is associated with\n\
00154 # 0: no frame\n\
00155 # 1: global frame\n\
00156 string frame_id\n\
00157 \n\
00158 ================================================================================\n\
00159 MSG: geometry_msgs/Pose\n\
00160 # A representation of pose in free space, composed of postion and orientation. \n\
00161 Point position\n\
00162 Quaternion orientation\n\
00163 \n\
00164 ================================================================================\n\
00165 MSG: geometry_msgs/Point\n\
00166 # This contains the position of a point in free space\n\
00167 float64 x\n\
00168 float64 y\n\
00169 float64 z\n\
00170 \n\
00171 ================================================================================\n\
00172 MSG: geometry_msgs/Quaternion\n\
00173 # This represents an orientation in free space in quaternion form.\n\
00174 \n\
00175 float64 x\n\
00176 float64 y\n\
00177 float64 z\n\
00178 float64 w\n\
00179 \n\
00180 ================================================================================\n\
00181 MSG: sensor_msgs/PointCloud\n\
00182 # This message holds a collection of 3d points, plus optional additional\n\
00183 # information about each point.\n\
00184 \n\
00185 # Time of sensor data acquisition, coordinate frame ID.\n\
00186 Header header\n\
00187 \n\
00188 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00189 # in the frame given in the header.\n\
00190 geometry_msgs/Point32[] points\n\
00191 \n\
00192 # Each channel should have the same number of elements as points array,\n\
00193 # and the data in each channel should correspond 1:1 with each point.\n\
00194 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00195 ChannelFloat32[] channels\n\
00196 \n\
00197 ================================================================================\n\
00198 MSG: geometry_msgs/Point32\n\
00199 # This contains the position of a point in free space(with 32 bits of precision).\n\
00200 # It is recommeded to use Point wherever possible instead of Point32. \n\
00201 # \n\
00202 # This recommendation is to promote interoperability. \n\
00203 #\n\
00204 # This message is designed to take up less space when sending\n\
00205 # lots of points at once, as in the case of a PointCloud. \n\
00206 \n\
00207 float32 x\n\
00208 float32 y\n\
00209 float32 z\n\
00210 ================================================================================\n\
00211 MSG: sensor_msgs/ChannelFloat32\n\
00212 # This message is used by the PointCloud message to hold optional data\n\
00213 # associated with each point in the cloud. The length of the values\n\
00214 # array should be the same as the length of the points array in the\n\
00215 # PointCloud, and each value should be associated with the corresponding\n\
00216 # point.\n\
00217 \n\
00218 # Channel names in existing practice include:\n\
00219 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00220 # This is opposite to usual conventions but remains for\n\
00221 # historical reasons. The newer PointCloud2 message has no\n\
00222 # such problem.\n\
00223 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00224 # (R,G,B) values packed into the least significant 24 bits,\n\
00225 # in order.\n\
00226 # \"intensity\" - laser or pixel intensity.\n\
00227 # \"distance\"\n\
00228 \n\
00229 # The channel name should give semantics of the channel (e.g.\n\
00230 # \"intensity\" instead of \"value\").\n\
00231 string name\n\
00232 \n\
00233 # The values array should be 1-1 with the elements of the associated\n\
00234 # PointCloud.\n\
00235 float32[] values\n\
00236 \n\
00237 ================================================================================\n\
00238 MSG: object_manipulation_msgs/SceneRegion\n\
00239 # Point cloud\n\
00240 sensor_msgs/PointCloud2 cloud\n\
00241 \n\
00242 # Indices for the region of interest\n\
00243 int32[] mask\n\
00244 \n\
00245 # One of the corresponding 2D images, if applicable\n\
00246 sensor_msgs/Image image\n\
00247 \n\
00248 # The disparity image, if applicable\n\
00249 sensor_msgs/Image disparity_image\n\
00250 \n\
00251 # Camera info for the camera that took the image\n\
00252 sensor_msgs/CameraInfo cam_info\n\
00253 \n\
00254 ================================================================================\n\
00255 MSG: sensor_msgs/PointCloud2\n\
00256 # This message holds a collection of N-dimensional points, which may\n\
00257 # contain additional information such as normals, intensity, etc. The\n\
00258 # point data is stored as a binary blob, its layout described by the\n\
00259 # contents of the \"fields\" array.\n\
00260 \n\
00261 # The point cloud data may be organized 2d (image-like) or 1d\n\
00262 # (unordered). Point clouds organized as 2d images may be produced by\n\
00263 # camera depth sensors such as stereo or time-of-flight.\n\
00264 \n\
00265 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00266 # points).\n\
00267 Header header\n\
00268 \n\
00269 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00270 # 1 and width is the length of the point cloud.\n\
00271 uint32 height\n\
00272 uint32 width\n\
00273 \n\
00274 # Describes the channels and their layout in the binary data blob.\n\
00275 PointField[] fields\n\
00276 \n\
00277 bool is_bigendian # Is this data bigendian?\n\
00278 uint32 point_step # Length of a point in bytes\n\
00279 uint32 row_step # Length of a row in bytes\n\
00280 uint8[] data # Actual point data, size is (row_step*height)\n\
00281 \n\
00282 bool is_dense # True if there are no invalid points\n\
00283 \n\
00284 ================================================================================\n\
00285 MSG: sensor_msgs/PointField\n\
00286 # This message holds the description of one point entry in the\n\
00287 # PointCloud2 message format.\n\
00288 uint8 INT8 = 1\n\
00289 uint8 UINT8 = 2\n\
00290 uint8 INT16 = 3\n\
00291 uint8 UINT16 = 4\n\
00292 uint8 INT32 = 5\n\
00293 uint8 UINT32 = 6\n\
00294 uint8 FLOAT32 = 7\n\
00295 uint8 FLOAT64 = 8\n\
00296 \n\
00297 string name # Name of field\n\
00298 uint32 offset # Offset from start of point struct\n\
00299 uint8 datatype # Datatype enumeration, see above\n\
00300 uint32 count # How many elements in the field\n\
00301 \n\
00302 ================================================================================\n\
00303 MSG: sensor_msgs/Image\n\
00304 # This message contains an uncompressed image\n\
00305 # (0, 0) is at top-left corner of image\n\
00306 #\n\
00307 \n\
00308 Header header # Header timestamp should be acquisition time of image\n\
00309 # Header frame_id should be optical frame of camera\n\
00310 # origin of frame should be optical center of cameara\n\
00311 # +x should point to the right in the image\n\
00312 # +y should point down in the image\n\
00313 # +z should point into to plane of the image\n\
00314 # If the frame_id here and the frame_id of the CameraInfo\n\
00315 # message associated with the image conflict\n\
00316 # the behavior is undefined\n\
00317 \n\
00318 uint32 height # image height, that is, number of rows\n\
00319 uint32 width # image width, that is, number of columns\n\
00320 \n\
00321 # The legal values for encoding are in file src/image_encodings.cpp\n\
00322 # If you want to standardize a new string format, join\n\
00323 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00324 \n\
00325 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00326 # taken from the list of strings in src/image_encodings.cpp\n\
00327 \n\
00328 uint8 is_bigendian # is this data bigendian?\n\
00329 uint32 step # Full row length in bytes\n\
00330 uint8[] data # actual matrix data, size is (step * rows)\n\
00331 \n\
00332 ================================================================================\n\
00333 MSG: sensor_msgs/CameraInfo\n\
00334 # This message defines meta information for a camera. It should be in a\n\
00335 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00336 # image topics named:\n\
00337 #\n\
00338 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00339 # image - monochrome, distorted\n\
00340 # image_color - color, distorted\n\
00341 # image_rect - monochrome, rectified\n\
00342 # image_rect_color - color, rectified\n\
00343 #\n\
00344 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00345 # for producing the four processed image topics from image_raw and\n\
00346 # camera_info. The meaning of the camera parameters are described in\n\
00347 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00348 #\n\
00349 # The image_geometry package provides a user-friendly interface to\n\
00350 # common operations using this meta information. If you want to, e.g.,\n\
00351 # project a 3d point into image coordinates, we strongly recommend\n\
00352 # using image_geometry.\n\
00353 #\n\
00354 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00355 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00356 # indicates an uncalibrated camera.\n\
00357 \n\
00358 #######################################################################\n\
00359 # Image acquisition info #\n\
00360 #######################################################################\n\
00361 \n\
00362 # Time of image acquisition, camera coordinate frame ID\n\
00363 Header header # Header timestamp should be acquisition time of image\n\
00364 # Header frame_id should be optical frame of camera\n\
00365 # origin of frame should be optical center of camera\n\
00366 # +x should point to the right in the image\n\
00367 # +y should point down in the image\n\
00368 # +z should point into the plane of the image\n\
00369 \n\
00370 \n\
00371 #######################################################################\n\
00372 # Calibration Parameters #\n\
00373 #######################################################################\n\
00374 # These are fixed during camera calibration. Their values will be the #\n\
00375 # same in all messages until the camera is recalibrated. Note that #\n\
00376 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00377 # #\n\
00378 # The internal parameters can be used to warp a raw (distorted) image #\n\
00379 # to: #\n\
00380 # 1. An undistorted image (requires D and K) #\n\
00381 # 2. A rectified image (requires D, K, R) #\n\
00382 # The projection matrix P projects 3D points into the rectified image.#\n\
00383 #######################################################################\n\
00384 \n\
00385 # The image dimensions with which the camera was calibrated. Normally\n\
00386 # this will be the full camera resolution in pixels.\n\
00387 uint32 height\n\
00388 uint32 width\n\
00389 \n\
00390 # The distortion model used. Supported models are listed in\n\
00391 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00392 # simple model of radial and tangential distortion - is sufficent.\n\
00393 string distortion_model\n\
00394 \n\
00395 # The distortion parameters, size depending on the distortion model.\n\
00396 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00397 float64[] D\n\
00398 \n\
00399 # Intrinsic camera matrix for the raw (distorted) images.\n\
00400 # [fx 0 cx]\n\
00401 # K = [ 0 fy cy]\n\
00402 # [ 0 0 1]\n\
00403 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00404 # coordinates using the focal lengths (fx, fy) and principal point\n\
00405 # (cx, cy).\n\
00406 float64[9] K # 3x3 row-major matrix\n\
00407 \n\
00408 # Rectification matrix (stereo cameras only)\n\
00409 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00410 # stereo image plane so that epipolar lines in both stereo images are\n\
00411 # parallel.\n\
00412 float64[9] R # 3x3 row-major matrix\n\
00413 \n\
00414 # Projection/camera matrix\n\
00415 # [fx' 0 cx' Tx]\n\
00416 # P = [ 0 fy' cy' Ty]\n\
00417 # [ 0 0 1 0]\n\
00418 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00419 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00420 # is the normal camera intrinsic matrix for the rectified image.\n\
00421 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00422 # coordinates using the focal lengths (fx', fy') and principal point\n\
00423 # (cx', cy') - these may differ from the values in K.\n\
00424 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00425 # also have R = the identity and P[1:3,1:3] = K.\n\
00426 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00427 # position of the optical center of the second camera in the first\n\
00428 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00429 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00430 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00431 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00432 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00433 # the rectified image is given by:\n\
00434 # [u v w]' = P * [X Y Z 1]'\n\
00435 # x = u / w\n\
00436 # y = v / w\n\
00437 # This holds for both images of a stereo pair.\n\
00438 float64[12] P # 3x4 row-major matrix\n\
00439 \n\
00440 \n\
00441 #######################################################################\n\
00442 # Operational Parameters #\n\
00443 #######################################################################\n\
00444 # These define the image region actually captured by the camera #\n\
00445 # driver. Although they affect the geometry of the output image, they #\n\
00446 # may be changed freely without recalibrating the camera. #\n\
00447 #######################################################################\n\
00448 \n\
00449 # Binning refers here to any camera setting which combines rectangular\n\
00450 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00451 # resolution of the output image to\n\
00452 # (width / binning_x) x (height / binning_y).\n\
00453 # The default values binning_x = binning_y = 0 is considered the same\n\
00454 # as binning_x = binning_y = 1 (no subsampling).\n\
00455 uint32 binning_x\n\
00456 uint32 binning_y\n\
00457 \n\
00458 # Region of interest (subwindow of full camera resolution), given in\n\
00459 # full resolution (unbinned) image coordinates. A particular ROI\n\
00460 # always denotes the same window of pixels on the camera sensor,\n\
00461 # regardless of binning settings.\n\
00462 # The default setting of roi (all values 0) is considered the same as\n\
00463 # full resolution (roi.width = width, roi.height = height).\n\
00464 RegionOfInterest roi\n\
00465 \n\
00466 ================================================================================\n\
00467 MSG: sensor_msgs/RegionOfInterest\n\
00468 # This message is used to specify a region of interest within an image.\n\
00469 #\n\
00470 # When used to specify the ROI setting of the camera when the image was\n\
00471 # taken, the height and width fields should either match the height and\n\
00472 # width fields for the associated image; or height = width = 0\n\
00473 # indicates that the full resolution image was captured.\n\
00474 \n\
00475 uint32 x_offset # Leftmost pixel of the ROI\n\
00476 # (0 if the ROI includes the left edge of the image)\n\
00477 uint32 y_offset # Topmost pixel of the ROI\n\
00478 # (0 if the ROI includes the top edge of the image)\n\
00479 uint32 height # Height of ROI\n\
00480 uint32 width # Width of ROI\n\
00481 \n\
00482 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00483 # ROI in this message. Typically this should be False if the full image\n\
00484 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00485 # used).\n\
00486 bool do_rectify\n\
00487 \n\
00488 ================================================================================\n\
00489 MSG: geometric_shapes_msgs/Shape\n\
00490 byte SPHERE=0\n\
00491 byte BOX=1\n\
00492 byte CYLINDER=2\n\
00493 byte MESH=3\n\
00494 \n\
00495 byte type\n\
00496 \n\
00497 \n\
00498 #### define sphere, box, cylinder ####\n\
00499 # the origin of each shape is considered at the shape's center\n\
00500 \n\
00501 # for sphere\n\
00502 # radius := dimensions[0]\n\
00503 \n\
00504 # for cylinder\n\
00505 # radius := dimensions[0]\n\
00506 # length := dimensions[1]\n\
00507 # the length is along the Z axis\n\
00508 \n\
00509 # for box\n\
00510 # size_x := dimensions[0]\n\
00511 # size_y := dimensions[1]\n\
00512 # size_z := dimensions[2]\n\
00513 float64[] dimensions\n\
00514 \n\
00515 \n\
00516 #### define mesh ####\n\
00517 \n\
00518 # list of triangles; triangle k is defined by tre vertices located\n\
00519 # at indices triangles[3k], triangles[3k+1], triangles[3k+2]\n\
00520 int32[] triangles\n\
00521 geometry_msgs/Point[] vertices\n\
00522 \n\
00523 "; }
00524 public:
00525 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); }
00526
00527 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); }
00528
00529 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const
00530 {
00531 ros::serialization::OStream stream(write_ptr, 1000000000);
00532 ros::serialization::serialize(stream, graspable_objects);
00533 ros::serialization::serialize(stream, image);
00534 ros::serialization::serialize(stream, camera_info);
00535 ros::serialization::serialize(stream, meshes);
00536 ros::serialization::serialize(stream, reference_to_camera);
00537 return stream.getData();
00538 }
00539
00540 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr)
00541 {
00542 ros::serialization::IStream stream(read_ptr, 1000000000);
00543 ros::serialization::deserialize(stream, graspable_objects);
00544 ros::serialization::deserialize(stream, image);
00545 ros::serialization::deserialize(stream, camera_info);
00546 ros::serialization::deserialize(stream, meshes);
00547 ros::serialization::deserialize(stream, reference_to_camera);
00548 return stream.getData();
00549 }
00550
00551 ROS_DEPRECATED virtual uint32_t serializationLength() const
00552 {
00553 uint32_t size = 0;
00554 size += ros::serialization::serializationLength(graspable_objects);
00555 size += ros::serialization::serializationLength(image);
00556 size += ros::serialization::serializationLength(camera_info);
00557 size += ros::serialization::serializationLength(meshes);
00558 size += ros::serialization::serializationLength(reference_to_camera);
00559 return size;
00560 }
00561
00562 typedef boost::shared_ptr< ::pr2_interactive_object_detection::GraspableObjectList_<ContainerAllocator> > Ptr;
00563 typedef boost::shared_ptr< ::pr2_interactive_object_detection::GraspableObjectList_<ContainerAllocator> const> ConstPtr;
00564 };
00565 typedef ::pr2_interactive_object_detection::GraspableObjectList_<std::allocator<void> > GraspableObjectList;
00566
00567 typedef boost::shared_ptr< ::pr2_interactive_object_detection::GraspableObjectList> GraspableObjectListPtr;
00568 typedef boost::shared_ptr< ::pr2_interactive_object_detection::GraspableObjectList const> GraspableObjectListConstPtr;
00569
00570
00571 template<typename ContainerAllocator>
00572 std::ostream& operator<<(std::ostream& s, const ::pr2_interactive_object_detection::GraspableObjectList_<ContainerAllocator> & v)
00573 {
00574 ros::message_operations::Printer< ::pr2_interactive_object_detection::GraspableObjectList_<ContainerAllocator> >::stream(s, "", v);
00575 return s;}
00576
00577 }
00578
00579 namespace ros
00580 {
00581 namespace message_traits
00582 {
00583 template<class ContainerAllocator>
00584 struct MD5Sum< ::pr2_interactive_object_detection::GraspableObjectList_<ContainerAllocator> > {
00585 static const char* value()
00586 {
00587 return "277963630ff8051c108cfa2119923767";
00588 }
00589
00590 static const char* value(const ::pr2_interactive_object_detection::GraspableObjectList_<ContainerAllocator> &) { return value(); }
00591 static const uint64_t static_value1 = 0x277963630ff8051cULL;
00592 static const uint64_t static_value2 = 0x108cfa2119923767ULL;
00593 };
00594
00595 template<class ContainerAllocator>
00596 struct DataType< ::pr2_interactive_object_detection::GraspableObjectList_<ContainerAllocator> > {
00597 static const char* value()
00598 {
00599 return "pr2_interactive_object_detection/GraspableObjectList";
00600 }
00601
00602 static const char* value(const ::pr2_interactive_object_detection::GraspableObjectList_<ContainerAllocator> &) { return value(); }
00603 };
00604
00605 template<class ContainerAllocator>
00606 struct Definition< ::pr2_interactive_object_detection::GraspableObjectList_<ContainerAllocator> > {
00607 static const char* value()
00608 {
00609 return "object_manipulation_msgs/GraspableObject[] graspable_objects\n\
00610 \n\
00611 #Information required for visualization\n\
00612 \n\
00613 sensor_msgs/Image image\n\
00614 sensor_msgs/CameraInfo camera_info\n\
00615 \n\
00616 #Holds a single mesh for each recognized graspable object, an empty mesh otherwise\n\
00617 geometric_shapes_msgs/Shape[] meshes\n\
00618 \n\
00619 #pose to transform the frame of the clusters/object poses into camera coordinates\n\
00620 geometry_msgs/Pose reference_to_camera\n\
00621 \n\
00622 ================================================================================\n\
00623 MSG: object_manipulation_msgs/GraspableObject\n\
00624 # an object that the object_manipulator can work on\n\
00625 \n\
00626 # a graspable object can be represented in multiple ways. This message\n\
00627 # can contain all of them. Which one is actually used is up to the receiver\n\
00628 # of this message. When adding new representations, one must be careful that\n\
00629 # they have reasonable lightweight defaults indicating that that particular\n\
00630 # representation is not available.\n\
00631 \n\
00632 # the tf frame to be used as a reference frame when combining information from\n\
00633 # the different representations below\n\
00634 string reference_frame_id\n\
00635 \n\
00636 # potential recognition results from a database of models\n\
00637 # all poses are relative to the object reference pose\n\
00638 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00639 \n\
00640 # the point cloud itself\n\
00641 sensor_msgs/PointCloud cluster\n\
00642 \n\
00643 # a region of a PointCloud2 of interest\n\
00644 object_manipulation_msgs/SceneRegion region\n\
00645 \n\
00646 \n\
00647 ================================================================================\n\
00648 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00649 # Informs that a specific model from the Model Database has been \n\
00650 # identified at a certain location\n\
00651 \n\
00652 # the database id of the model\n\
00653 int32 model_id\n\
00654 \n\
00655 # the pose that it can be found in\n\
00656 geometry_msgs/PoseStamped pose\n\
00657 \n\
00658 # a measure of the confidence level in this detection result\n\
00659 float32 confidence\n\
00660 ================================================================================\n\
00661 MSG: geometry_msgs/PoseStamped\n\
00662 # A Pose with reference coordinate frame and timestamp\n\
00663 Header header\n\
00664 Pose pose\n\
00665 \n\
00666 ================================================================================\n\
00667 MSG: std_msgs/Header\n\
00668 # Standard metadata for higher-level stamped data types.\n\
00669 # This is generally used to communicate timestamped data \n\
00670 # in a particular coordinate frame.\n\
00671 # \n\
00672 # sequence ID: consecutively increasing ID \n\
00673 uint32 seq\n\
00674 #Two-integer timestamp that is expressed as:\n\
00675 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00676 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00677 # time-handling sugar is provided by the client library\n\
00678 time stamp\n\
00679 #Frame this data is associated with\n\
00680 # 0: no frame\n\
00681 # 1: global frame\n\
00682 string frame_id\n\
00683 \n\
00684 ================================================================================\n\
00685 MSG: geometry_msgs/Pose\n\
00686 # A representation of pose in free space, composed of postion and orientation. \n\
00687 Point position\n\
00688 Quaternion orientation\n\
00689 \n\
00690 ================================================================================\n\
00691 MSG: geometry_msgs/Point\n\
00692 # This contains the position of a point in free space\n\
00693 float64 x\n\
00694 float64 y\n\
00695 float64 z\n\
00696 \n\
00697 ================================================================================\n\
00698 MSG: geometry_msgs/Quaternion\n\
00699 # This represents an orientation in free space in quaternion form.\n\
00700 \n\
00701 float64 x\n\
00702 float64 y\n\
00703 float64 z\n\
00704 float64 w\n\
00705 \n\
00706 ================================================================================\n\
00707 MSG: sensor_msgs/PointCloud\n\
00708 # This message holds a collection of 3d points, plus optional additional\n\
00709 # information about each point.\n\
00710 \n\
00711 # Time of sensor data acquisition, coordinate frame ID.\n\
00712 Header header\n\
00713 \n\
00714 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00715 # in the frame given in the header.\n\
00716 geometry_msgs/Point32[] points\n\
00717 \n\
00718 # Each channel should have the same number of elements as points array,\n\
00719 # and the data in each channel should correspond 1:1 with each point.\n\
00720 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00721 ChannelFloat32[] channels\n\
00722 \n\
00723 ================================================================================\n\
00724 MSG: geometry_msgs/Point32\n\
00725 # This contains the position of a point in free space(with 32 bits of precision).\n\
00726 # It is recommeded to use Point wherever possible instead of Point32. \n\
00727 # \n\
00728 # This recommendation is to promote interoperability. \n\
00729 #\n\
00730 # This message is designed to take up less space when sending\n\
00731 # lots of points at once, as in the case of a PointCloud. \n\
00732 \n\
00733 float32 x\n\
00734 float32 y\n\
00735 float32 z\n\
00736 ================================================================================\n\
00737 MSG: sensor_msgs/ChannelFloat32\n\
00738 # This message is used by the PointCloud message to hold optional data\n\
00739 # associated with each point in the cloud. The length of the values\n\
00740 # array should be the same as the length of the points array in the\n\
00741 # PointCloud, and each value should be associated with the corresponding\n\
00742 # point.\n\
00743 \n\
00744 # Channel names in existing practice include:\n\
00745 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00746 # This is opposite to usual conventions but remains for\n\
00747 # historical reasons. The newer PointCloud2 message has no\n\
00748 # such problem.\n\
00749 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00750 # (R,G,B) values packed into the least significant 24 bits,\n\
00751 # in order.\n\
00752 # \"intensity\" - laser or pixel intensity.\n\
00753 # \"distance\"\n\
00754 \n\
00755 # The channel name should give semantics of the channel (e.g.\n\
00756 # \"intensity\" instead of \"value\").\n\
00757 string name\n\
00758 \n\
00759 # The values array should be 1-1 with the elements of the associated\n\
00760 # PointCloud.\n\
00761 float32[] values\n\
00762 \n\
00763 ================================================================================\n\
00764 MSG: object_manipulation_msgs/SceneRegion\n\
00765 # Point cloud\n\
00766 sensor_msgs/PointCloud2 cloud\n\
00767 \n\
00768 # Indices for the region of interest\n\
00769 int32[] mask\n\
00770 \n\
00771 # One of the corresponding 2D images, if applicable\n\
00772 sensor_msgs/Image image\n\
00773 \n\
00774 # The disparity image, if applicable\n\
00775 sensor_msgs/Image disparity_image\n\
00776 \n\
00777 # Camera info for the camera that took the image\n\
00778 sensor_msgs/CameraInfo cam_info\n\
00779 \n\
00780 ================================================================================\n\
00781 MSG: sensor_msgs/PointCloud2\n\
00782 # This message holds a collection of N-dimensional points, which may\n\
00783 # contain additional information such as normals, intensity, etc. The\n\
00784 # point data is stored as a binary blob, its layout described by the\n\
00785 # contents of the \"fields\" array.\n\
00786 \n\
00787 # The point cloud data may be organized 2d (image-like) or 1d\n\
00788 # (unordered). Point clouds organized as 2d images may be produced by\n\
00789 # camera depth sensors such as stereo or time-of-flight.\n\
00790 \n\
00791 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00792 # points).\n\
00793 Header header\n\
00794 \n\
00795 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00796 # 1 and width is the length of the point cloud.\n\
00797 uint32 height\n\
00798 uint32 width\n\
00799 \n\
00800 # Describes the channels and their layout in the binary data blob.\n\
00801 PointField[] fields\n\
00802 \n\
00803 bool is_bigendian # Is this data bigendian?\n\
00804 uint32 point_step # Length of a point in bytes\n\
00805 uint32 row_step # Length of a row in bytes\n\
00806 uint8[] data # Actual point data, size is (row_step*height)\n\
00807 \n\
00808 bool is_dense # True if there are no invalid points\n\
00809 \n\
00810 ================================================================================\n\
00811 MSG: sensor_msgs/PointField\n\
00812 # This message holds the description of one point entry in the\n\
00813 # PointCloud2 message format.\n\
00814 uint8 INT8 = 1\n\
00815 uint8 UINT8 = 2\n\
00816 uint8 INT16 = 3\n\
00817 uint8 UINT16 = 4\n\
00818 uint8 INT32 = 5\n\
00819 uint8 UINT32 = 6\n\
00820 uint8 FLOAT32 = 7\n\
00821 uint8 FLOAT64 = 8\n\
00822 \n\
00823 string name # Name of field\n\
00824 uint32 offset # Offset from start of point struct\n\
00825 uint8 datatype # Datatype enumeration, see above\n\
00826 uint32 count # How many elements in the field\n\
00827 \n\
00828 ================================================================================\n\
00829 MSG: sensor_msgs/Image\n\
00830 # This message contains an uncompressed image\n\
00831 # (0, 0) is at top-left corner of image\n\
00832 #\n\
00833 \n\
00834 Header header # Header timestamp should be acquisition time of image\n\
00835 # Header frame_id should be optical frame of camera\n\
00836 # origin of frame should be optical center of cameara\n\
00837 # +x should point to the right in the image\n\
00838 # +y should point down in the image\n\
00839 # +z should point into to plane of the image\n\
00840 # If the frame_id here and the frame_id of the CameraInfo\n\
00841 # message associated with the image conflict\n\
00842 # the behavior is undefined\n\
00843 \n\
00844 uint32 height # image height, that is, number of rows\n\
00845 uint32 width # image width, that is, number of columns\n\
00846 \n\
00847 # The legal values for encoding are in file src/image_encodings.cpp\n\
00848 # If you want to standardize a new string format, join\n\
00849 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00850 \n\
00851 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00852 # taken from the list of strings in src/image_encodings.cpp\n\
00853 \n\
00854 uint8 is_bigendian # is this data bigendian?\n\
00855 uint32 step # Full row length in bytes\n\
00856 uint8[] data # actual matrix data, size is (step * rows)\n\
00857 \n\
00858 ================================================================================\n\
00859 MSG: sensor_msgs/CameraInfo\n\
00860 # This message defines meta information for a camera. It should be in a\n\
00861 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00862 # image topics named:\n\
00863 #\n\
00864 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00865 # image - monochrome, distorted\n\
00866 # image_color - color, distorted\n\
00867 # image_rect - monochrome, rectified\n\
00868 # image_rect_color - color, rectified\n\
00869 #\n\
00870 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00871 # for producing the four processed image topics from image_raw and\n\
00872 # camera_info. The meaning of the camera parameters are described in\n\
00873 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00874 #\n\
00875 # The image_geometry package provides a user-friendly interface to\n\
00876 # common operations using this meta information. If you want to, e.g.,\n\
00877 # project a 3d point into image coordinates, we strongly recommend\n\
00878 # using image_geometry.\n\
00879 #\n\
00880 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00881 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00882 # indicates an uncalibrated camera.\n\
00883 \n\
00884 #######################################################################\n\
00885 # Image acquisition info #\n\
00886 #######################################################################\n\
00887 \n\
00888 # Time of image acquisition, camera coordinate frame ID\n\
00889 Header header # Header timestamp should be acquisition time of image\n\
00890 # Header frame_id should be optical frame of camera\n\
00891 # origin of frame should be optical center of camera\n\
00892 # +x should point to the right in the image\n\
00893 # +y should point down in the image\n\
00894 # +z should point into the plane of the image\n\
00895 \n\
00896 \n\
00897 #######################################################################\n\
00898 # Calibration Parameters #\n\
00899 #######################################################################\n\
00900 # These are fixed during camera calibration. Their values will be the #\n\
00901 # same in all messages until the camera is recalibrated. Note that #\n\
00902 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00903 # #\n\
00904 # The internal parameters can be used to warp a raw (distorted) image #\n\
00905 # to: #\n\
00906 # 1. An undistorted image (requires D and K) #\n\
00907 # 2. A rectified image (requires D, K, R) #\n\
00908 # The projection matrix P projects 3D points into the rectified image.#\n\
00909 #######################################################################\n\
00910 \n\
00911 # The image dimensions with which the camera was calibrated. Normally\n\
00912 # this will be the full camera resolution in pixels.\n\
00913 uint32 height\n\
00914 uint32 width\n\
00915 \n\
00916 # The distortion model used. Supported models are listed in\n\
00917 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00918 # simple model of radial and tangential distortion - is sufficent.\n\
00919 string distortion_model\n\
00920 \n\
00921 # The distortion parameters, size depending on the distortion model.\n\
00922 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00923 float64[] D\n\
00924 \n\
00925 # Intrinsic camera matrix for the raw (distorted) images.\n\
00926 # [fx 0 cx]\n\
00927 # K = [ 0 fy cy]\n\
00928 # [ 0 0 1]\n\
00929 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00930 # coordinates using the focal lengths (fx, fy) and principal point\n\
00931 # (cx, cy).\n\
00932 float64[9] K # 3x3 row-major matrix\n\
00933 \n\
00934 # Rectification matrix (stereo cameras only)\n\
00935 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00936 # stereo image plane so that epipolar lines in both stereo images are\n\
00937 # parallel.\n\
00938 float64[9] R # 3x3 row-major matrix\n\
00939 \n\
00940 # Projection/camera matrix\n\
00941 # [fx' 0 cx' Tx]\n\
00942 # P = [ 0 fy' cy' Ty]\n\
00943 # [ 0 0 1 0]\n\
00944 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00945 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00946 # is the normal camera intrinsic matrix for the rectified image.\n\
00947 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00948 # coordinates using the focal lengths (fx', fy') and principal point\n\
00949 # (cx', cy') - these may differ from the values in K.\n\
00950 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00951 # also have R = the identity and P[1:3,1:3] = K.\n\
00952 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00953 # position of the optical center of the second camera in the first\n\
00954 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00955 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00956 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00957 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00958 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00959 # the rectified image is given by:\n\
00960 # [u v w]' = P * [X Y Z 1]'\n\
00961 # x = u / w\n\
00962 # y = v / w\n\
00963 # This holds for both images of a stereo pair.\n\
00964 float64[12] P # 3x4 row-major matrix\n\
00965 \n\
00966 \n\
00967 #######################################################################\n\
00968 # Operational Parameters #\n\
00969 #######################################################################\n\
00970 # These define the image region actually captured by the camera #\n\
00971 # driver. Although they affect the geometry of the output image, they #\n\
00972 # may be changed freely without recalibrating the camera. #\n\
00973 #######################################################################\n\
00974 \n\
00975 # Binning refers here to any camera setting which combines rectangular\n\
00976 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00977 # resolution of the output image to\n\
00978 # (width / binning_x) x (height / binning_y).\n\
00979 # The default values binning_x = binning_y = 0 is considered the same\n\
00980 # as binning_x = binning_y = 1 (no subsampling).\n\
00981 uint32 binning_x\n\
00982 uint32 binning_y\n\
00983 \n\
00984 # Region of interest (subwindow of full camera resolution), given in\n\
00985 # full resolution (unbinned) image coordinates. A particular ROI\n\
00986 # always denotes the same window of pixels on the camera sensor,\n\
00987 # regardless of binning settings.\n\
00988 # The default setting of roi (all values 0) is considered the same as\n\
00989 # full resolution (roi.width = width, roi.height = height).\n\
00990 RegionOfInterest roi\n\
00991 \n\
00992 ================================================================================\n\
00993 MSG: sensor_msgs/RegionOfInterest\n\
00994 # This message is used to specify a region of interest within an image.\n\
00995 #\n\
00996 # When used to specify the ROI setting of the camera when the image was\n\
00997 # taken, the height and width fields should either match the height and\n\
00998 # width fields for the associated image; or height = width = 0\n\
00999 # indicates that the full resolution image was captured.\n\
01000 \n\
01001 uint32 x_offset # Leftmost pixel of the ROI\n\
01002 # (0 if the ROI includes the left edge of the image)\n\
01003 uint32 y_offset # Topmost pixel of the ROI\n\
01004 # (0 if the ROI includes the top edge of the image)\n\
01005 uint32 height # Height of ROI\n\
01006 uint32 width # Width of ROI\n\
01007 \n\
01008 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
01009 # ROI in this message. Typically this should be False if the full image\n\
01010 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
01011 # used).\n\
01012 bool do_rectify\n\
01013 \n\
01014 ================================================================================\n\
01015 MSG: geometric_shapes_msgs/Shape\n\
01016 byte SPHERE=0\n\
01017 byte BOX=1\n\
01018 byte CYLINDER=2\n\
01019 byte MESH=3\n\
01020 \n\
01021 byte type\n\
01022 \n\
01023 \n\
01024 #### define sphere, box, cylinder ####\n\
01025 # the origin of each shape is considered at the shape's center\n\
01026 \n\
01027 # for sphere\n\
01028 # radius := dimensions[0]\n\
01029 \n\
01030 # for cylinder\n\
01031 # radius := dimensions[0]\n\
01032 # length := dimensions[1]\n\
01033 # the length is along the Z axis\n\
01034 \n\
01035 # for box\n\
01036 # size_x := dimensions[0]\n\
01037 # size_y := dimensions[1]\n\
01038 # size_z := dimensions[2]\n\
01039 float64[] dimensions\n\
01040 \n\
01041 \n\
01042 #### define mesh ####\n\
01043 \n\
01044 # list of triangles; triangle k is defined by tre vertices located\n\
01045 # at indices triangles[3k], triangles[3k+1], triangles[3k+2]\n\
01046 int32[] triangles\n\
01047 geometry_msgs/Point[] vertices\n\
01048 \n\
01049 ";
01050 }
01051
01052 static const char* value(const ::pr2_interactive_object_detection::GraspableObjectList_<ContainerAllocator> &) { return value(); }
01053 };
01054
01055 }
01056 }
01057
01058 namespace ros
01059 {
01060 namespace serialization
01061 {
01062
01063 template<class ContainerAllocator> struct Serializer< ::pr2_interactive_object_detection::GraspableObjectList_<ContainerAllocator> >
01064 {
01065 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
01066 {
01067 stream.next(m.graspable_objects);
01068 stream.next(m.image);
01069 stream.next(m.camera_info);
01070 stream.next(m.meshes);
01071 stream.next(m.reference_to_camera);
01072 }
01073
01074 ROS_DECLARE_ALLINONE_SERIALIZER;
01075 };
01076 }
01077 }
01078
01079 namespace ros
01080 {
01081 namespace message_operations
01082 {
01083
01084 template<class ContainerAllocator>
01085 struct Printer< ::pr2_interactive_object_detection::GraspableObjectList_<ContainerAllocator> >
01086 {
01087 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::pr2_interactive_object_detection::GraspableObjectList_<ContainerAllocator> & v)
01088 {
01089 s << indent << "graspable_objects[]" << std::endl;
01090 for (size_t i = 0; i < v.graspable_objects.size(); ++i)
01091 {
01092 s << indent << " graspable_objects[" << i << "]: ";
01093 s << std::endl;
01094 s << indent;
01095 Printer< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::stream(s, indent + " ", v.graspable_objects[i]);
01096 }
01097 s << indent << "image: ";
01098 s << std::endl;
01099 Printer< ::sensor_msgs::Image_<ContainerAllocator> >::stream(s, indent + " ", v.image);
01100 s << indent << "camera_info: ";
01101 s << std::endl;
01102 Printer< ::sensor_msgs::CameraInfo_<ContainerAllocator> >::stream(s, indent + " ", v.camera_info);
01103 s << indent << "meshes[]" << std::endl;
01104 for (size_t i = 0; i < v.meshes.size(); ++i)
01105 {
01106 s << indent << " meshes[" << i << "]: ";
01107 s << std::endl;
01108 s << indent;
01109 Printer< ::geometric_shapes_msgs::Shape_<ContainerAllocator> >::stream(s, indent + " ", v.meshes[i]);
01110 }
01111 s << indent << "reference_to_camera: ";
01112 s << std::endl;
01113 Printer< ::geometry_msgs::Pose_<ContainerAllocator> >::stream(s, indent + " ", v.reference_to_camera);
01114 }
01115 };
01116
01117
01118 }
01119 }
01120
01121 #endif // PR2_INTERACTIVE_OBJECT_DETECTION_MESSAGE_GRASPABLEOBJECTLIST_H
01122