00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038 #ifndef PCL_SAMPLE_CONSENSUS_IMPL_MSAC_H_
00039 #define PCL_SAMPLE_CONSENSUS_IMPL_MSAC_H_
00040
00041 #include "pcl/sample_consensus/msac.h"
00042
00044 template <typename PointT> bool
00045 pcl::MEstimatorSampleConsensus<PointT>::computeModel (int debug_verbosity_level)
00046 {
00047
00048 if (threshold_ == DBL_MAX)
00049 {
00050 ROS_ERROR ("[pcl::MEstimatorSampleConsensus::computeModel] No threshold set!");
00051 return (false);
00052 }
00053
00054 iterations_ = 0;
00055 double d_best_penalty = DBL_MAX;
00056 double k = 1.0;
00057
00058 std::vector<int> best_model;
00059 std::vector<int> selection;
00060 Eigen::VectorXf model_coefficients;
00061 std::vector<double> distances;
00062
00063 int n_inliers_count = 0;
00064
00065 while (iterations_ < k)
00066 {
00067
00068 sac_model_->getSamples (iterations_, selection);
00069
00070 if (selection.empty ()) break;
00071
00072
00073 if (!sac_model_->computeModelCoefficients (selection, model_coefficients))
00074 {
00075
00076 continue;
00077 }
00078
00079 double d_cur_penalty = 0;
00080
00081 sac_model_->getDistancesToModel (model_coefficients, distances);
00082
00083 if (distances.empty () && k > 1.0)
00084 continue;
00085
00086 for (size_t i = 0; i < distances.size (); ++i)
00087 d_cur_penalty += (std::min) (distances[i], threshold_);
00088
00089
00090 if (d_cur_penalty < d_best_penalty)
00091 {
00092 d_best_penalty = d_cur_penalty;
00093
00094
00095 model_ = selection;
00096 model_coefficients_ = model_coefficients;
00097
00098 n_inliers_count = 0;
00099
00100 for (size_t i = 0; i < distances.size (); ++i)
00101 if (distances[i] <= threshold_)
00102 ++n_inliers_count;
00103
00104
00105 double w = (double)((double)n_inliers_count / (double)sac_model_->getIndices ()->size ());
00106 double p_no_outliers = 1.0 - pow (w, (double)selection.size ());
00107 p_no_outliers = (std::max) (std::numeric_limits<double>::epsilon (), p_no_outliers);
00108 p_no_outliers = (std::min) (1.0 - std::numeric_limits<double>::epsilon (), p_no_outliers);
00109 k = log (1.0 - probability_) / log (p_no_outliers);
00110 }
00111
00112 ++iterations_;
00113 if (debug_verbosity_level > 1)
00114 ROS_DEBUG ("[pcl::MEstimatorSampleConsensus::computeModel] Trial %d out of %d. Best penalty is %f.", iterations_, (int)ceil (k), d_best_penalty);
00115 if (iterations_ > max_iterations_)
00116 {
00117 if (debug_verbosity_level > 0)
00118 ROS_DEBUG ("[pcl::MEstimatorSampleConsensus::computeModel] MSAC reached the maximum number of trials.");
00119 break;
00120 }
00121 }
00122
00123 if (model_.empty ())
00124 {
00125 if (debug_verbosity_level > 0)
00126 ROS_DEBUG ("[pcl::MEstimatorSampleConsensus::computeModel] Unable to find a solution!");
00127 return (false);
00128 }
00129
00130
00131 sac_model_->getDistancesToModel (model_coefficients_, distances);
00132 std::vector<int> &indices = *sac_model_->getIndices ();
00133
00134 if (distances.size () != indices.size ())
00135 {
00136 ROS_ERROR ("[pcl::MEstimatorSampleConsensus::computeModel] Estimated distances (%zu) differs than the normal of indices (%zu).", distances.size (), indices.size ());
00137 return (false);
00138 }
00139
00140 inliers_.resize (distances.size ());
00141
00142 n_inliers_count = 0;
00143 for (size_t i = 0; i < distances.size (); ++i)
00144 if (distances[i] <= threshold_)
00145 inliers_[n_inliers_count++] = indices[i];
00146
00147
00148 inliers_.resize (n_inliers_count);
00149
00150 if (debug_verbosity_level > 0)
00151 ROS_DEBUG ("[pcl::MEstimatorSampleConsensus::computeModel] Model: %zu size, %d inliers.", model_.size (), n_inliers_count);
00152
00153 return (true);
00154 }
00155
00156 #define PCL_INSTANTIATE_MEstimatorSampleConsensus(T) template class pcl::MEstimatorSampleConsensus<T>;
00157
00158 #endif // PCL_SAMPLE_CONSENSUS_IMPL_MSAC_H_